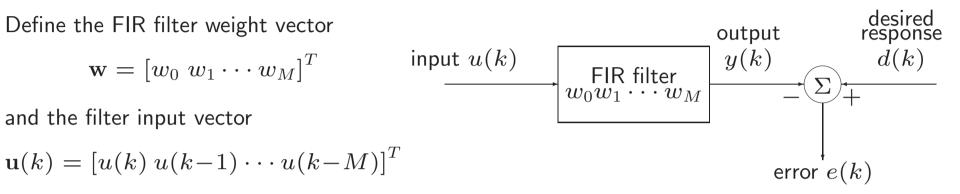
Revision of Lecture Seventeen

- Previous lecture introduces generic structure of adaptive equalisation
 - Adaptive signal processing/filtering: enabling technology for communications
 - Adaptive equalisation is just a particular example
 - Concepts of cost function and optimisation, adaptive FIR filter
- Communications technology is about "Shannon meets Wiener"
- This lecture looks into optimal FIR filter design known as **Wiener filter** or **minimum mean square error** solution
 - This Wiener design embodies most important ideas of adaptive filtering
 - It is most widely used design principle in communication applications
 - It has important influence on new designs

Wiener Filters

• Wiener filter is the optimal FIR filter in the MMSE sense



The actual filter output and the error signal are given by

$$y(k) = \sum_{i=0}^{M} w_i^* u(k-i) = \mathbf{w}^H \mathbf{u}(k) \quad e(k) = d(k) - y(k) = d(k) - \mathbf{w}^H \mathbf{u}(k)$$

• Assuming the desired signal d(k) and the filter input u(k) are wide-sense stationary, the **optimal** Wiener solution \hat{w} minimises the MSE

$$J(\mathbf{w}) = E[|e(k)|^2] = E[e(k)e^*(k)]$$

• Define the desired signal power $\sigma_d^2 = E[|d(k)|^2]$, the autocorrelations $\gamma(l) = E[u(k)u^*(k-l)]$ for $0 \le l \le M$, and the crosscorrelations $p(l) = E[d^*(k)u(k-l)]$ for $0 \le l \le M$

Wiener Filters (continue)

• Since the square error $|e(k)|^2 = d(k)d^*(k) - d(k)\mathbf{u}^H(k)\mathbf{w} - \mathbf{w}^H\mathbf{u}(k)d^*(k) + \mathbf{w}^H\mathbf{u}(k)\mathbf{u}^H(k)\mathbf{w}$,

$$J(\mathbf{w}) = \mathbf{E}[|e(k)|^{2}] = \sigma_{d}^{2} - \mathbf{p}^{H}\mathbf{w} - \mathbf{w}^{H}\mathbf{p} + \mathbf{w}^{H}\mathbf{R}\mathbf{w}$$

where

Electronics and

Computer Science

$$\mathbf{p} = \begin{bmatrix} p(0) \\ p(1) \\ \vdots \\ p(M) \end{bmatrix} \text{ and } \mathbf{R} = \begin{bmatrix} \gamma(0) & \gamma(1) & \cdots & \gamma(M) \\ \gamma^*(1) & \gamma(0) & \cdots & \gamma(M-1) \\ \vdots & \vdots & \ddots & \vdots \\ \gamma^*(M) & \gamma^*(M-1) & \cdots & \gamma(0) \end{bmatrix}$$

• For $\widehat{\mathbf{w}}$ to be a minimum point of $J(\mathbf{w})$:

University

of Southampton

$$\nabla J(\mathbf{w})|_{\mathbf{w}=\widehat{\mathbf{w}}} = 0$$
 (necessary) $\left. \frac{\partial^2 J(\mathbf{w})}{\partial \mathbf{w}^2} \right|_{\mathbf{w}=\widehat{\mathbf{w}}}$ is positive definite (sufficient)

that is, $-2\mathbf{p} + 2\mathbf{R}\widehat{\mathbf{w}} = 0$ (necessary), and **R** is positive definite (sufficient)

• Necessary condition \rightarrow Wiener-Hopf equations: $\mathbf{R}\widehat{\mathbf{w}} = \mathbf{p}$, which gives the Wiener solution

$$\widehat{\mathbf{w}} = \mathbf{R}^{-1}\mathbf{p}$$

Since this is the only minimum, it is a **global minimum**. Note that the correlation matrix \mathbf{R} is always nonnegative definite. When ${f R}$ is positive definite, the inverse ${f R}^{-1}$ exists

