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Revision of Previous Seven Lectures

• Previous seven lectures have completed the discussion on all components of Modem

– Include examples of non-coherent systems: DBPSK and differential star 16QAM
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• We further investigate differential encoding/decoding for non-coherent systems in
this lecture
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Coherent Receiver

(a) Carrier recovery for demodulation

– Received noisy RF signal r(t) = A cos
(

ωct + ϕ
)

+ n(t)
– Receiver local carrier cos

(

ωct + ϕ̃
)

– Carrier recovery (e.g. phase lock loop) circuit locks ϕ̃ to ϕ:

∆ϕ = ϕ − ϕ̃ → 0 i.e. ϕ̃ → ϕ

– Demodulation leads to recovered baseband signal

y(t) = x(t + τ) + n(t)

where x(t) is transmitted baseband signal

(b) Timing recovery for sampling

– Align receiver clock with transmitter clock, so that sampling ⇒ no ISI

yk = xk + nk

where {xk} are transmitted symbols, and {nk} are noise samples
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Non-coherent Receiver

(a) No carrier recovery for demodulation

– Received noisy RF signal r(t) = A cos
(

ωct + ϕ
)

+ n(t)
– Receiver local carrier cos

(

ωct + ϕ̃
)

– No carrier recovery,

φ = ∆ϕ = ϕ − ϕ̃ 6= 0 i.e. ϕ̃ 6= ϕ

– Demodulation leads to recovered baseband signal

y(t) = x(t + τ)ejφ + n(t)

(b) Timing recovery for sampling

– Align receiver clock with transmitter clock, sampling results in

yk = xke
jφ + nk

– There is a random unknown channel state information ejφ

– Could not recover transmitted symbols {xk} properly from {yk}!
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Differential Detection

(a) Differential encoding at transmitter for transmission

– Symbols {xk} ⇒ {ck} for transmission by differential encoding

ck =

{

1, k = 0
xk · ck−1, k ≥ 1

– {ck} are transmitted, not symbols {xk}, and as ck · c∗k−1 = xk ·
(

ck−1 · c
∗
k−1

)

,

xk =
ck · c∗k−1

|ck−1|2

(b) Non-coherent detection

– Receiver samples
yk = ck · |h| · ejφ + nk

|h|: magnitude of combined channel tap, φ 6= 0: unknown phase
– Assumption: |h| and φ unchanged for two consecutive samples
– Differential decoding leads to recovered symbols

x̂k =
yk · y∗k−1

|yk−1|2

158



ELEC6214 Advanced Wireless Communications Networks and Systems S Chen

Differential Detection (derivation)

• Note

yk · y
∗
k−1 =

`
ck · |h| · e

jφ + nk

´
·

`
c
∗
k−1 · |h| · e

−jφ + n
∗
k−1

´

=ck · c
∗
k−1 · |h|

2 · ej(φ−φ) + nk · n
∗
k−1 + ck · |h| · e

jφ · n∗k−1 + nk · c
∗
k−1 · |h| · e

−jφ

|yk−1|
2 =ck−1 · c

∗
k−1 · |h|

2 + nk−1 · n
∗
k−1 + ck−1 · |h| · e

jφ · n∗k−1 + nk−1 · c
∗
k−1 · |h| · e

−jφ

– When noise nk is very small, nk · n
∗
k−1 and nk−1 · n

∗
k−1 are even smaller, and we have

yk · y
∗
k−1 ≈ ck · c

∗
k−1 · |h|

2
and |yk−1|

2
≈ |ck−1|

2
· |h|

2

• Thus,

x̂k =
yk · y

∗
k−1

|yk−1|2
≈

ck · c
∗
k−1

|ck−1|2
+ n̄k = xk + n̄k

– Unknown φ has been removed, but power of enhanced noise n̄k is larger than that of nk

• Comparison of coherent system and non-coherent system

– Coherent detection require expensive and complex carrier recovery circuit, but has better bit

error rate of detection

x̂k = xk + nk

– Non-coherent detection does not require expensive and complex carrier recovery circuit, but has

poorer bit error rate of detection (power of n̄k larger than that of nk)

x̂k = xk + n̄k
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Differential PSK

