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Revision of Lecture Twenty-Four

e Previous lecture focuses on high-layer protocol issues and emphasises with two
different communication protocols:

— Relying on end-to-end connections
— Do not require end-to-end connections, relaying on store-carry-and-forward

e Next three lectures, we return to physical layer

e Transmission techniques we discussed so far are single-carrier systems

— Information symbols are modulated with a single carrier to occupy the given
channel bandwidth

e \We now introduce multi-carrier systems:

— A block of information symbols are modulated with multiple carriers to occupy
the given channel bandwidth
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OFDM: Motivations

e Orthogonal frequency division multiplexing applies multicarrier modulation principle

— Dividing the data stream into several bit streams, each of which has much lower bit rate, and
using these substreams to modulate several carriers

e Basic OFDM system: S, Y Y s,
. . modulator f demodulator f,
Imaging this system S s
“configuration” _Jgp[—= moduaor f, |- demodulator [~ pyg
S S11:Sh ] = So S St

What OFDM 1is good for? 2y modulator fy_, demodulatorf,_, St
1. Combating fading: in a “parallel” Fading channel

transmission, each symbol in a sub-

carrier has a much larger symbol Serial Tx: /Several symbols lost

duration, equal to NN times of the l%sl Sl\|—1

symbol duration in “serial” transmission Parallel Tx: /’:}/mbolsslightly Sffectec

In a deep fade, several symbols in the fo & | ] |

single carrier system can be affected fp § I . |

seriously and lost completely. However, :

in parallel transmission, each of the NV fno1 SN-1l [ ] I

symbols is only slightly affected and can
still be recovered correctly
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OFDM: Motivations (continue)

2. Combating frequency selective: channel flat

frequency
— Channel can be severely frequency selective,  selective

but for each sub-carrier, the sub-channel is channel
flat or at least only slightly frequency selective

What OFDM is bad for? multi carrier
assignment
e High peak to average power
T

| f

— With N sinusoidal signals added together, the fy f; 1§ et
peak amplitude becomes very large, which will ﬁ
be clicked by amplifier and channel’s nonlinear B=NAB

saturation, causing distortion |

N N
Z A; cos(w;t + ;) = Peak: Z A;
i=1

i=1
e High sensitivity to carrier offset, phase noise, and timing error

To be bandwidth efficient, number of sub-carriers IN should be large

e If OFDM is implemented with N modulators/demodulators, the complexity will be enormous

— Fortunately, it can be implemented alternatively using DFT /FFT

Pung Electronics and Lo,f"é?u":;gmpton
i.i Computer Science

328



ELEC6214 Advanced Wireless Communications Networks and Systems S Chen

Fourier Transform Pair

e If a discrete-time aperiodic signal x (k) satisfies e
k=—o0
then o) 1 T
FT: X(w) = Z x(k) exp(—jwk) IFT: x(k) = o X (w) exp(jwk) dw

k=—00 —TT

Integration in IFT can also be over O to 27

e Spectra: X(w) = | X(w)|exp(j£X(w)), with | X (w)| being the amplitude spectrum and
/X (w) the phase spectrum of z (k)

e Parseval's theorem: 00 1 -
2 2
> k)| = o | 1 X(@)]"dw
™ J -7
k=—o0
where | X (w)|? is the energy spectral density, giving distribution of signal energy in frequency
domain. In practice, the power spectral density is more often used

e Differences:
— Continuous-time: f or 27 f has the unit of Hz or radian/s, and ranges in (—oco, oo). FT is an
integral

— Discrete-time: w has the unit of radian, and ranges in [—7, 7] or [0, 27]. FT is a summation
and X (w) is periodic with period 27
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Discrete-Time Fourier Series

o If x(k) is periodic with period K, i.e. z(k) = x(k + K), x(k) can be expressed by DFS:

K—1
2mn

x(k) = Z cnexp(Jwnk), wp = N

n=0

Note there are K frequency components exp(jw,k) for 0 < n < K — 1 and 0 < w,, < 2,
and the Fourier coefficients

K—1
1

Cn = — x(k)exp(—jwrpk), 0<n< K —1
ngoﬁ() p(—jwnk), 0<n <

provide the amplitudes and phases for frequency components exp(jw,k)
e Differences in periodic signal:
— Continuous-time: has infinite frequency components, and Fourier coefficients are integrals
— Discrete-time: has finite frequency components, and Fourier coefficients are summations
e In theory, X (w) is all we need but let us consider some practical constraints

— Computing X (w) requires infinite summation, that is, infinite number of samples — one can
only approximate it by a finite signal samples in a finite summation

— Displaying X (w) requires w taking values continuously in [0, 27r) — one can only approximate
it at finite discrete points w,,, that is, sample X (w) and take only a finite spectrum samples.

