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Revision of Lecture Nineteen

• Previous lecture focuses
on generic structure of
adaptive equalisation with
two adaptive operation
modes, concentrating on class
of symbol-decision equalisers,
including linear equaliser and
decision feedback equaliser
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• Classical design based on minimum mean square error criterion and novel design
based on minimum bit error rate criterion have been discussed in details

Adaptive implementations of these two designs have been developed based on LMS
and LBER algorithms, respectively

• This lecture we turn to equalisation based on sequence estimation principle, namely,
maximum likelihood sequence estimation, and blind equalisation techniques
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Maximum Likelihood Sequence Estimation

• Recall the digital baseband channel model

r(k) = c0s(k) + c1s(k − 1) + · · · + cncs(k − nc) + n(k)

• We can view the channel as a “convolutional encoder” that convolves the data {s(k)}K
k=1 with

a set of channel coefficients {ci}nc
i=0

• At the receiver, we try to recover the transmitted data sequence {s(k)}K
k=1, i.e. to provide an

estimated data sequence {ŝ(k)}K
k=1

• The same MLSE principle, as in convolutional decoding, can be applied

• Formally this is formulated as the optimisation: given the received samples {r(k)}K
k=1 find a

sequence {ŝ(k)}K
k=1 that minimises:
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K
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˛

˛

˛

˛
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˛

˛

˛

˛

˛

2

and the Viterbi algorithm is actually used to do it

• The MLSE is the (near) true optimal solution for equalisation in terms of symbol error rate, assuming

n(k) is an AWGN

But it becomes computationally prohibitive for long channel length nc and large symbol size N
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Channel as an Encoder

• Example: r(k) = r̄(k) + n(k) = c0s(k)
+c1s(k − 1) + c2s(k − 2) with BPSK,
i.e. s(k) ∈ {±1}

“State transition” diagram:

State of encoder: (s(k − 1) s(k − 2))

Output r̄(k) depends on the state and
the “input” s(k)

Similar to a convolutional encoder, and
number of states: 2nc
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• Viterbi algorithm can be used for “decoding”, as in a convolutional decoder, and
all the Viterbi algorithm rules apply, with the branch metric defined as

 

r(k) −
nc
X

i=0

cis(k − i)

!2
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MLSE with Viterbi algorithm

• Previous example with c0 = c1 = c2 = 1, and the received samples r(1), · · · , r(8) =

0.2, 0.5,−1.0,−0.7, 0.3, 1.1, 1.5, 0.8
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2.68
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7.08 7.73

1.73

2.93

2.93

1.77

2.97

2.97

6.17

The detected data s(1), · · · , s(8) = 1,−1,−1, 1, 1,−1, 1, 1

• The sequence length K should be sufficiently long (> 5nc), and for adaptive
implementation, use the LMS/RLS to identify the channel {bci}nc

i=0
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GSM Example

• GSM: frame contains approximately 300 data samples with middle 26 as training symbols

• Modulation is 2 bits per symbol: S = {s1, s2, s3, s4}, and worst case channel has 6 taps, i.e.

nc = 5

trainingdata data

26

300

1

s

s

s
2

s(k)=s

4

3

• Thus, number of states is 45 = 1024, and each state has 4 outgoing branches, and 4 incoming

branches

• 26 specifically designed training symbols (correlation matrix is diagonal) in each frame are used to

estimate channel taps using LS estimate

• Viterbi algorithm is then used to detect the data symbols of each frame

• Digital signal processor is sufficiently powerful to implement Viterbi algorithm for this 4-QAM

scheme with 1024 states

• For longer channel length and/or higher-order QAM scheme, computational complexity of Viterbi

algorithm become excessively high
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Blind Equalisation

• In blind equalisation, there is no training, an equaliser has to estimate the
transmitted symbols and/or channel based only on the received samples r(k)

• There are three classes of blind equalisation algorithms

– Joint data and channel estimation: e.g. using blind or super trellis search
techniques. This produces the best results but can be computationally prohibitive

– Higher-order statistics based methods: to identify the channel using r(k)
only, 2nd order statistic is insufficient as it is phase blind. Higher-order statistics
based methods can overcome this problem. This approach produces very good
results but computational cost can be very expensive

– Bussgang-type adaptive FIR filters: optimise some non-MSE type cost
functions using stochastic gradient, computationally very simple

