Revision of Lecture Twenty-One

- Previous lecture has introduced important principles of duplexing and multiple access schemes
- We have also introduced concepts of spread sequences or signature codes and direct-sequence spread-spectrum communications
- We now concentrate on detection in CDMA systems, and we need to distinguish two scenarios
- 1. Uplink detection at base station
 - BS have to detect all users, and this is the term "multiuser detection" comes from
 - Uplink users are not symbol-synchronised in general
 - Although quasi-synchronous operation may be achieved with adaptive timing advance control, to guarantee for example symbol-synchronisation accuracy of within 0.25 bit duration
- 2. Downlink detection at a mobile handset
 - As BS transmits to all users, downlink transmissions are symbol-synchronised
 - A mobile is only interested in its data, and this is basically a single-user detection
- Two types of CDMA systems
 - Direct-sequence DS-CDMA
 - Frequency-hoping FH-CDMA
- As an example, we discuss detection in DS-CDMA systems

Uplink System Model

• K mobiles: user i code $\mathbf{s}_i = [s_{i,1} \ s_{i,2} \cdots s_{i,N}]^T$ with spreading gain N and k-th bit of user i $b_i(k) \in \{\pm 1\}$, where $1 \le i \le K$

- Under ideal channel condition, orthogonal codes and symbol-synchronisation, $y_i(k)$ is sufficient statistic for estimating $b_i(k)$: $\hat{b}_i(k) = \text{sgn}(y_i(k))$
- However, in general, we have multi-user interference, and system model

$$\mathbf{y}(k) = \mathbf{A}\mathbf{b}(k) + \mathbf{n}(k)$$

- Matched filter output vector $\mathbf{y}(k) = \begin{bmatrix} y_1(k) \ y_2(k) \cdots y_K(k) \end{bmatrix}^T$, transmitted user bit vector $\mathbf{b}(k) = \begin{bmatrix} b_1(k) \ b_2(k) \cdots b_K(k) \end{bmatrix}^T$, AWGN vector $\mathbf{n}(k) = \begin{bmatrix} n_1(k) \ n_2(k) \cdots n_K(k) \end{bmatrix}^T$
- Code correlation matrix $\mathbf{A} \in \mathbb{R}^{K \times K}$ with(i, j)-th element $\alpha_{i,j}$ being correlation of \mathbf{s}_i and channel impaired \mathbf{s}_j

Electronics and

Computer Science

Multiuser Detection

- Maximum likelihood detector provides optimal performance but imposes exponential complexity
 - Size of search space for $\mathbf{b}(k)$ is $N_b = 2^K$, and search candidate set $\mathcal{B} = \{\bar{\mathbf{b}}_1, \bar{\mathbf{b}}_2, \cdots, \bar{\mathbf{b}}_{N_b}\}$
 - ML solution

$$\widehat{\mathbf{b}}(k) = \arg\min_{\widetilde{\mathbf{b}}(k)\in\mathcal{B}} \left\| \mathbf{y}(k) - \mathbf{A}\widetilde{\mathbf{b}}(k) \right\|^2$$

- Evolutionary algorithms, such as genetic algorithm, can be employed to obtain near optimal ML solution, with a fraction of full ML search complexity
- Various sphere decoding algorithms, such as K-best sphere decoding and fixed-complexity sphere decoding, can be employed to provide suboptimal solutions with much lower complexity
- Simple low-complexity linear detectors

$$\mathbf{v}(k) = \mathbf{W}\mathbf{y}(k)$$
 and $\widehat{\mathbf{b}}(k) = \operatorname{sgn}(\mathbf{v}(k))$

- Zero-forcing linear detector: $\mathbf{W}_{\mathrm{ZF}} = \left(\mathbf{A}^{H}\mathbf{A}
 ight)^{-1}\mathbf{A}^{H}$
- Not surprisingly, one can also have MMSE solution for linear detector weight matrix $\mathbf{W}_{\mathrm{MMSE}}$
- Interference canceller: rank received user powers in order of user 1 has highest, user 2 2nd highest, ..., user K 1 2nd lowest, user K lowest
 - 1st stage, detect user 1 as $\widehat{b}_1(k) = \mathrm{sgn}ig(y_1(k)ig)$
 - *i*-th stage, $2 \leq i \leq K$, use detected $\widehat{b}_1(k)$ to $\widehat{b}_{i-1}(k)$ to cancel users 1 to i 1 in $y_i(k)$ to yield partial interference cancelled $\widetilde{y}_i(k)$ and detect user i as $\widehat{b}_i(k) = \operatorname{sgn}(\widetilde{y}_i(k))$

Downlink System Model

• BS transmits K users' data: user i code $\mathbf{s}_i = [s_{i,1} \ s_{i,2} \cdots s_{i,N}]^T$ with spreading gain N, and k-th bit of user i is $b_i(k) \in \{\pm 1\}$, for $1 \leq i \leq K$