(a) For differential phase shift keying, |ck−1|
2 = con and xk =

ck·c
∗
k−1

con
– xk ← phase of ck · c

∗
k−1

– x̂k ← phase of yk · y
∗
k−1

(b) At receiver, differential decoding becomes

x̂k =
yk · y

∗
k−1

|ck−1|2
=

yk · y
∗
k−1

con

– For convenience, assuming |h|2 = 1 (or |h|2 is known), then

yk · y
∗
k−1

con
=

ck · c
∗
k−1

con
+

nk · n
∗
k−1

con
+

ck

con
· ejφ · n∗k−1 + nk · e

−jφ ·
c∗k−1

con

– Noting magnitudes of
ck
con and

c∗k−1
con are 1,

nk·n
∗
k−1

con is much smaller than the last two terms,

while ejφ · n∗k−1 and nk · e
−jφ have the same variance as nk,

x̂k ≈ xk + 2nk

• Compared with coherent detection of x̂k ≈ xk + nk

– Non-coherent detection doubles noise or its SNR is 3 dB worse off

• In general, differential systems do not need to acquire channel state information

– This important advantage makes differential systems widely used in practice
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MSDSD: Motivation

• Conventional differential detection (CDD) for M -DPSK detects single symbol based on two

consecutive samples, and assumption:

– CSIs at two consecutive samples remain the same: hk = hk−1, i.e.

|hk|e
−jφk = |hk−1|e

−jφk−1 or |hk| = |hk−1|, φk = φk−1

– For relative slow fading, i.e. small normalised Doppler frequency fd, this condition is valid, and

CDD only shows famous 3 dB SNR penalty, compared to coherent detection with perfect CSI

– For high normalised Doppler frequency fd, this condition is invalid, and CDD exhibits BER floor

• To mitigate this performance loss, multiple-symbol differential detection (MSDD) employs

window size Nw > 2, i.e. Nw consecutive samples to detect Nw − 1 > 1 symbols

– Implemented as optimal maximum likelihood (ML) detection with complexity on order of MNw−1

• Multiple-symbol differential sphere detection (MSDSD) significantly reduces complexity while

attaining near ML performance

• Recall for M -DPSK system, with M -PSK symbol set X = {x(1), x(2), · · · , x(M)}

– At transmitter, M -PSK symbols {xk} are differentially encoded

ck =


1, k = 0

xk · ck−1, k ≥ 1

– Receive signal
yk = hk · ck + nk
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Multiple-Symbol Differential Detection

• Define Nw × 1 vectors y =
ˆ
yk yk−1 · · · yk−Nw+1

˜T
, c =

ˆ
ck ck−1 · · · ck−Nw+1

˜T
, h =ˆ

hk hk−1 · · ·hk−Nw+1

˜T
, n =

ˆ
nk nk−1 · · ·nk−Nw+1

˜T
, and Nw × Nw diagonal matrix

diag{c} = diag{ck, ck−1, · · · , ck−Nw+1}, we have

y = diag{c} · h + n

• Further define Nw ×Nw diagonal matrix C̄diag = diag{ck−Nw+1, · · · , ck−Nw+1}, and

di = ci · c
∗
k−Nw+1 =

(
1, i = k −Nw + 1Qi

j=k−Nw+2 xj, k −Nw + 1 < i ≤ k

– We have Nw×1 vector d =
ˆ
dk dk−1 · · · dk−Nw+2 dk−Nw+1

˜T
which contains (Nw−1)×1

transmitted symbol vector x =
ˆ
xk xk−1 · · · xk−Nw+2

˜T
to be detected

– Let Nw ×Nw diagonal matrix diag{d} = diag{dk, dk−1, · · · , dk−Nw+1}, we have

y = diag{d} · C̄diag · h + n

• Maximizing a posteriori probability Pr(y|x) leads to ML algorithm

bx = arg min
x∈XNw−1

y
H
R
−1
yyy

– Both diag{d} and C̄diag are unitary matrices, and correlation matrix

Ryy = E{yy
H|x} = diag{d}

“
E{hh

H}+ E{nn
H}

”
diag{d}H
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MSDD: Derivation

• E{nnH} = N0INw with N0 being channel AWGN power, and channel correlation matrix

E{hh
H} =

2
664

ρ0 ρ1 · · · ρNw−1

ρ1 ρ2 · · · ρNw−2
... ... . . . ...

