Revision of Previous Seven Lectures

- Previous seven lectures have completed the discussion on all components of Modem
 - Include examples of non-coherent systems: DBPSK and differential star 16QAM

• We further investigate differential encoding/decoding for non-coherent systems in this lecture

Coherent Receiver

(a) Carrier recovery for demodulation

- Received noisy RF signal $r(t) = A \cos (\omega_c t + \varphi) + n(t)$
- Receiver local carrier $\cos(\omega_c t + \tilde{\varphi})$
- Carrier recovery (e.g. phase lock loop) circuit locks $\tilde{\varphi}$ to φ :

$$\Delta \varphi = \varphi - \tilde{\varphi} \to 0 \quad \text{i.e.} \quad \tilde{\varphi} \to \varphi$$

- Demodulation leads to recovered baseband signal

$$y(t) = x(t+\tau) + n(t)$$

where x(t) is transmitted baseband signal

(b) Timing recovery for sampling

– Align receiver clock with transmitter clock, so that sampling \Rightarrow no ISI

$$y_k = x_k + n_k$$

where $\{x_k\}$ are transmitted symbols, and $\{n_k\}$ are noise samples

Non-coherent Receiver

(a) No carrier recovery for demodulation

- Received noisy RF signal $r(t) = A \cos (\omega_c t + \varphi) + n(t)$
- Receiver local carrier $\cos(\omega_c t + \tilde{\varphi})$
- No carrier recovery,

$$\phi = \Delta \varphi = \varphi - \tilde{\varphi} \neq 0$$
 i.e. $\tilde{\varphi} \neq \varphi$

- Demodulation leads to recovered baseband signal

$$y(t) = x(t+\tau)e^{j\phi} + n(t)$$

(b) Timing recovery for sampling

- Align receiver clock with transmitter clock, sampling results in

$$y_k = x_k e^{\mathbf{j}\phi} + n_k$$

- There is a random **unknown** channel state information $e^{\mathrm{j}\phi}$
- Could not recover transmitted symbols $\{x_k\}$ properly from $\{y_k\}!$

Differential Detection

(a) Differential encoding at transmitter for transmission

– Symbols $\{x_k\} \Rightarrow \{c_k\}$ for transmission by differential encoding

$$c_k = \begin{cases} 1, & k = 0\\ x_k \cdot c_{k-1}, & k \ge 1 \end{cases}$$

- $\{c_k\}$ are transmitted, not symbols $\{x_k\}$, and as $c_k \cdot c_{k-1}^* = x_k \cdot (c_{k-1} \cdot c_{k-1}^*)$,

$$x_k = \frac{c_k \cdot c_{k-1}^*}{|c_{k-1}|^2}$$

(b) Non-coherent detection

- Receiver samples

$$y_k = c_k \cdot |\mathbf{h}| \cdot e^{\mathbf{j}\phi} + n_k$$

- |h|: magnitude of combined channel tap, $\phi \neq 0$: unknown phase
- Assumption: |h| and ϕ unchanged for two consecutive samples
- Differential decoding leads to recovered symbols

$$\hat{x}_k = \frac{y_k \cdot y_{k-1}^*}{|y_{k-1}|^2}$$

Differential Detection (derivation)

• Note

$$y_{k} \cdot y_{k-1}^{*} = (c_{k} \cdot |h| \cdot e^{j\phi} + n_{k}) \cdot (c_{k-1}^{*} \cdot |h| \cdot e^{-j\phi} + n_{k-1}^{*})$$

$$= c_{k} \cdot c_{k-1}^{*} \cdot |h|^{2} \cdot e^{j(\phi-\phi)} + n_{k} \cdot n_{k-1}^{*} + c_{k} \cdot |h| \cdot e^{j\phi} \cdot n_{k-1}^{*} + n_{k} \cdot c_{k-1}^{*} \cdot |h| \cdot e^{-j\phi}$$

$$|y_{k-1}|^{2} = c_{k-1} \cdot c_{k-1}^{*} \cdot |h|^{2} + n_{k-1} \cdot n_{k-1}^{*} + c_{k-1} \cdot |h| \cdot e^{j\phi} \cdot n_{k-1}^{*} + n_{k-1} \cdot c_{k-1}^{*} \cdot |h| \cdot e^{-j\phi}$$

- When noise
$$n_k$$
 is very small, $n_k \cdot n_{k-1}^*$ and $n_{k-1} \cdot n_{k-1}^*$ are even smaller, and we have $y_k \cdot y_{k-1}^* \approx c_k \cdot c_{k-1}^* \cdot |h|^2$ and $|y_{k-1}|^2 \approx |c_{k-1}|^2 \cdot |h|^2$