University

of Southampton

Downlink Model and Single User Detection

- Channel ISI span L depends on length of CIR n_h related to spreading gain N

 - $n_h = 1$: L = 1; $1 < n_h \le N$: L = 2; $N < n_h \le 2N$: L = 3; and so on User bit vector $\mathbf{b}(k) = \begin{bmatrix} b_1(k) & b_2(k) \cdots & b_K(k) \end{bmatrix}^T$, diagonal user signal amplitude matrix $\mathbf{B} = \text{diag}\{A_1, A_2, \cdots, A_K\}$, signature sequence matrix $\mathbf{S} = [\mathbf{s}_1 \ \mathbf{s}_2 \cdots \mathbf{s}_K]$, CIR matrix

$$\mathbf{H} = \begin{bmatrix} h_0 & h_1 & \cdots & h_{n_h-1} & 0 & \cdots & 0 \\ 0 & h_0 & h_1 & \cdots & h_{n_h-1} & \ddots & \vdots \\ 0 & \cdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & h_0 & h_1 & \cdots & h_{n_h-1} \end{bmatrix} \in \mathbb{R}^{N \times (NL)}$$

• Given received signal of $\mathbf{r}(k) = \mathbf{P}\overline{\mathbf{b}}(k) + \mathbf{n}(k)$, *i*-th mobile's task is to detect its data $b_i(k)$

- If no multipath, i.e. $n_h = 1$ and hence L = 1, and user signature codes are orthogonal, then to detect user i data one only needs to despread r(k) with code s_i :

$$y(k) = \mathbf{s}_i^T \mathbf{r}(k)$$
 and $\widehat{b}_i(k) = \operatorname{sgn}(y(k))$

- However, when channel distortion exists, multiuser interference becomes serious and the above matched filter detection is no longer adequate
- A widely used detector is the linear detector given by

University

of Southampton

$$y(k) = \mathbf{w}^T \mathbf{r}(k)$$
 and $\widehat{b}_i(k) = \operatorname{sgn}(y(k))$

- This linear detector basically is a linear equaliser, combating both ISI and MUI

Linear Detector

• MMSE detector: recall linear equalisation result of **slide 247**, we readily have MMSE detector with weight vector

$$\widehat{\mathbf{w}}_{\text{MMSE}} = \left(\mathbf{P}\mathbf{P}^T + \sigma_n^2 \mathbf{I}\right)^{-1} \mathbf{p}_i$$

- where \mathbf{p}_i is *i*-th column of \mathbf{P} , $\sigma_b^2 = E[(b_i(k))^2] = 1$, $E[\mathbf{n}(k)\mathbf{n}^T(k)] = \sigma_n^2 \mathbf{I}$
- Adaptive implementation can be realized with LMS or RLS
- MBER detector: recall linear equalisation result of **slides 253 to 255**, we readily have MBER detector
- Detector bit error rate can be derived similarly, with $\mathbf{r}(k) = \mathbf{P}\overline{\mathbf{b}}(k) + \mathbf{n}(k) = \overline{\mathbf{r}}(k) + \mathbf{n}(k)$:
 - $\overline{\mathbf{b}}(k)$ has $N_b = 2^{LK}$ combinations, $\{\overline{\mathbf{b}}^{(j)}, 1 \leq j \leq N_b\}$, with *i*-th element of $\overline{\mathbf{b}}^{(j)}$ being $\overline{b}_i^{(j)}$
 - Obviously $\bar{\mathbf{r}}(k)$ can only take values from finite channel state set:

$$ar{\mathbf{r}}(k) \in \left\{ \mathbf{r}_j = \mathbf{P}ar{\mathbf{b}}^{(j)}, \ 1 \leq j \leq N_b
ight\}$$

– Define signed decision variable $y_s(k) = \mathrm{sgn} ig(b_i(k) ig) y(k)$, then

$$y_s(k) = \operatorname{sgn}(b_i(k))\overline{y}(k) + e(k)$$

where $e(k) = \operatorname{sgn}(b_i(k)) \mathbf{w}^T \mathbf{n}(k)$ is Gaussian with variance $\mathbf{w}^T \mathbf{w} \sigma_n^2$, and $\bar{y}(k)$ can only take values from scalar set:

$$ar{y}(k) \in \left\{y_j = \mathbf{w}^T \mathbf{r}_j, \ 1 \leq j \leq N_b
ight\}$$

Minimum Bit Error Rate Solution

• The probability density function of the signed decision variable $y_s(k)$ is a Gaussian mixture

$$p_y(y_s) = \frac{1}{N_b \sqrt{2\pi}\sigma_n \sqrt{\mathbf{w}^T \mathbf{w}}} \sum_{j=1}^{N_b} \exp\left(-\frac{\left(y_s - \operatorname{sgn}\left(\bar{b}_i^{(j)}\right) y_j\right)^2}{2\sigma_n^2 \mathbf{w}^T \mathbf{w}}\right)$$

• The **bit error rate** of the linear detector is given by:

$$P_E(\mathbf{w}) = \int_{-\infty}^0 p_y(y_s) dy_s = \frac{1}{N_b} \sum_{j=1}^{N_b} Q(g_j(\mathbf{w})) \quad \text{with} \quad g_j(\mathbf{w}) = \frac{\text{sgn}(\bar{b}_i^{(j)}) y_j}{\sigma_n \sqrt{\mathbf{w}^T \mathbf{w}}}$$