ρNw−1 ρNw−2 · · · ρ0

3
775

– For Rayleigh fading with fd, ρτ = J0(2πτfd), and J0(): Bessel function with complex order 0

• Define G = E{hhH}+ E{nnH}, and let Cholesky factorization of G−1 be LLH = G−1

– L: is a Nw ×Nw lower triangular matrix, and ML optimisation criterion becomes

y
H
R
−1
yyy =d

T
diag{y}

H
LL

H
diag{y}d

∗
=

‚‚‚L
H
diag{y}d

∗
‚‚‚

2

where diag{y} = diag{yk, yk−1, · · · , yk−Nw+1}

• Further define a Nw ×Nw upper triangular matrix U =
“

LHdiag{y}
”∗

– ML optimisation becomes

bx = arg min
x∈XNw−1

‖Ud‖2

– Note d =
ˆ`

xk × xk−1 × · · · × xk−Nw+2

´ `
xk−1 × · · · × xk−Nw+2

´
· · ·

`
xk−Nw+2

´
1

˜T

– which contains x =
ˆ
xk xk−1 · · · xk−Nw+2

˜T
that has MNw−1 candidates
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Multiple-Symbol Differential Sphere Detection

• ML optimisation can be solved efficiently with sphere decoding, which only examines candidates x

that lie inside a sphere of radius R
‖Ud‖

2
≤ R

2

• Define

U =

2
664

u1,1 u1,2 · · · u1,Nw

0 u2,2 · · · u2,Nw
... . . . . . . ...

0 · · · 0 uNw,Nw

3
775

– Condition or search becomes

NwX

i=1

˛̨
˛̨
˛̨

NwX

j=i

ui,jd(k+1)−j

˛̨
˛̨
˛̨

2

≤ R
2

– Note that last component of d is d(k+1)−Nw = 1

• Condition can be checked componentwise, i.e. having find (preliminary) decisions for last

(Nw − 1)− i components

– bd(k+1)−l, i + 1 ≤ l ≤ Nw − 1, that is, bx(k+1)−l, i + 1 ≤ l ≤ Nw − 1

– we obtain Condition for ith component d(k+1)−i, i.e. x(k+1)−i, 1 ≤ i ≤ Nw − 1

• To see this, first define partial Euclidean distance

f
2
i =

NwX

t=i

˛̨
˛̨
˛̨

NwX

j=t

ut,jd(k+1)−j

˛̨
˛̨
˛̨

2
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MSDSD (Continue)

• Assume we have found bd(k+1)−l for i + 1 ≤ l ≤ Nw − 1, with partial Euclidean distance

f
2
i+1 =

NwX

t=i+1

˛̨
˛̨
˛̨

NwX

j=t

ut,j
bd(k+1)−j

˛̨
˛̨
˛̨

2

• Possible values d(k+1)−i or x(k+1)−i have to meet Condition

f
2
i = δi + f

2
i+1 =

˛̨
˛̨
˛̨ui,id(k+1)−i +

NwX

j=i+1

ui,j
bd(k+1)−j

˛̨
˛̨
˛̨

2

+ f
2
i+1 ≤ R

2

• Note d(k+1)−i = x(k+1)−i · d(k+1)−(i+1), partial Euclidean distance increment

δi =

˛̨
˛̨
˛̨ui,ix(k+1)−i

bd(k+1)−(i+1) +

NwX

j=i+1

ui,j
bd(k+1)−j

˛̨
˛̨
˛̨

2

• MSDSD discussed above is based on hard decision

– Soft-decision MSDSD can be employed in order to implement turbo detection and decoding

• Sphere decoding algorithm is widely used to achieve near ML detection performance, at

substantially reduced complexity

– It is worth getting to know algorithm details and actual implementation from literature
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Summary

• Differential detection for non-coherent systems which does not require channel state information

– Differential PSK

• Under slow fading environment, CSIs at two consecutive samples remain unchanged, and differential

detection only exhibits 3 dB SNR penalty compared with coherent detection with perfect CSI

• Under fast fading environment, differential detection performance degrades and exhibits error floor

• Multiple-symbol differential sphere detection is introduced to recover from this performance

degradation

• Some references for MSDSD
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