• Thus,

$$\hat{x}_k = \frac{y_k \cdot y_{k-1}^*}{|y_{k-1}|^2} \approx \frac{c_k \cdot c_{k-1}^*}{|c_{k-1}|^2} + \bar{n}_k = x_k + \bar{n}_k$$

- Unknown ϕ has been removed, but power of enhanced noise \bar{n}_k is larger than that of n_k
- Comparison of coherent system and non-coherent system
 - Coherent detection require expensive and complex carrier recovery circuit, but has better bit error rate of detection

$$\hat{x}_k = x_k + n_k$$

- Non-coherent detection does not require expensive and complex carrier recovery circuit, but has poorer bit error rate of detection (power of \bar{n}_k larger than that of n_k)

$$\hat{x}_k = x_k + \bar{n}_k$$

Electronics and Computer Science

159

Differential PSK

- (a) For differential phase shift keying, $|c_{k-1}|^2 = \text{con and } x_k = \frac{c_k \cdot c_{k-1}^*}{\text{con}}$
 - $x_k \leftarrow$ phase of $c_k \cdot c_{k-1}^*$ - $\hat{x}_k \leftarrow$ phase of $y_k \cdot y_{k-1}^*$
- (b) At receiver, differential decoding becomes

$$\hat{x}_k = rac{y_k \cdot y_{k-1}^*}{|c_{k-1}|^2} = rac{y_k \cdot y_{k-1}^*}{\operatorname{con}}$$

– For convenience, assuming $|h|^2=1$ (or $|h|^2$ is known), then

$$\frac{y_k \cdot y_{k-1}^*}{\text{con}} = \frac{c_k \cdot c_{k-1}^*}{\text{con}} + \frac{n_k \cdot n_{k-1}^*}{\text{con}} + \frac{c_k}{\text{con}} \cdot e^{j\phi} \cdot n_{k-1}^* + n_k \cdot e^{-j\phi} \cdot \frac{c_{k-1}^*}{\text{con}}$$

- Noting magnitudes of $\frac{c_k}{\text{con}}$ and $\frac{c_{k-1}^*}{\text{con}}$ are 1, $\frac{n_k \cdot n_{k-1}^*}{\text{con}}$ is much smaller than the last two terms, while $e^{j\phi} \cdot n_{k-1}^*$ and $n_k \cdot e^{-j\phi}$ have the same variance as n_k ,

$\hat{x}_k \approx x_k + 2n_k$

- Compared with coherent detection of $\hat{x}_k pprox x_k + n_k$
 - Non-coherent detection doubles noise or its SNR is 3 dB worse off
- In general, differential systems do not need to acquire channel state information
 - This important advantage makes differential systems widely used in practice

MSDSD: Motivation

- **Conventional differential detection** (CDD) for *M*-DPSK detects single symbol based on two consecutive samples, and assumption:
 - CSIs at two consecutive samples remain the same: $h_k = h_{k-1}$, i.e.

$$|h_k|e^{-j\phi_k} = |h_{k-1}|e^{-j\phi_{k-1}}$$
 or $|h_k| = |h_{k-1}|, \ \phi_k = \phi_{k-1}$

- For relative slow fading, i.e. small normalised Doppler frequency f_d , this condition is valid, and CDD only shows famous 3 dB SNR penalty, compared to coherent detection with perfect CSI

- For high normalised Doppler frequency f_d , this condition is invalid, and CDD exhibits BER floor
- To mitigate this performance loss, multiple-symbol differential detection (MSDD) employs window size $N_w > 2$, i.e. N_w consecutive samples to detect $N_w 1 > 1$ symbols
 - Implemented as optimal maximum likelihood (ML) detection with complexity on order of M^{Nw-1}
- Multiple-symbol differential sphere detection (MSDSD) significantly reduces complexity while attaining near ML performance
- Recall for $M ext{-DPSK}$ system, with $M ext{-PSK}$ symbol set $\mathcal{X}=\{x^{(1)},x^{(2)},\cdots,x^{(M)}\}$
 - At transmitter, M-PSK symbols $\{x_k\}$ are differentially encoded

$$c_k = \begin{cases} 1, & k = 0\\ x_k \cdot c_{k-1}, & k \ge 1 \end{cases}$$

- Receive signal

$$y_k = h_k \cdot c_k + n_k$$

Electronics and Computer Science

Multiple-Symbol Differential Detection

• Define $N_w \times 1$ vectors $\boldsymbol{y} = \begin{bmatrix} y_k \ y_{k-1} \cdots y_{k-N_w+1} \end{bmatrix}^{\mathrm{T}}$, $\boldsymbol{c} = \begin{bmatrix} c_k \ c_{k-1} \cdots c_{k-N_w+1} \end{bmatrix}^{\mathrm{T}}$, $\boldsymbol{h} = \begin{bmatrix} h_k \ h_{k-1} \cdots h_{k-N_w+1} \end{bmatrix}^{\mathrm{T}}$, $\boldsymbol{n} = \begin{bmatrix} n_k \ n_{k-1} \cdots n_{k-N_w+1} \end{bmatrix}^{\mathrm{T}}$, and $N_w \times N_w$ diagonal matrix $\operatorname{diag}\{\boldsymbol{c}\} = \operatorname{diag}\{c_k, c_{k-1}, \cdots, c_{k-N_w+1}\}$, we have

$$oldsymbol{y} = \mathsf{diag}\{oldsymbol{c}\} \cdot oldsymbol{h} + oldsymbol{n}$$

