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Revision of Lecture One

• System blocks and basic concepts

– Multiple access, MIMO, space-time
Transceiver

Wireless
Channel

• Signal/System:

– Bandpass (Passband) ⇔ Baseband
– Baseband complex envelope

• Linear system: complex (baseband) channel impulse response

• Channel: is medium for communication, understanding it is key to understand
communication technology

– Mobile channels are very hostile medium for communications
– Wireless technologies have been developed in past four decades for achieving

efficient and reliable mobile communication

Channel will be our main focus in next three lectures
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Mobile Radio Channel Characterisations

• Mobile radio links

– MS→ BS: uplink, also called forward channel

– MS← BS: downlink, also called reverse channel

• RF signals in hundreds MHz to GHz, channels inherent

stochastic, and EM wave propagation by

– reflection, diffraction, scattering

Mobile

Base

• Why mobile channels are so hostile

– Doppler spread: Moving changes frequencies, and this causes serious problem (Recall spectrum

of a communication signal must be carefully specified, but Doppler spread will change the signal

spectrum!)

– Multipath: copies of signal arrive at receiver with different attenuation and delays, cause

dispersive (ISI) and fading (power level fluctuates rapidly) effects

• We first consider how mobile channel influences signal power

– Received signal power level must be larger than certain threshold, for reliably detecting transmitted

information

– Power budget, i.e. predicting expected mean received signal power, is crucial in determining cell

size, frequency reuse, and other system design issues
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Power Budget Factors

How mobile channel influences signal power may be decomposed into three factors

1. Propagation pathloss: Distance effect – signal power is attenuated, as it travels in distance

• One can simply use physical laws to derive theoretical formula for describing propagation pathloss,

but more often, empirical models are sought

2. Slow (large-scale) fading: Shadow variations that caused by large terrain features, such as small

hills and tall buildings, between BS and MS

• Power variation statistics due to large-scale fading can be well quantified, as the process is “slow”

3. Fast (small-scale) fading: Multipath signals, having a range of delays, attenuations and frequency

(Doppler) shifts, are summed at MS antenna, causing rapidly power level fluctuations

• Small-scale fading is difficult to model accurately, as factors influencing fast fading characteristics

are highly complex

• When multipath signals cancel out each other because of different phase changes, signal level is

in a deep fade

• Deep fades typically occur every half-wavelength (180◦ phase), and for a carrier frequency of 1

GHz, wavelength is

λ = c/f = (3× 10
8
m/s)/(10

9
Hz) = 30 cm
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Propagation Pathloss (Hata Empirical Model)

Let us use Hata empirical model to illustrate how propagation pathloss can be characterised

• Typical urban Hata model: LHu = 69.55 + 26.16 log10 f − 13.82 log10 hBS − a(hMS)

+ (44.9 − 6.55 log10 hBS) log10 d (dB)

where f is frequency (MHz), hBS/hMS are BS/MS antenna heights (m), d is BS-MS distance

(km) and a(hMS) a correction factor. For small/medium city:

a(hMS) = (1.1 log10 f − 0.7)hMS − (1.56 log10 f − 0.8)

For large city:

a(hMS) =

(

8.29 (log10(1.54hMS))2 − 1.1 f ≤ 400 MHz

3.2 (log10(11.75hMS))
2 − 4.97 f ≥ 400 MHz

• Typical suburban Hata model: (LHu without a(hMS) factor)

LHsub = LHu − 2 (log10(f/28))
2 − 5.4 (dB)

• Typical rural Hata model: (LHu without a(hMS) factor)

LHrur = LHu − 4.78 (log10 f)
2
+ 18.33 log10 f − 40.94 (dB)
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Slow (Large Scale) Fading

• Shadow variations by large terrain features contribute to power variation about mean of propagation

pathloss, and probability distribution of this power variation is log-normal, i.e. Gaussian in dB

PDFslow(x) =
1

√
2πσ

exp

 

−
x2

2σ2

!

where power variation x is measured in dB, and σ is standard deviation

– Large scale fading causes further power variation on the mean power level due to propagation

pathloss, i.e. it may boost or attenuate signal power

• To guard against power loss due to slow fading,

a margin Lslow must be allocated

– From the definition of Q-function, 2%

probability that loss due to slow fading

exceeding margin gives Lslow = 2σ:

Q(2.0) ≈ 0.02→ Lslow = 2σ

– In figure, σ = 7 and Lslow = 14 dB
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Fast (Small Scale) Fading

• Small scale fading contributes to fast power variations on top of mean of propagation
pathloss and large scale fading

– Factors influence this fast fading characteristics are highly complex

• In the case there exists a line-of-sight path, probability density function (PDF) of
this power variation due to fast fading is Rice distribution

PDFRice(x) =
x

σ2
exp

 

−
x2

2σ2
−K

!

