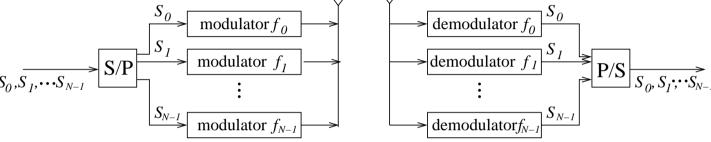
Revision of Lecture Twenty-Four

- Previous lecture focuses on high-layer protocol issues and emphasises with two different communication protocols:
 - Relying on end-to-end connections
 - Do not require end-to-end connections, relaying on store-carry-and-forward
- Next three lectures, we return to physical layer
- Transmission techniques we discussed so far are single-carrier systems
 - Information symbols are modulated with a single carrier to occupy the given channel bandwidth
- We now introduce **multi-carrier** systems:
 - A block of information symbols are modulated with multiple carriers to occupy the given channel bandwidth

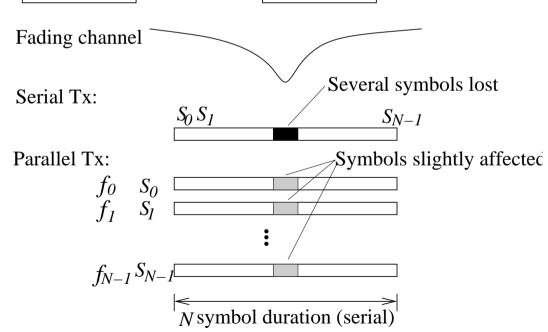
OFDM: Motivations

- Orthogonal frequency division multiplexing applies multicarrier modulation principle
 - Dividing the data stream into several bit streams, each of which has much lower bit rate, and using these substreams to modulate several carriers
- Basic OFDM system: Imaging this system "configuration"



What OFDM is good for?

1. Combating fading: in a "parallel" transmission, each symbol in a subcarrier has a much larger symbol duration, equal to N times of the symbol duration in "serial" transmission. In a deep fade, several symbols in the single carrier system can be affected seriously and lost completely. However, in parallel transmission, each of the N symbols is only slightly affected and can still be recovered correctly



OFDM: Motivations (continue)

2. Combating frequency selective:

 Channel can be severely frequency selective, but for each sub-carrier, the sub-channel is flat or at least only slightly frequency selective

What OFDM is bad for?

High peak to average power

- With N sinusoidal signals added together, the peak amplitude becomes very large, which will be clicked by amplifier and channel's nonlinear saturation, causing distortion

frequency selective channel

multi carrier assignment ...

 $B=N\Lambda B$

$$\sum_{i=1}^{N} A_i \cos(\omega_i t + \varphi_i) \Rightarrow \text{ Peak: } \sum_{i=1}^{N} A_i$$

High sensitivity to carrier offset, phase noise, and timing error

To be bandwidth efficient, number of sub-carriers N should be large

- ullet If OFDM is implemented with N modulators/demodulators, the complexity will be enormous
 - Fortunately, it can be implemented alternatively using DFT/FFT

Fourier Transform Pair

ullet If a discrete-time aperiodic signal x(k) satisfies

$$\sum_{k=-\infty}^{\infty} |x(k)| < \infty$$

then

FT:
$$X(\omega) = \sum_{k=-\infty}^{\infty} x(k) \exp(-j\omega k)$$
 IFT: $x(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) \exp(j\omega k) d\omega$

Integration in IFT can also be over 0 to 2π

- Spectra: $X(\omega) = |X(\omega)| \exp(j \angle X(\omega))$, with $|X(\omega)|$ being the amplitude spectrum and $\angle X(\omega)$ the phase spectrum of x(k)
- Parseval's theorem:

$$\sum_{k=-\infty}^{\infty} |x(k)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(\omega)|^2 d\omega$$

where $|X(\omega)|^2$ is the energy spectral density, giving distribution of signal energy in frequency domain. In practice, the power spectral density is more often used

• Differences:

- Continuous-time: f or $2\pi f$ has the unit of Hz or radian/s, and ranges in $(-\infty, \infty)$. FT is an integral
- Discrete-time: ω has the unit of radian, and ranges in $[-\pi,\ \pi]$ or $[0,\ 2\pi]$. FT is a summation and $X(\omega)$ is periodic with period 2π

Discrete-Time Fourier Series

• If x(k) is periodic with period K, i.e. x(k) = x(k+K), x(k) can be expressed by DFS:

$$x(k) = \sum_{n=0}^{K-1} c_n \exp(j\omega_n k), \quad \omega_n = \frac{2\pi n}{K}$$