• Further define $N_w imes N_w$ diagonal matrix $ar{m{C}}_{ ext{diag}} = ext{diag}\{c_{k-N_w+1}, \cdots, c_{k-N_w+1}\}$, and

$$d_{i} = c_{i} \cdot c_{k-N_{w}+1}^{*} = \begin{cases} 1, & i = k - N_{w} + 1\\ \prod_{j=k-N_{w}+2}^{i} x_{j}, & k - N_{w} + 1 < i \le k \end{cases}$$

- We have $N_w \times 1$ vector $\boldsymbol{d} = \begin{bmatrix} d_k \ d_{k-1} \cdots d_{k-N_w+2} \ d_{k-N_w+1} \end{bmatrix}^{\mathrm{T}}$ which contains $(N_w - 1) \times 1$ transmitted symbol vector $\boldsymbol{x} = \begin{bmatrix} x_k \ x_{k-1} \cdots x_{k-N_w+2} \end{bmatrix}^{\mathrm{T}}$ to be detected - Let $N_w \times N_w$ diagonal matrix diag $\{\boldsymbol{d}\} = \text{diag}\{d_k, d_{k-1}, \cdots, d_{k-N_w+1}\}$, we have

$$oldsymbol{y} = \mathsf{diag}\{oldsymbol{d}\} \cdot ar{oldsymbol{C}}_{\mathrm{diag}} \cdot oldsymbol{h} + oldsymbol{n}$$

• Maximizing a posteriori probability $\Pr(\boldsymbol{y}|\boldsymbol{x})$ leads to ML algorithm

$$\widehat{oldsymbol{x}} = rg\min_{oldsymbol{x}\in\mathcal{X}^{N_w-1}}oldsymbol{y}^{ ext{H}}oldsymbol{R}_{oldsymbol{y}oldsymbol{y}}^{ ext{H}}oldsymbol{y}_{oldsymbol{y}}^{ ext{H}}oldsymbol{y}_{oldsymbol{y}}$$

– Both $\mathsf{diag}\{d\}$ and $\bar{\bm{C}}_{\mathrm{diag}}$ are unitary matrices, and correlation matrix

$$oldsymbol{R}_{oldsymbol{y}oldsymbol{y}} = E\{oldsymbol{y}oldsymbol{y}^{ ext{H}}|oldsymbol{x}\} = ext{diag}\{oldsymbol{d}\}\left(E\{oldsymbol{h}oldsymbol{h}^{ ext{H}}\} + E\{oldsymbol{n}oldsymbol{n}^{ ext{H}}\}
ight) ext{diag}\{oldsymbol{d}\}^{ ext{H}}$$

University

of Southampton

MSDD: Derivation

• $E\{\boldsymbol{nn}^{\mathrm{H}}\} = N_0 \boldsymbol{I}_{N_w}$ with N_0 being channel AWGN power, and channel correlation matrix

$$E\{\boldsymbol{h}\boldsymbol{h}^{\mathrm{H}}\} = \begin{bmatrix} \rho_{0} & \rho_{1} & \cdots & \rho_{N_{w}-1} \\ \rho_{1} & \rho_{2} & \cdots & \rho_{N_{w}-2} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{N_{w}-1} & \rho_{N_{w}-2} & \cdots & \rho_{0} \end{bmatrix}$$

- For Rayleigh fading with f_d , $\rho_{\tau} = J_0(2\pi\tau f_d)$, and $J_0()$: Bessel function with complex order 0

- Define $G = E\{hh^{H}\} + E\{nn^{H}\}$, and let Cholesky factorization of G^{-1} be $LL^{H} = G^{-1}$
 - L: is a $N_w imes N_w$ lower triangular matrix, and ML optimisation criterion becomes

$$oldsymbol{y}^{\mathrm{H}}oldsymbol{R}_{oldsymbol{y}oldsymbol{y}}^{\mathrm{H}}oldsymbol{d} = oldsymbol{d}^{\mathrm{H}}oldsymbol{d}^{\mathrm{H}$$

where $\mathsf{diag}\{oldsymbol{y}\}=\mathsf{diag}\{y_k,y_{k-1},\cdots,y_{k-N_w+1}\}$

of Southampton

- Further define a $N_w imes N_w$ upper triangular matrix $oldsymbol{U} = \left(oldsymbol{L}^{ ext{H}} \mathsf{diag}\{oldsymbol{y}\}
 ight)^*$
 - ML optimisation becomes