Orthogonal Principle and MSE surface

- The Wiener filter error $\widehat{e}(k) = d(k) \widehat{\mathbf{w}}^H \mathbf{u}(k)$ is orthogonal to the filter input vector:
 - $E[\hat{e}^*(k)\mathbf{u}(k)] = \mathbf{0}$, and as a consequence, the MMSE filter output $\hat{y}(k) = \hat{\mathbf{w}}^H \mathbf{u}(k)$ is orthogonal to its error: $E[\hat{e}^*(k)\hat{y}(k)] = 0$
- The MSE is a bowl-shaped (2(M+1)+1)-dimensional surface ((M+1)+1) in real case)

$$J(\mathbf{w}) = \sigma_d^2 - \mathbf{p}^H \mathbf{w} - \mathbf{w}^H \mathbf{p} + \mathbf{w}^H \mathbf{R} \mathbf{w}$$

and has a unique minimum at $\mathbf{w} = \widehat{\mathbf{w}}$. Since the MMSE

$$J_{\min} = J(\widehat{\mathbf{w}}) = \sigma_d^2 - \mathbf{p}^H \mathbf{R}^{-1} \mathbf{p} = \sigma_d^2 - \sigma_{\widehat{y}}^2$$

where $E[|\widehat{y}(k)|^2] = \sigma_{\widehat{y}}^2 = E[\widehat{\mathbf{w}}^H \mathbf{u}(k) \mathbf{u}^H(k) \widehat{\mathbf{w}}] = \mathbf{p}^H \mathbf{R}^{-1} \mathbf{p}$, the MSE for \mathbf{w} can be written as

$$J(\mathbf{w}) = J_{\min} + (\mathbf{w} - \widehat{\mathbf{w}})^{H} \mathbf{R}(\mathbf{w} - \widehat{\mathbf{w}})$$

• The eigenvalues of \mathbf{R} are the solutions $\lambda_0, \lambda_1, \dots, \lambda_M$ of $\det(\mathbf{R} - \lambda \mathbf{I}) = 0$, and the condition number is the ratio of largest eigenvalue to smallest eigenvalue

$$\chi(\mathbf{R}) = rac{\lambda_{\max}}{\lambda_{\min}}$$

Eigenvalue Spread

• The ratio $\chi(\mathbf{R})$ is called **eigenvalue spread**, and it determines the **performance** of an adaptive algorithm

 $\chi(\mathbf{R}) \geq 1$: If \mathbf{R} is singular, $\lambda_{\min} = 0$ and $\chi(\mathbf{R}) = \infty$; \mathbf{R} is ill conditioned if $\chi(\mathbf{R})$ is large.

- Example of real channel and modulation with the channel r(k) = 0.5s(k) + 1.0s(k-1) + n(k), the equaliser $y(k) = w_0 r(k) + w_1 r(k-1) + w_2 r(k-2)$, and the desired response d(k) = s(k-1), where n(k) is white Gaussian with zero mean and variance $\sigma_n^2 = 0.25$, and s(k) is BPSK taking value from $\{\pm 1\}$
- The auto-correlation matrix and the cross-correlation vector are:

$$\mathbf{R} = \begin{bmatrix} 1.5 & 0.5 & 0.0 \\ 0.5 & 1.5 & 0.5 \\ 0.0 & 0.5 & 1.5 \end{bmatrix} \qquad \mathbf{p} = \begin{bmatrix} 1.0 \\ 0.5 \\ 0.0 \end{bmatrix}$$

The eigenvalues and the MMSE error solution are

$$\begin{aligned} \lambda_0 &= 1.5 + \sqrt{0.5} \\ \lambda_1 &= 1.5 \\ \lambda_2 &= 1.5 - \sqrt{0.5} \end{aligned} \qquad \hat{\mathbf{w}} = \begin{bmatrix} 0.6190 \\ 0.1429 \\ -0.0476 \end{bmatrix}$$

The MMSE is $J_{\rm min}=0.3095$, and the eigenvalue spread is $\chi({\bf R})=2.7836$