These considerations leads to discrete-time Fourier transform
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Discrete-Time Fourier Transform

e Windowing data so that (k) = 0 for k < 0 and kK > L, i.e. a finite sequence x(k) of length L
— the corresponding Fourier transform is

L—1
X(w) = Zm(k) exp(—jwk), 0 < w <27
k=0

e Sample X (w) at frequencies w, = 27mn/K, 0 < n < K — 1, where K > L — the resulting
spectrum samples or DFT of {x(k)} is

X(n) = X(w,) = im(k) exp(—j2mnk/K) = Z_ x(k)exp(—j2mnk/K)

e Inverse DFT (IDFT) is:
1 K—-1
z(k) = —=> X(n)exp(j2mnk/K), 0 < k< K —1
K n=0

e DFT: time samples {z(k)} of length L < K < frequency samples { X (n)} of length K

e For K > L, {z(k)};—, can be exactly reconstructed from {X (n)} -
Otherwise, time folding or aliasing occurs — This is dual to spectral folding or aliasing when
sampling frequency is less than the Nyquist rate
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Example

For 6-point sequence x(k) = k + 1, 0 < k < 5, the spectrum X (w):

5% 5%
X(w) =Y x(k)exp(—jwk) = > (k+ 1)exp(—jwk), 0<w < 27
k=0 k=0
Evaluate X (w) at the 4 frequencies w,, = 27n/4, 0 < n < 3:
5%
X(n) =) (k+1)exp(—j2mnk/4), 0<n <3
k=0

or
X(0) =21, X(1) =3 —4j, X(2) = -3, X(3) =3 +4j
The IDFT for the resulting 4 samples X (n), 0 < n < 3:

#(k) = EZX(TL) exp(j2mnk/4), 0<k <3

n=0

or
z(0) =6, (1) =8, (2) =3, ©(3) =4
This example illustrates time aliasing (note z(0) = 1, z(1) = 2, x(2) = 3, z(3) = 4)

To avoid time aliasing, frequency samples K must be no less than time samples L
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Fast Fourier Transform

e Recall that DFT: {ac(/f)},é{:_o1 <= {X(n)};} By introducing Wx = exp(—j27/K),

K—-1

DFT: X(n) = > z(k)Wy", 0<n< K -1
k=0
K—-1

1
IDFT: o(k) = — > Xm)W™ 0<k<K-1
n=0

e Direct computation of DFT can be costly for large K: 2K? trigonometric functions, K2
multiplications, and K (K — 1) additions

e Let K = L M. Data can either be stored in one-dimensional array: {z(k)} with0 < k < K —1
or in two-dimensional array: x(l, m) indexed by land mwith0 < < L—1and0 < m < M—1

e Row wise:

2(0,0) T 20, M — 1) =(0) T a(M =)
k= Mi+m (1, 0) 2(1, M — 1) 2(M) 2(2M — 1)
2(L—1,00 - a(L—-1,M-1) || 2(L—1)M) -  2(LM—1)
® Column wise: (0, 0) 20, M —1) =(0) (M —1)L)
b= 1+ mL x(l:,O) :1:(1,]\:4— 1) :1:(:1) a:((M—:l)LJrl)
2(L —1,0) 2(L—1,M—1) || (L —1) 2(LM — 1)
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FFT Algorithms

e Similarly, X(n),0 < n < K —-1<= X(p,q),0<p<L—-1,0<q < M — 1 with row
wise: n = Mp + q or column wise: n = p + gL

e Assuming column wise for (k) and row wise for X (n), then

M-1L-1
X(p) q) — Z Z CC(Z, m)Wl((l—i—mL)(Mp-l-Q)
m=0 [=0
where W (TR =y ey ey ayy pnd gut W = WiE = WiE, WM =1,
and W™ = Wl = Wi?. Thus:

L—1 ( M—1 \
X(p,q)=> | Wy [Z w(l,m)WX}q] W
\ ) st;g 1 J/

VO
step 2

'
step 3

e The computation of DFT can be divided into three steps as shown in the next slide
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FFT Algorithms (continue)

e Algorithm one:
1. For0 <[ < L — 1, compute the M-point DFTs:

M—1
F(l,g) = > z(l,mWy?, 0<qg<M-—1
m=0
2. Fr0<I<L—-—1and0<qg< M — 1, compute the array G(I, q) = WEF(l,q)
3. For0 < g < M — 1, compute the L-point DFTs

L—-1
X(p,q) =Y GlgW,/, 0<p<L-1
=0

e Rearrange the double summation in the same DFT expression = another similar algorithm

e Choosing row wise for (k) and column wise for X (n) =- two more similar algorithms

e Complexity of these 4 algorithms resulting from a two-stage decomposition is: 2(L* + M?* 4+ K)
trigonometric functions, K (M + L + 1) multiplications, K (M + L — 2) additions

o With L =2 and M = % for example, complexity reduction factor is approximately 2

e Factoring K = riro-- -1y, with v the stage decomposition, leads to the computation of many
small DFTs and, the more stage v, the more significant in complexity reduction
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Radix-2 FFT Algorithms

e When K = r", DFTs are of size » and computation has regular pattern, where r is called the
radix of FFT algorithm. In particular, with K = 2", we have radix-2 FFT algorithms

e Decimation-in-frequency FFT: in the decomposition stage one, choose L = K /2 and M = 2:

K/2—1 K/2—1
X(n)= > a()Wi" + Wi S a(k + K/2)Wy"
k=0 k=0
e Since W;Kﬂ = (-1
K/2—1
X(n)= > (@(k)+ (-1)"z(k+ K/2) Wg", 0<n<K-—1
k=0

e Next decimate X (n) into even and odd samples and use Wf{ = Wk/o:

K/2—-1

X(@n) = 3 (k) +alk+ K/2) Wi, n=01 = —1
k=0
K/2—1 ) ) i
X(2n +1) = kz:; [(x(k)—x(k+K/2))WK] Wiy n=0,1, ——1
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Radix-2 FFT Algorithms (continue)

e Define two K /2-point sequences

gi1(k) = x(k) + z(k + K/2) B K
s k=01, , ——1
g92(k) = [z(k) — z(k + K/2)] Wy 2
e Then
K/2—1 K/2—1
X@2n)= > qgk)Wg,, X@2n+1)= > gk)W,
k=0 k=0
e K /2-point DFTs X (2n) and X (2n + 1) can each be decimated into two K /4-point DFTs
e Procedure is repeated and entire procedure involves v = log,(K') stages of decimation
e Decimation-in-time FFT: decimate {z(k)} into even and odd samples and repeat the procedure
e Radix-2 FFT algorithm complexity: (K /2) log,(K) complex multiplications, K log,(K') complex

additions

e Example. 1024-point DFT with K = 2'°;
— Direct computing involves 1048576 multiplications and 1047552 additions

— But radix-2 FFT only involves 5120 multiplications and 10240 additions — speed improvement
factor is approximately 100
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8-Point Decimation-in-Frequency FFT
Algorithm: %(0) X(0)
~__

I\

X ’%‘#'V'A "

Basic operation — | A‘A‘A’A WO |
‘;butterﬂy” computation X(4) v‘vmv.v 0 X(L
>§ N X(5) IAA AV e

b - B, A\»A‘A e e X
X(7) ‘VM Wy )
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Bit Reversal Rule

8-point decimation-in-frequency 8-point decimation-in-time
n bits | FFT | bits n FFT
z(0) 0 000 000 0 XI|O] x(0) X10]
z(1) 1 001 100 4 X[4 x(4) X1
z(2) 2 010 010 2 X|2] x(2) X2
z(3) 3 011 110 6 X6 x(6) X3
x(4) 4 100 001 1 X[1] x(1) X4
z(5) 5 101 101 5 XI[5 x(5) X5
z(6) 6 110 011 3 X3 x(3) X6
z(7) 7 111 111 7 X|[7 x(7) X|[7
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Summary

e OFDM: basic concepts of multi carrier

— Effective in combating channel fading and frequency selective, i.e. effective
means of overcoming two big killers of mobile channels

— Disadvantage of high peak to average power ratio, and sensitive to carrier phase
noise and timing error

e Frequency analysis of discrete-time signals: differences with continuous-time case
o DFT: {z(k)};, < {X(n)}5_,, practical considerations, time aliasing

e FFT: basic concepts, Radix-2, DFT implemented efficiently by FFT is widely used
In communication systems

. University
]
! ! Electronics anld of Southampton
= . & Computer Science
B 340