• We will discuss the 3rd class. Since there is no desired response s(k − d) for the
adaptive filter, one has to “invent” some substitute → the resulting non-MSE cost
functions generally have local minima, and this often causes problems
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Constant Modulus Algorithm

• Consider generic QAM case with notations:

– channel taps ci = cR,i + jcI,i

– received signals r(k) = rR(k) + jrI(k)

– QAM symbols s(k) = sR(k) + jsI(k)

– equaliser weights wi = wR,i + jwI,i

• Define constant ∆2 = E[|s(k)|4]/E[|s(k)|2],
and consider adaptive filter or blind equaliser:

y(k) = w
H
r(k)

with w = [w0 w1 · · ·wM ]T and r(k) =

[r(k) r(k − 1) · · · r(k − M)]T

• Note that QAM symbols do not fall on the

constant modulus circle of radius
√

∆2

∆2y(k)

• However, by penalising equaliser output y(k) which deviates from this circle, the correct symbol

constellation can be restored

– This idea of CMA in fact exploits higher-order statistics of ∆2

• The CMA, which is the most popular blind equaliser for high-order QAM signalling, has very simple

computational requirements similar to those of the LMS
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CMA (continue)

• The CMA can be viewed to adjust w by minimising the non-convex cost function

J̄CMA(w) = E[(|y(k)|2 − ∆2)
2
]

using a stochastic gradient method, i.e. actually through minimising (|y(k)|2 − ∆2)
2

• At sample k, given y(k) = w
H(k)r(k), the equaliser weights are updated using:

ǫ(k) = y(k)(∆2 − |y(k)|2)
w(k + 1) = w(k) + µǫ∗(k)r(k)

ff

where µ is a very small positive adaptive gain and ǫ∗(k) is the conjugate of ǫ(k)

• Compare this with the LMS, where ǫ(k) = s(k − d) − y(k)

• There are many solutions ws that minimise the cost function J̄CMA(w). One of them, wopt,

restores the correct signal constellation and is corresponding to the MMSE solution

• The weight vectors that minimise J̄CMA(w) are thus

ws = exp(jφ)wopt, 0 ≤ φ < 2π

• This undesired phase shift cannot be resolved by the CMA (all blind equalisers suffer more or less a

similar problem), and must be eliminated by other means, e.g. using differential encoding
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Complex Variable Derivative

• Complex-valued variable derivative is defined as

∂J(w)

∂wi

=
1

2

„

∂J

∂wR,i

+ j
∂J

∂wI,i

«

• Note that y(k) = w∗
0r(k) + · · · + w∗

Mr(k − M) and

J(w) =
1

2
(|y(k)|2 − ∆2)

2 =
1

2
(y(k)y∗(k) − ∆2)

2

• Hence we have

∂J

∂wi

=
1

2
· 2(y(k)y

∗
(k) − ∆2)

∂y(k)y∗(k)

∂wi

= (|y(k)|2 − ∆2)

„

∂y(k)

∂wi

y
∗
(k) + y(k)

∂y∗(k)

∂wi

«

• Note ∂y(k)

∂wi

=
1

2

„

∂y(k)

∂wR,i

+ j
∂y(k)

∂wI,i

«

∂y(k)

∂wR,i

= r(k − i) and
∂y(k)

∂wI,i

= −jr(k − i)

• This leads to ∂y(k)

∂wi

= r(k − i)
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Complex Variable Derivative (continue)

• Note
∂y∗(k)

∂wi

=
1

2

„

∂y∗(k)

∂wR,i

+ j
∂y∗(k)

∂wI,i

«

∂y∗(k)

∂wR,i

= r
∗
(k − i) and

∂y∗(k)

∂wI,i

= jr
∗
(k − i)

• This leads to
∂y∗(k)

∂wi

= 0

• Therefore, the gradient

∇J(w) =

»

∂J(w)

∂w

–T

= y∗(k)(|y(k)|2 − ∆2)r(k)

• Using

w(k + 1) = w(k) + µ (−∇J(w(k)))

• leads to

w(k + 1) = w(k) + µy
∗
(k)(∆2 − |y(k)|2)r(k) = w(k) + µǫ

∗
(k)r(k)

where ǫ(k) = y(k)(∆2 − |y(k)|2)
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Concurrent CMA and Decision Directed

• The steady-state MSE of the CMA equaliser may not be sufficiently small to obtain an adequate

performance (BER)