I0

„

x

σ

√
2K

«

– K is the ratio of LOS power to total power of all indirect paths, I0(·) is the
modified 0th order Bessel-function of 1st kind, σ is standard deviation

– x is not measured in dB

• In the case of no LOS, K = 0 and this leads to the worst case Rayleigh distribution

PDFRayleigh(x) =
x

σ2
exp

 

−
x2

2σ2

!
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Small Scale Fading Margin

• There is more general fast fading distribution model, which includes Rice and
Rayleigh as special cases, but Rayleigh model is widely used

– Small scale fading causes further power variation on the mean power level due
to propagation pathloss and large scale fading

• To guard against power loss due to this fast fading, a margin Lfast must be allocated

– For convenience, let power x be
measured in dB

– Value of cumulative distribution
function (CDF) is:

Prob(x ≤ −Lfast) =

Z ∞

−Lfast

PDF(y)d y

– In figure, for 1% (0.01) probability
of exceeding margin with K = 10,
Lfast = 7 dB
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Power Budget Rule

Let PRx be the required power level at MS receiver, then what the designed level of
power PTx at BS transmitter should be?

• The calculation rule:

PTx = PRx + Ltotal

with

Ltotal = Lpathloss+Lslow+Lfast

Pathloss
Lpathloss

PTx

PRx

Distance

1-2%

1-2%

Slow fading
margin L slow

Fast fading
margin Lfast

Log-normal
slow fading PDF

BS MS

Rice (Rayleigh) fast
fading PDF

• Provisions are made for the worst case pathloss, slow fading overload margin and
fast fading overload margin

• Probability of exceeding fading margin is typically set at 1 to 2%
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Power Budget Example

Question: Assume that the propagation pathloss can be calculated using the typical
urban Hata model LHu with a small/medium city correction factor a(hMS). The
mobile antenna height hMS = 1 m, the base antenna height hBS = 100 m, the carrier
frequency is f = 1 GHz, and the cell radius is d = 300 m. Further assume that 2%
slow fading overload margin is Lslow = 14 dB, and 2% fast fading overload margin is
Lfast = 7 dB. The receiver sensitivity is -104 dBm (dBm: dB with respect to a 1 mW
reference). Calculate the transmitter power.

Solution:

Lpathloss = 69.55+26.16 log10 103
−13.82 log10 102 +(44.9−6.55 log10 102) log10 0.3

−(1.1 log10 103
− 0.7) × 1 + (1.56 log10 103

− 0.8)

= 69.55 + 78.48 − 27.64 − 16.63 − 2.6 + 3.88 = 105.04 (dB)

Ltotal = Lpathloss + Lslow + Lfast = 105.04 + 14 + 7 = 126.04 (dB)

PTx = Ltotal + PRx = 126.04 − 104 = 22.04 (dBm) = 0.16 (W)
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A Look at Collaborative Communication

• Increasing interest on collaborative communication recently under “green” radio initiative

– This can be explained by wireless channel’s effect on signal power

• A physical/empirical model for propagation pathloss: distance effect on signal power is known to be

PRx(d) ∝
„

1

d

«α

– d is the distance that signal travels, α ≥ 2 is an empirically determined pathloss exponent

– PRx(d) denotes the received signal power at distance d

• By first measuring the received signal power PRx(d0) at a reference distance d0, a simple model

for propagation pathloss and large-scale fading is given by

PRx(d) = PRx(d0)

„

d0

d

«α

• Received signal power PRx at distance d is related to transmitted signal power PTx by

PRx = PTx · h · d−α

– Typical pathloss exponent α value in 2.5 ∼ 3.0, small-fading channel gain h is not dependent

of d (h is exponentially distributed with mean 1
µ)
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Relay Aided Communication

• For receiver to correctly recover transmitted

information, received signal power PRx ≥ Pth

• Direct S → D needs P S→D
Tx ≥ PTh · h−1 · dα

SD,

so minimum required transmit power is

P
S→D
Tx = PTh · h−1 · dα

SD

d

d
RDSR

SD

d

R

DS

• Despite dSR + dRD > dSD, potential benefit in transmit power saving by relaying as long as

dSD > dSR and dSD > dRD

• Assuming h is the same for all links, for S → R→ D link, minimum required transmit power is

P
S→R
Tx + P

R→D
Tx = PTh · h−1 · (dα

SR + d
α
RD)

– As α ≥ 2, even dSR + dRD > dSD, it can easily have dα
SR + dα

RD < dα
SD

• Relay causes half duplexing throughput loss: S → R in 1st time slot and R→ D in 2nd time slot

– Other techniques, such as successive relaying, may be used to recover this half duplexing

throughput loss
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Summary

• Mobile channels are hostile due to Doppler spread and multipath, as will be shown

– Doppler spread −→ causing frequency dispersion
– Multipath −→ causing time dispersion

• Propagation loss, slow (large scale) fading and fast (small scale) fading must be
taken into account

– Power budget Rule:
PTx = PRx + Ltotal

Ltotal = Lpathloss + Lslow + Lfast

• Collaborative or relaying communication from mobile channel point of view: Simple
model for receive signal power

PRx = PTx · h · d−α

– pathloss exponent α: pathloss exponent, h: small-fading channel gain, d:
distance, PTx: transmit signal power
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