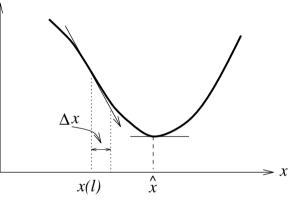
Steepest Descent Algorithm

- There are many reasons for not computing \mathbf{R}^{-1} directly \rightarrow gradient descent for the MMSE solution
- For function of a scalar variable f(x), noting that negative gradient points "downhill" and starting from an initial guess x(0), we can use: f(x)

$$x(l+1) = x(l) + \Delta x(l) = x(l) + \left(-\mu \frac{\partial f}{\partial x}\Big|_{x=x(l)}\right)$$

This iteration loop will leads to $x(l) \longrightarrow \widehat{x}$ at which point

$$\frac{\partial f}{\partial x}|_{x=\widehat{x}} = 0$$



• For the FIR filter $y(k) = \mathbf{w}^H \mathbf{u}(k)$ with e(k) = d(k) - y(k),

$$J(\mathbf{w}) = \sigma_d^2 - \mathbf{p}^H \mathbf{w} - \mathbf{w}^H \mathbf{p} + \mathbf{w}^H \mathbf{R} \mathbf{w} \text{ and } \widehat{\mathbf{w}} = \mathbf{R}^{-1} \mathbf{p}$$

- Iteration procedure based on gradient so that $\mathbf{w}(l) \longrightarrow \widehat{\mathbf{w}}$, with **Algorithm**:
 - 1. Initial value w(0)

2.
$$\nabla J(l) = \nabla J(\mathbf{w}(l)) = -2\mathbf{p} + 2\mathbf{R}\mathbf{w}(l)$$

- 3. $\mathbf{w}(l+1) = \mathbf{w}(l) + \frac{1}{2}\mu(-\nabla J(l)) = \mathbf{w}(l) + \mu(\mathbf{p} \mathbf{R}\mathbf{w}(l))$
- 4. Go back to step 2

Analysis of Steepest Descent Algorithm

- Note that the steepest descent algorithm involves feedback $e(k) \rightarrow$ stability consideration and the value of μ is critical. Also the underlying system is characterised by the eigenvalue spread
- Stability analysis: Necessary and sufficient condition for

$$\lim_{l\to\infty}\mathbf{w}(l)=\widehat{\mathbf{w}}$$

is

$$0 < \mu < \frac{2}{\lambda_{\max}}$$

• Time constant of the algorithm τ_a defines how quickly the algorithm converges to a steady-state solution on average. It can be shown that

$$\frac{-1}{\log(|1-\mu\lambda_{\max}|)} \le \tau_a \le \frac{-1}{\log(|1-\mu\lambda_{\min}|)}$$

Note

$$\tau_a \approx \frac{1}{\mu \lambda_{\min}}$$

But

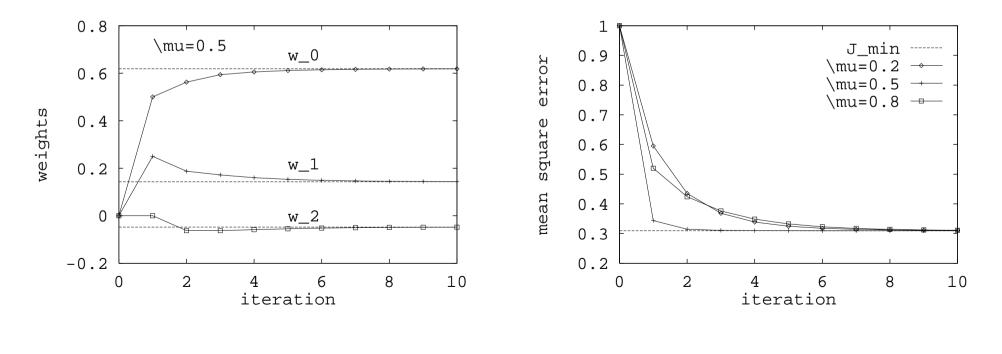
$$\mu \propto \frac{1}{\lambda_{\max}} \Rightarrow \tau_a \propto \frac{\lambda_{\max}}{\lambda_{\min}} = \chi(\mathbf{R})$$

This clearly shows that the eigenvalue spread influences rate of convergence

Example

• Example as in Slide 190: The steepest-descent algorithm is used. The step-size parameter μ should satisfy

$$0 < \mu < \frac{2}{\lambda_{\max}} = \frac{2}{1.5 + \sqrt{0.5}}$$
 or $0 < \mu < 0.9$