• The **MBER** solution is defined as

$$\widehat{\mathbf{w}}_{\text{MBER}} = rg\min_{\mathbf{w}} P_E(\mathbf{w})$$

Note that the BER is invariant to a positive scaling of w, and there are infinite many $\widehat{w}_{\rm MBER}$

• The gradient of $P_E(\mathbf{w})$ is

$$\nabla P_E(\mathbf{w}) = \frac{1}{N_b \sqrt{2\pi}\sigma_n} \left(\frac{\mathbf{w}\mathbf{w}^T - \mathbf{w}^T \mathbf{w}\mathbf{I}}{(\mathbf{w}^T \mathbf{w})^{\frac{3}{2}}} \right) \sum_{j=1}^{N_b} \exp\left(-\frac{y_j^2}{2\sigma_n^2 \mathbf{w}^T \mathbf{w}} \right) \operatorname{sgn}(\bar{b}_i^{(j)}) \mathbf{r}_j$$

The steepest descent algorithm for example can be used to find a $\widehat{\mathbf{w}}_{\mathrm{MBER}}$

University

S Chen

Least Bit Error Rate Algorithm

- The key in deriving the MBER solution is the PDF $p_y(y_s)$ and, since $p_y(y_s)$ is unavailable, using a sample time average, called the Parzen window or kernel density estimate, to estimate $p_y(y_s)$
- Given $\{\mathbf{r}(k), b_i(k)\}_{k=1}^K$, a Parzen window estimate of $p_y(y_s)$ is

$$\widehat{p}_y(y_s) = \frac{1}{K\sqrt{2\pi\rho_n}} \sum_{k=1}^K \exp\left(-\frac{(y_s - \operatorname{sgn}(b_i(k))y(k))^2}{2\rho_n^2}\right)$$

• Like in the derivation of the LMS, take to the extreme and use one-sample estimate:

$$\widehat{p}_y(y_s;k) = \frac{1}{\sqrt{2\pi\rho_n}} \exp\left(-\frac{(y_s - \operatorname{sgn}(b_i(k))y(k))^2}{2\rho_n^2}\right)$$

• Using the instantaneous or **stochastic gradient**

$$\nabla \widehat{P}_E(k) = -\frac{1}{\sqrt{2\pi\rho_n}} \exp\left(-\frac{y^2(k)}{2\rho_n^2}\right) \operatorname{sgn}(b_i(k))\mathbf{r}(k)$$

leads to the LBER algorithm:

$$\mathbf{w}(k+1) = \mathbf{w}(k) + \mu \frac{\operatorname{sgn}(b_i(k))}{\sqrt{2\pi}\rho_n} \exp\left(-\frac{y^2(k)}{2\rho_n^2}\right) \mathbf{r}(k)$$

where μ and ρ_n are adaptive gain and width

296

An Illustration

- Two equal-power users with two chip codes (+1,+1) and (+1,-1)
- Chip rate CIR $H(z) = 1 + 0.8z^{-1} + 0.6z^{-2}$
- User 1 is desired user, and SNR for user 1 is 25 dB
- The MMSE solution has $\log_{10}(\text{BER}) = -3.88$ but the MBER solution has $\log_{10}(\text{BER}) = -5.56$

Back to Adaptive Signal Processing

- We have observed adaptive filtering is an enabling technology for communications
 - Traditionally, this has been developed based on Wiener or MMSE approach
 - In communication applications, it is BER, not MSE, that really matters
 - MMSE approach is optimal, if probability density function of adaptive filter output is Gaussian
 - However, PDF of adaptive filter output in communication applications is often non-Gaussian: in fact, often it is a mixture of Gaussian distributions
- We have also observed adaptive MBER approach is a generic technique for communications
 - We have seen adaptive MBER equalisation and adaptive MBER detection for downlink CDMA
 - We have seen how stochastic gradient approach can be employed to derive adaptive algorithms for various designs
- Although we mainly concentrate on adaptive linear filtering, such as linear equaliser and linear detector, the approach can be extended to adaptive nonlinear filtering

$$\widehat{y}(k) = f(\mathbf{u}(k); \mathbf{w})$$

- $\mathbf{u}(k)$: filter input vector, \mathbf{w} : parameter vector that defines nonlinear filtering mapping
- Given training data $\{\mathbf{u}(k), d(k)\}_{k=1}^{K}$, the task is to estimate \mathbf{w} , based on for example MMSE criterion or MBER criterion
- S. Chen, "Adaptive minimum bit-error-rate filtering," *IEE Proc. Vision, Image and Signal Processing*, Special Issue on Non-linear and Non-Gaussian Signal, 51(1), 76–85, 2004

Summary

- DS-CDMA uplink
 - Uplink system model
 - Multi-user detection: ML multi-user detector, linear multi-user detector
- DS-CDMA downlink
 - Downlink system model
 - Single user detection: linear MMSE detector, linear MBER detector
- Adaptive signal processing: enabling technology for communications
 - Minimum mean square error design

University

- Minimum bit error rate design