• A solution is to switch to a decision directed adaptation using the LMS, and this should significantly

reduce the steady-state MSE

• However, the decision-directed LMS only works if the MSE is already low enough and this may not

be achievable by the CMA

• How to automatically switch to decision directed LMS and how to know when can be switched? →
the concurrent CMA and DD algorithm

• The equaliser is divided into two parallel sub-equalisers:

w = wc + wd

• The CMA sub-equaliser wc is designed, as previously, to minimise the CMA cost function J̄CMA(wc)

• The concurrent decision-directed equaliser wd is designed to minimise the decision based MSE

J̄DD(wd) =
1

2
E[|Q[y(k)] − y(k)|2]

where Q[y(k)] denotes the quantised equaliser output or equaliser hard decision

• Define an indicator function: δ(x) = 1 if x = 0 + j0 and δ(x) = 0 if x 6= 0 + j0
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Concurrent CMA and DD (continue)

• At sample k, given y(k) = w
H
c (k)r(k) + w

H
d (k)r(k), the CMA algorithm adapts wc with

adaptive gain µc

• The DD algorithm follows after the CMA adaptation with adaptive gain µd using

wd(k + 1) = wd(k) + µd · δ(Q[ỹ(k)] − Q[y(k)]) · (Q[y(k)] − y(k))
∗
r(k)

where ỹ(k) = w
H
c (k + 1)r(k) + w

H
d (k)r(k) is the equaliser output after the CMA adaptation

• Note that (Q[y(k)] − y(k))∗r(k) is corresponding to the decision-directed adaptation

– It only takes place if the equaliser’s decisions before and after the CMA adaptation are the same,

i.e. Q[ỹ(k)] − Q[y(k)] = 0 + j0

• This ensures that the CMA adaptation is probably a right one, and a DD adaptation can follow

• To reduce error propagation → we have developed alternative soft DD

– If equalisation has been achieved, posteriori PDF of y(k) is approximately

p(w, y(k)) ≈
Q
X

q=1

Q
X

l=1

pql

2πρ
exp

 

−|y(k) − sql|2

2ρ

!

pql are priori probabilities of symbol points sql and we have M = Q2-QAM
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Concurrent CMA and SDD

• A local approximation of this posteriori PDF is

bp(w, y(k)) ≈
2i
X

p=2i−1

2l
X

q=2l−1

1

8πρ
exp

 

−|y(k) − spq|2

2ρ

!

with Si,l = {spq, p = 2i − 1, 2i, q = 2l − 1, 2l}

• SDD designed to maximise

J̄LMAP(w) = E[JLMAP(w, y(k))]

by adjusting wd where

JLMAP(w, y(k)) = ρ log (bp(w, y(k)))

• Specifically

wd(k+1) = wd(k)+µd

∂JLMAP(w(k), y(k))

∂wd

Im

Re

i,lS Si,l

soft output
equalizer

decision
region

point
symbol
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Concurrent CMA and SDD (continue)

• Note that:

∂JLMAP(w, y(k))

∂wd

=

P2i
p=2i−1

P2l
q=2l−1 exp

„

−|y(k)−spq|2
2ρ

«

(spq − y(k))∗

P2i
p=2i−1

P2l
q=2l−1 exp

“

−|y(k)−spq|2
2ρ

”

r(k)

– Soft decision: rather than committed to a single hard decision Q[y(k)] as the DD scheme does,

alternative decisions are also considered in a local region Si,l that includes Q[y(k)]

– Each tentative decision is weighted by an exponential term exp(•) which is a function of the

distance between equaliser soft output y(k) and the tentative decision spq

– µd can be larger and ρ < 1 and not too small

• Example: consists of a 22-tap channel and a 23-tap equaliser with 64-QAM and SNR= 40 dB

– In simulation, an estimated MSE based on a separate block of data and the maximum distortion

measure defined by

MD =

Pntot
i=0 |fi| − |fimax|

|fimax|
are used to assess convergence rate, where {fi}ntot

i=0 is the combined impulse response of the

channel and equaliser, ntot = nc + M , and fimax = max{fi, 0 ≤ i ≤ ntot}
– Perfect equalisation corresponds to fimax = 1 + j0 and fi = 0 + j0 for ≤ i ≤ ntot and

i 6= imax
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Simulation Results
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Summary

• Maximum likelihood sequence estimation using Viterbi algorithm: optimal
equalisation performance but expensive

• Blind equalisation: three classes

• Low complexity blind equalisers for high-order QAM: the CMA, the concurrent
CMA+DD, and the concurrent CMA+SDD
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