Sample-by-Sample Adaptation

Recall that the steepest descent algorithm can be used to obtain the Wiener (MMSE) solution
 ↓ It requires ensemble averages R and p, usually not available. These statistics may be
 approximated by time-averaging

$$\bar{\gamma}(l) = \frac{1}{N} \sum_{k=1}^{N} u(k) u^*(k-l) \quad \bar{p}(l) = \frac{1}{N} \sum_{k=1}^{N} d^*(k) u(k-l)$$

 \Downarrow But u(k) and d(k) can be nonstationary, and it would be better to update the filter as each new data sample is taken

 \Downarrow Many practical applications require extremely fast computation per sample, as sampling rate can be very fast

- These considerations \rightarrow a **stochastic gradient-based** method
 - Steepest descent method: $\nabla J(\mathbf{w}(l)) = -2\mathbf{p} + 2\mathbf{R}\mathbf{w}(l)$ with $\mathbf{R} = \mathbf{E}[\mathbf{u}(k)\mathbf{u}^{H}(k)]$ and $\mathbf{p} = \mathbf{E}[\mathbf{u}(k)d^{*}(k)]$. All the quantities are deterministic
 - Stochastic gradient-based method: instantaneous "estimates" $\widetilde{\mathbf{R}}(k) = \mathbf{u}(k)\mathbf{u}^{H}(k)$ and $\widetilde{\mathbf{p}}(k) = \mathbf{u}(k)d^{*}(k)$ are used to provides gradient of instantaneous squared error $\widetilde{J}(k) = |e(k)|^{2}$

$$\nabla \widetilde{J}(k) = -2\mathbf{u}(k)d^*(k) + 2\mathbf{u}(k)\mathbf{u}^H(k)\widetilde{\mathbf{w}}(k) = -2\mathbf{u}(k)e^*(k)$$

- where $e(k) = d(k) - \widetilde{\mathbf{w}}^H(k)\mathbf{u}(k)$. All the quantities are noisy or stochastic

Least Mean Square Algorithm

- This is probably the simplest adaptive algorithm, involving three steps per cycle:
 - 1. Compute the filter output

$$y(k) = \widetilde{\mathbf{w}}^{H}(k)\mathbf{u}(k)$$

2. Compute the estimation error

$$e(k) = d(k) - y(k)$$

3. Update the tap weights

$$\widetilde{\mathbf{w}}(k+1) = \widetilde{\mathbf{w}}(k) + \frac{1}{2}\mu\nabla\widetilde{J}(k) = \widetilde{\mathbf{w}}(k) + \mu\mathbf{u}(k)e^*(k)$$

• The step size μ must be properly chosen, the mean of $\widetilde{\mathbf{w}}(k)$ is:

 $\mathbf{E}[\widetilde{\mathbf{w}}(k)]$

and the mean square error is:

$$J(k) = \mathbf{E}[|e(k)|^{2}] = \mathbf{E}[|d(k) - \widetilde{\mathbf{w}}^{H}(k)\mathbf{u}(k)|^{2}]$$

- Note $ilde{\mathbf{w}}(k)$ is stochastic and we have to talk about convergence in mean and/or mean square error
- Surprisingly, this LMS algorithm actually works, but its convergence analysis is extremely difficult
 - Stochastic gradient descent method is a widely used low-complexity optimisation approach

Analysis in Stationary Environment

- Assuming u(k) and d(k) are jointly wide sense stationary and some other simplified assumptions:
 - Convergence in mean:

$$\lim_{k \to \infty} \mathbf{E}[\widetilde{\mathbf{w}}(k)] = \widehat{\mathbf{w}} \text{ provided that } 0 < \mu < \frac{2}{\lambda_{\max}}$$

- Convergence in mean square: where $J(\infty)$ $(> J_{\min})$ is finite,

$$\lim_{k \to \infty} J(k) = J(\infty) \text{ if and only if } 0 < \mu < \frac{2}{\lambda_{\max}} \text{ and } \sum_{i=0}^{M} \frac{\mu \lambda_i}{2(1-\mu\lambda_i)} < 1$$