Electronics and

Computer Science

$$\widehat{oldsymbol{x}} = rg\min_{oldsymbol{x}\in\mathcal{X}^{N_w-1}} \left\|oldsymbol{U}oldsymbol{d}
ight\|^2$$

- Note $\boldsymbol{d} = \left[\left(x_k \times x_{k-1} \times \cdots \times x_{k-Nw+2} \right) \left(x_{k-1} \times \cdots \times x_{k-Nw+2} \right) \cdots \left(x_{k-Nw+2} \right) 1 \right]^{\mathrm{T}}$ - which contains $\boldsymbol{x} = \left[x_k \ x_{k-1} \cdots x_{k-Nw+2} \right]^{\mathrm{T}}$ that has M^{Nw-1} candidates

Multiple-Symbol Differential Sphere Detection

- ML optimisation can be solved efficiently with sphere decoding, which only examines candidates xthat lie inside a sphere of radius R $\|Ud\|^2 < R^2$
- Define

- Condition or search becomes

$$\sum_{i=1}^{N_w} \left| \sum_{j=i}^{N_w} u_{i,j} d_{(k+1)-j} \right|^2 \le R^2$$

- Note that last component of ${m d}$ is $d_{(k+1)-N_w}=1$
- Condition can be checked componentwise, i.e. having find (preliminary) decisions for last $(N_w 1) i$ components
 - $\widehat{d}_{(k+1)-l}$, $i+1 \leq l \leq N_w 1$, that is, $\widehat{x}_{(k+1)-l}$, $i+1 \leq l \leq N_w 1$
 - we obtain **Condition** for ith component $d_{(k+1)-i}$, i.e. $x_{(k+1)-i}$, $1 \leq i \leq N_w 1$
- To see this, first define partial Euclidean distance

$$f_i^2 = \sum_{t=i}^{N_w} \left| \sum_{j=t}^{N_w} u_{t,j} d_{(k+1)-j} \right|^2$$

MSDSD (Continue)

• Assume we have found $\widehat{d}_{(k+1)-l}$ for $i+1 \leq l \leq N_w - 1$, with partial Euclidean distance

$$f_{i+1}^{2} = \sum_{t=i+1}^{N_{w}} \left| \sum_{j=t}^{N_{w}} u_{t,j} \widehat{d}_{(k+1)-j} \right|^{2}$$

• Possible values $d_{(k+1)-i}$ or $x_{(k+1)-i}$ have to meet Condition

$$f_i^2 = \delta_i + f_{i+1}^2 = \left| u_{i,i} d_{(k+1)-i} + \sum_{j=i+1}^{N_w} u_{i,j} \widehat{d}_{(k+1)-j} \right|^2 + f_{i+1}^2 \le R^2$$

• Note $d_{(k+1)-i} = x_{(k+1)-i} \cdot d_{(k+1)-(i+1)}$, partial Euclidean distance increment

$$\delta_i = \left| u_{i,i} x_{(k+1)-i} \widehat{d}_{(k+1)-(i+1)} + \sum_{j=i+1}^{N_w} u_{i,j} \widehat{d}_{(k+1)-j} \right|^2$$

- MSDSD discussed above is based on hard decision
 - Soft-decision MSDSD can be employed in order to implement turbo detection and decoding
- Sphere decoding algorithm is widely used to achieve near ML detection performance, at substantially reduced complexity
 - It is worth getting to know algorithm details and actual implementation from literature

Summary

- Differential detection for non-coherent systems which does not require channel state information
 - Differential PSK
- Under slow fading environment, CSIs at two consecutive samples remain unchanged, and differential detection only exhibits 3 dB SNR penalty compared with coherent detection with perfect CSI
- Under fast fading environment, differential detection performance degrades and exhibits error floor
- Multiple-symbol differential sphere detection is introduced to recover from this performance degradation
- Some references for MSDSD
 - 1. D. Divsalar, M. Simon, "Multiple-symbol differential detection for MPSK," *IEEE Trans. Communications*, 38(3), 300-308, 1990
 - 2. L. Lampe, R. Schober, V. Pauli, C. Windpassinger, "Multiple-symbol differential sphere decoding," *IEEE Trans. Communications*, 53(12), 1981-1985, 2005
 - 3. P. Zhang, S. Chen, L. Hanzo, "Differential space-time shift keying-aided successive-relayingassisted decoded-and-forward cooperative multiuser CDMA," *IEEE Trans. Vehicular Technology*, 62(5), 2156-2169, 2013