Note there are K frequency components $\exp(j\omega_n k)$ for $0 \le n \le K-1$ and $0 \le \omega_n < 2\pi$, and the Fourier coefficients

$$c_n = \frac{1}{K} \sum_{k=0}^{K-1} x(k) \exp(-j\omega_n k), \quad 0 \le n \le K-1$$

provide the amplitudes and phases for frequency components $\exp(j\omega_n k)$

- **Differences** in periodic signal:
 - Continuous-time: has infinite frequency components, and Fourier coefficients are integrals
 - Discrete-time: has finite frequency components, and Fourier coefficients are summations
- ullet In theory, $X(\omega)$ is all we need but let us consider some practical constraints
 - Computing $X(\omega)$ requires infinite summation, that is, infinite number of samples \to one can only approximate it by a finite signal samples in a finite summation
 - Displaying $X(\omega)$ requires ω taking values continuously in $[0, 2\pi) \to \text{one}$ can only approximate it at finite discrete points ω_n , that is, sample $X(\omega)$ and take only a finite spectrum samples.

These considerations leads to discrete-time Fourier transform

Discrete-Time Fourier Transform

• Windowing data so that x(k)=0 for k<0 and $k\geq L$, i.e. a finite sequence x(k) of length L \to the corresponding Fourier transform is

$$X(\omega) = \sum_{k=0}^{L-1} x(k) \exp(-j\omega k), \quad 0 \le \omega < 2\pi$$

• Sample $X(\omega)$ at frequencies $\omega_n=2\pi n/K$, $0\leq n\leq K-1$, where $K\geq L\to$ the resulting spectrum samples or DFT of $\{x(k)\}$ is

$$X(n) = X(\omega_n) = \sum_{k=0}^{L-1} x(k) \exp(-j2\pi nk/K) = \sum_{k=0}^{K-1} x(k) \exp(-j2\pi nk/K)$$

• Inverse DFT (IDFT) is:

$$x(k) = \frac{1}{K} \sum_{n=0}^{K-1} X(n) \exp(j2\pi nk/K), \ 0 \le k \le K - 1$$

- DFT: time samples $\{x(k)\}$ of length $L \leq K \Leftrightarrow$ frequency samples $\{X(n)\}$ of length K
- For $K \geq L$, $\{x(k)\}_{k=0}^{L-1}$ can be exactly reconstructed from $\{X(n)\}_{n=0}^{K-1}$ Otherwise, time folding or aliasing occurs \to This is dual to spectral folding or aliasing when sampling frequency is less than the Nyquist rate

Example

For 6-point sequence x(k)=k+1, $0 \le k \le 5$, the spectrum $X(\omega)$:

$$X(\omega) = \sum_{k=0}^{5} x(k) \exp(-j\omega k) = \sum_{k=0}^{5} (k+1) \exp(-j\omega k), \quad 0 \le \omega < 2\pi$$

Evaluate $X(\omega)$ at the 4 frequencies $\omega_n = 2\pi n/4$, $0 \le n \le 3$:

$$X(n) = \sum_{k=0}^{5} (k+1) \exp(-j2\pi nk/4), \quad 0 \le n \le 3$$

or

$$X(0) = 21, \ X(1) = 3 - 4j, \ X(2) = -3, \ X(3) = 3 + 4j$$

The IDFT for the resulting 4 samples X(n), $0 \le n \le 3$:

$$\hat{x}(k) = \frac{1}{4} \sum_{n=0}^{3} X(n) \exp(j2\pi nk/4), \quad 0 \le k \le 3$$

or

$$\hat{x}(0) = 6, \ \hat{x}(1) = 8, \ \hat{x}(2) = 3, \ \hat{x}(3) = 4$$

This example illustrates time aliasing (note x(0) = 1, x(1) = 2, x(2) = 3, x(3) = 4)

To avoid time aliasing, frequency samples K must be no less than time samples L

Fast Fourier Transform

• Recall that DFT: $\{x(k)\}_{k=0}^{K-1} \iff \{X(n)\}_{n=0}^{K-1}$. By introducing $W_K = \exp(-j2\pi/K)$,