• Steady state mean square error is given by

$$J(\infty) = \frac{J_{\min}}{1 - \frac{1}{2} \sum_{i=0}^{M} \mu \lambda_i / (1 - \mu \lambda_i)}$$

• Excess mean square error is defined as

$$J_{\text{ex}}(\infty) = J(\infty) - J_{\min} = J_{\min} \times \frac{\frac{1}{2} \sum_{i=0}^{M} \mu \lambda_i / (1 - \mu \lambda_i)}{1 - \frac{1}{2} \sum_{i=0}^{M} \mu \lambda_i / (1 - \mu \lambda_i)}$$

• Misadjustment is defined by

$$\mathcal{M} = \frac{J_{\text{ex}}(\infty)}{J_{\text{min}}} = \frac{\frac{1}{2} \sum_{i=0}^{M} \mu \lambda_i / (1 - \mu \lambda_i)}{1 - \frac{1}{2} \sum_{i=0}^{M} \mu \lambda_i / (1 - \mu \lambda_i)}$$

Influence of Eigenvalue Spread

• Define the average eigenvalue

$$\lambda_{\rm av} = \frac{1}{M+1} \sum_{i=0}^{M} \lambda_i$$

and the average time constant of the LMS algorithm

$$\tau_{\rm mse,av} = \frac{-1}{2\log(|1-\mu\lambda_{\rm av}|)} \approx \frac{1}{2\mu\lambda_{\rm av}}$$

• If step size is chosen as $\mu \ll \frac{1}{\lambda_{\max}}$, condition for convergence in mean square becomes: $0 < \mu < \frac{2}{\sum_{i=0}^{M} \lambda_i}$. With this choice of μ , the misadjustment is approximately by

$$\mathcal{M} \approx \frac{\mu}{2} \sum_{i=0}^{M} \lambda_i = \frac{\mu(M+1)\lambda_{\mathrm{av}}}{2} \approx \frac{M+1}{4\tau_{\mathrm{mse,av}}}$$

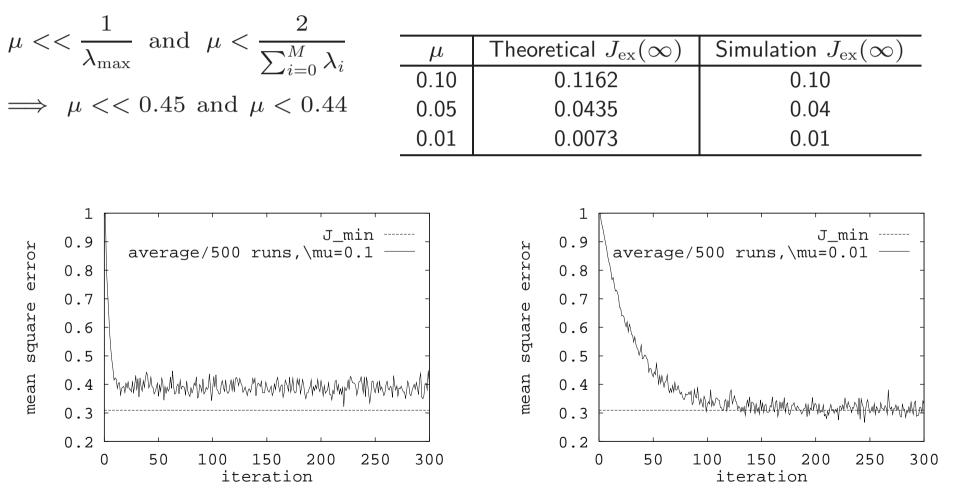
- Noting that $\mathcal{M} \propto \mu$ and $\tau_{\text{mse,av}} \propto \frac{1}{\mu}$, a careful trade off is required in choosing μ : small μ leads to small \mathcal{M} but large μ leads to fast convergence
- Noting that $\tau_{\text{mse,av}} \approx \frac{1}{\mu \lambda_{\min}} \propto \chi(\mathbf{R})$, the rate of convergence is determined by the eigenvalue spread: in general, when $\chi(\mathbf{R})$ is large, the LMS converges slowly
 - LMS works well if $\chi(\mathbf{R})$ is small, and if $\chi(\mathbf{R}) = 1$ its convergence performance is as good as recursive least squares algorithm

University

of Southampton

Example

• Example as in Slide 190 but the LMS is used is used. In computer simulation, $E[\tilde{w}(k)]$ and J(k) are approximated using sample averages over 500 different runs