DFT:
$$X(n) = \sum_{k=0}^{K-1} x(k) W_K^{kn}, \ 0 \le n \le K-1$$

IDFT:
$$x(k) = \frac{1}{K} \sum_{n=0}^{K-1} X(n) W_K^{-kn}, \ 0 \le k \le K-1$$

- ullet Direct computation of DFT can be costly for large $K\colon\ 2K^2$ trigonometric functions, K^2 multiplications, and K(K-1) additions
- Let K=LM. Data can either be stored in one-dimensional array: $\{x(k)\}$ with $0 \le k \le K-1$ or in two-dimensional array: x(l,m) indexed by l and m with $0 \le l \le L-1$ and $0 \le m \le M-1$
- Row wise:

$$k = Ml + m$$

x(0, 0)		x(0, M-1)	x(0)		x(M-1)
x(1, 0)		x(1, M - 1)	x(M)		x(2M-1)
	:			:	
(T 1.0)	-	(7 1 7/ 1)	((7 1)74)	•	(TM = 1)
x(L-1,0)	• • •	x(L-1,M-1)	x((L-1)M)	• • •	x(LM-1)

Column wise:

$$k = l + mL$$

$x(0,0) \\ x(1,0)$	 x(0, M-1) $x(1, M-1)$	$x(0) \\ x(1)$	 x((M-1)L) $x((M-1)L+1)$
$\vdots \\ x(L-1,0)$	$\vdots \\ x(L-1,M-1)$	x(L-1)	$\vdots \\ x(LM-1)$

FFT Algorithms

- Similarly, $X(n), 0 \le n \le K-1 \Longleftrightarrow X(p,q), 0 \le p \le L-1, 0 \le q \le M-1$ with row wise: n=Mp+q or column wise: n=p+qL
- Assuming column wise for x(k) and row wise for X(n), then

$$X(p,q) = \sum_{m=0}^{M-1} \sum_{l=0}^{L-1} x(l,m) W_K^{(l+mL)(Mp+q)}$$

where $W_K^{(l+mL)(Mp+q)} = W_K^{Mlp} W_K^{Kmp} W_K^{lq} W_K^{Lmq}$. But $W_K^{Mlp} = W_{K/M}^{lp} = W_L^{lp}$, $W_K^{Kmp} = 1$, and $W_K^{Lmq} = W_{K/L}^{mq} = W_M^{mq}$. Thus:

$$X(p,q) = \sum_{l=0}^{L-1} \left(W_K^{lq} \left[\sum_{m=0}^{M-1} x(l,m) W_M^{mq} \right] \right) W_L^{lp}$$

$$\underbrace{\sum_{\text{step 1}}^{L-1} x(l,m) W_M^{mq}}_{\text{step 2}} \right)$$

• The computation of DFT can be divided into three steps as shown in the next slide

FFT Algorithms (continue)

- Algorithm one:
 - 1. For $0 \le l \le L 1$, compute the M-point DFTs:

$$F(l,q) = \sum_{m=0}^{M-1} x(l,m) W_M^{mq}, \quad 0 \le q \le M-1$$

- **2.** For $0 \le l \le L-1$ and $0 \le q \le M-1$, compute the array $G(l,q) = W_K^{lq} F(l,q)$
- **3.** For $0 \le q \le M-1$, compute the L-point DFTs

$$X(p,q) = \sum_{l=0}^{L-1} G(l,q) W_L^{lp}, \quad 0 \le p \le L-1$$

- ullet Rearrange the double summation in the same DFT expression \Rightarrow another similar algorithm
- Choosing row wise for x(k) and column wise for $X(n) \Rightarrow$ two more similar algorithms
- Complexity of these 4 algorithms resulting from a two-stage decomposition is: $2(L^2 + M^2 + K)$ trigonometric functions, K(M+L+1) multiplications, K(M+L-2) additions
- With L=2 and $M=\frac{K}{2}$, for example, complexity reduction factor is approximately 2
- Factoring $K = r_1 r_2 \cdots r_v$, with v the stage decomposition, leads to the computation of many small DFTs and, the more stage v, the more significant in complexity reduction

Radix-2 FFT Algorithms

- When $K=r^v$, DFTs are of size r and computation has regular pattern, where r is called the radix of FFT algorithm. In particular, with $K=2^v$, we have radix-2 FFT algorithms
- **Decimation-in-frequency** FFT: in the decomposition stage one, choose L=K/2 and M=2:

$$X(n) = \sum_{k=0}^{K/2-1} x(k)W_K^{kn} + W_K^{nK/2} \sum_{k=0}^{K/2-1} x(k+K/2)W_K^{kn}$$