Least Squares Estimate

MMSE estimate is based on ensemble average, while least squares estimate relies only on available samples {u(k), d(k)}^K_{k=1}: From slide 230, we can express desired output as

$$d^*(k) = \mathbf{u}^H(k)\mathbf{w} + e^*(k)$$

or

$$\begin{bmatrix} d^*(1) \\ d^*(2) \\ \vdots \\ d^*(K) \end{bmatrix} = \begin{bmatrix} \mathbf{u}^H(1) \\ \mathbf{u}^H(2) \\ \vdots \\ \mathbf{u}^H(K) \end{bmatrix} \mathbf{w} + \begin{bmatrix} e^*(1) \\ e^*(2) \\ \vdots \\ e^*(K) \end{bmatrix} \Rightarrow \mathbf{d}^* = \mathbf{U}\mathbf{w} + \mathbf{e}^*$$

- From $\mathbf{U}^{H}\mathbf{d}^{*} = \mathbf{U}^{H}\mathbf{U}\mathbf{w} + \mathbf{U}^{H}\mathbf{e}^{*}$, since input data are uncorrelated with noise, $\mathbf{U}^{H}\mathbf{e}^{*} \approx \mathbf{0}$, LS estimate is given by

$$\widehat{\mathbf{w}}_{ ext{LS}} = \left(\mathbf{U}^{H}\mathbf{U}
ight)^{-1}\mathbf{U}^{H}\mathbf{d}^{*}$$

• Recursive least squares algorithm with forgetting factor λ and initial covariance matrix $\mathbf{P}(0)$

$$\mathbf{k}(k) = \frac{\lambda^{-1} \mathbf{P}(k-1) \mathbf{u}(k)}{1 + \lambda^{-1} \mathbf{u}^{H}(k) \mathbf{P}(k-1) \mathbf{u}(k)}$$
$$e(k) = d(k) - \widehat{\mathbf{w}}^{H}(k-1) \mathbf{u}(k)$$
$$\widehat{\mathbf{w}}(k) = \widehat{\mathbf{w}}(k-1) + \mathbf{k}(k) e^{*}(k)$$
$$\mathbf{P}(k) = \lambda^{-1} \mathbf{P}(k-1) - \lambda^{-1} \mathbf{k}(k) \mathbf{u}^{H}(k) \mathbf{P}(k-1)$$

University

of Southampton

1)

Summary

- Wiener (MMSE) solution: $\widehat{\mathbf{w}} = \mathbf{R}^{-1}\mathbf{p}$
 - MSE surface $J(\mathbf{w}) = \sigma_d^2 \mathbf{p}^H \mathbf{w} \mathbf{w}^H \mathbf{p} + \mathbf{w}^H \mathbf{R} \mathbf{w} = J_{\min} + (\mathbf{w} \widehat{\mathbf{w}})^H \mathbf{R} (\mathbf{w} \widehat{\mathbf{w}})$ is quadratic with the MMSE given by $J_{\min} = \sigma_d^2 \mathbf{p}^H \mathbf{R}^{-1} \mathbf{p}$
 - Steepest-descent algorithm and convergence analysis
- The LMS algorithm:

$$y(k) = \widetilde{\mathbf{w}}^{H}(k)\mathbf{u}(k), \ e(k) = d(k) - y(k), \ \widetilde{\mathbf{w}}(k+1) = \widetilde{\mathbf{w}}(k) + \mu \mathbf{u}(k)e^{*}(k)$$

- Sufficient conditions for stationary convergence of the LMS

$$\mu << rac{1}{\lambda_{\max}} ext{ and } 0 < \mu < rac{2}{\sum_{i=0}^{M} \lambda_i}$$

- Misadjustment and convergence rate of the LMS:

$$\mathcal{M} \approx \frac{\mu}{2} \sum_{i=0}^{M} \lambda_i \Longrightarrow \mathcal{M} \propto \mu \qquad \tau_{\mathrm{mse,av}} \approx \frac{1}{2\mu\lambda_{\mathrm{av}}} \Longrightarrow \text{convergence time } \propto \frac{1}{\mu}$$

- Effect of eigenvalue spread: the larger eigenvalue spread, the slower convergence rate of LMS
- Least squares estimate and recursive least squares algorithm