• Since $W_K^{nK/2} = (-1)^n$

$$X(n) = \sum_{k=0}^{K/2-1} (x(k) + (-1)^n x(k+K/2)) W_K^{kn}, \quad 0 \le n \le K-1$$

• Next decimate X(n) into even and odd samples and use $W_K^2 = W_{K/2}$:

$$X(2n) = \sum_{k=0}^{K/2-1} (x(k) + x(k+K/2)) W_{K/2}^{kn} \quad n = 0, 1, \dots, \frac{K}{2} - 1$$

$$X(2n+1) = \sum_{k=0}^{K/2-1} \left[(x(k) - x(k+K/2)) W_K^k \right] W_{K/2}^{kn} \quad n = 0, 1, \dots, \frac{K}{2} - 1$$

Radix-2 FFT Algorithms (continue)

• Define two K/2-point sequences

$$\frac{g_1(k) = x(k) + x(k + K/2)}{g_2(k) = [x(k) - x(k + K/2)] W_K^k} \} k = 0, 1, \dots, \frac{K}{2} - 1$$

Then

$$X(2n) = \sum_{k=0}^{K/2-1} g_1(k) W_{K/2}^{kn}, \quad X(2n+1) = \sum_{k=0}^{K/2-1} g_2(k) W_{K/2}^{kn}$$

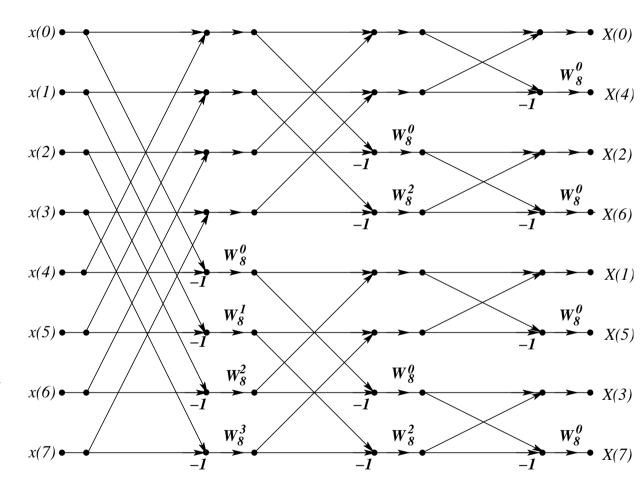
- K/2-point DFTs X(2n) and X(2n+1) can each be decimated into two K/4-point DFTs
- ullet Procedure is repeated and entire procedure involves $v=\log_2(K)$ stages of decimation
- ullet Decimation-in-time FFT: decimate $\{x(k)\}$ into even and odd samples and repeat the procedure
- Radix-2 FFT algorithm complexity: $(K/2)\log_2(K)$ complex multiplications, $K\log_2(K)$ complex additions
- Example. 1024-point DFT with $K=2^{10}$:
 - Direct computing involves 1048576 multiplications and 1047552 additions
 - But radix-2 FFT only involves 5120 multiplications and 10240 additions \rightarrow speed improvement factor is approximately 100

8-Point Decimation-in-Frequency FFT

Algorithm:

Basic operation –

"butterfly" computation $a \xrightarrow{W_K^r} B = (a-b)W_K^r$



Bit Reversal Rule

8-point decimation-in-frequency

	n	bits	FFT	bits	n	Ū
x(0)	0	000	,	000	0	X[0]
x(1)	1	001		100	4	X[4]
x(2)	2	010		010	2	X[2]
x(3)	3	011		110	6	X[6]
x(4)	4	100		001	1	X[1]
x(5)	5	101		101	5	X[5]
x(6)	6	110		011	3	X[3]
x(7)	7	111		111	7	X[7]

8-point decimation-in-time

•	FFT	
x(0)	·	X[0]
x(4)		X[1]
x(2)		X[2]
x(6)		X[3]
x(1)		X[4]
x(5)		X[5]
x(3)		X[6]
x(7)		X[7]

Summary

- OFDM: basic concepts of multi carrier
 - Effective in combating channel fading and frequency selective, i.e. effective means of overcoming two big killers of mobile channels
 - Disadvantage of high peak to average power ratio, and sensitive to carrier phase noise and timing error
- Frequency analysis of discrete-time signals: differences with continuous-time case
- DFT: $\{x(k)\}_{k=0}^K \iff \{X(n)\}_{n=0}^K$, practical considerations, time aliasing
- FFT: basic concepts, Radix-2, DFT implemented efficiently by FFT is widely used in communication systems

