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ABSTRACT

The paper considers adaptive beamforming assisted receiver for
multiple antenna aided multiuser systems that employ the band-
width efficient quadrature amplitude modulation scheme. A min-
imum symbol error rate (MSER) design is proposed for the beam-
forming assisted receiver, and it is shown that this MSER approach
provides significant performance enhancement, in terms of achiev-
able symbol error rate, over the standard minimum mean square er-
ror design. A sample-by-sample adaptive algorithm, referred to as
the least symbol error rate, is derived for adaptive implementation
of the MSER beamforming solution.

I. INTRODUCTION

The ever-increasing demand for mobile communication capacity
has motivated the development of adaptive antenna array assisted
spatial processing techniques [1]–[10] in order to further improve
the achievable spectral efficiency. A particular technique that has
shown real promise in achieving substantial capacity enhancements
is the use of adaptive beamforming with antenna arrays. Through
appropriately combining the signals received by the different ele-
ments of an antenna array to form a single output, adaptive beam-
forming is capable of separating signals transmitted on the same
carrier frequency, and thus provides a practical means of supporting
multiusers in a space division multiple access scenario. Classically,
the beamforming process is carried out by minimizing the mean
square error (MSE) between the desired output and the actual array
output. For a communication system, however, it is the bit error
rate (BER) or symbol error rate (SER) that really matters. Adaptive
beamforming based on directly minimizing the system’s BER has
been proposed for binary phase shift keying and quadrature phase
shift keying modulation schemes [11],[12].

For the sake of improving the achievable bandwidth efficiency,
high-throughput quadrature amplitude modulation (QAM) schemes
[13] have become popular in numerous wireless network standards.
Adaptive minimum SER (MSER) equalization has been investi-
gated for the single-antenna single-user system with the pulse-
amplitude modulation scheme [14] and with the QAM scheme [15].
In this paper, we derive the MSER beamforming design for the mul-
tiple antenna assisted multiuser system with QAM signalling. We
show that the MSER design can provide significant performance
gains, in terms of smaller SER, over the traditional minimum MSE
(MMSE) design. An adaptive implementation of the MSER beam-
forming solution is proposed based on a stochastic gradient algo-
rithm, which we refer to as the least symbol error rate (LSER).
Our proposed technique is very different to the method proposed
in [15]. The adaptive LSER algorithm has its root in the Parzen

window density estimation [16]-[18]. In this sense, the proposed
adaptive MSER technique is an extension of the method proposed
in [14] to the interference-limited multiuser communication system
employing the QAM scheme.

II. SYSTEM MODEL

The system consists of S users, and each user transmits an M -
QAM signal on the same carrier frequency ω = 2πf . The receiver
is equipped with a linear antenna array consisting of L uniformly
spaced elements. Assume that the channel is narrow-band which
does not induce intersymbol interference. Then the symbol-rate re-
ceived signal samples can be expressed as

xl(k) =

S
∑

i=1

Aibi(k)ejωtl(θi) + nl(k) = x̄l(k) + nl(k), (1)

for 1 ≤ l ≤ L, where tl(θi) is the relative time delay at element l
for source i with θi being the direction of arrival for source i, nl(k)
is a complex-valued Gaussian white noise with E[|nl(k)|2] = 2σ2

n,
Ai is the channel coefficient for user i, and bi(k) is the kth symbol
of user i which takes the value from the M -QAM symbol set

B 4
= {bl,q = ul + juq, 1 ≤ l, q ≤

√
M} (2)

with ul = 2l −
√

M − 1 and uq = 2q −
√

M − 1. Source 1 is
the desired user and the rest of the sources are interfering users.The
desired-user signal to noise ratio is SNR= |A1|2σ2

b/2σ2
n and the

desired signal to interferer i ratio is SIRi = A2
1/A

2
i , for 2 ≤ i ≤ S,

where σ2
b denotes the M -QAM symbol energy. The received signal

vector x(k) = [x1(k) x2(k) · · ·xL(k)]T is given by

x(k) = Pb(k) + n(k) = x̄(k) + n(k), (3)

where n(k) = [n1(k) n2(k) · · ·nL(k)]T , the system matrix P =
[A1s1 A2s2 · · ·ASsS ] with the steering vector for source i si =
[ejωt1(θi) ejωt2(θi) · · · ejωtL(θi)]T , and the transmitted QAM sym-
bol vector b(k) = [b1(k) b2(k) · · · bS(k)]T .

A linear beamformer is employed, whose soft output is given by

y(k) = w
H
x(k) = w

H(x̄(k) + n(k)) = ȳ(k) + e(k) (4)

where w = [w1 w2 · · ·wL]T is the beamformer weight vector
and e(k) is Gaussian distributed with zero mean and E[|e(k)|2] =
2σ2

nwHw. Define the combined impulse response of the beam-
former and system as wHP = wH [p1 p2 · · ·pS ] = [c1 c2 · · · cS ].
The beamformer’s output can alternatively be expressed as

y(k) = c1b1(k) +

S
∑

i=2

cibi(k) + e(k). (5)
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Fig. 1. Decision thresholds associated with point c1bl,q assuming cR1
> 0 and

cI1
= 0, and illustrations of symmetric distribution of Yl,q around c1bl,q .

Provided that c1 = cR1 + jcI1 satisfies cR1 > 0 and cI1 = 0, the
symbol decision b̂1(k) = b̂R1(k) + jb̂I1(k) can be decoupled into

b̂R1(k) =











u1, if yR(k) ≤ cR1(u1 + 1)
ul, if cR1(ul − 1) < yR(k) ≤ cR1(ul + 1)

for 2 ≤ l ≤
√

M − 1
u√

M , if yR(k) > cR1(u
√

M − 1)
(6)

b̂I1(k) =











u1, if yI(k) ≤ cR1(u1 + 1)
uq, if cR1(uq − 1) < yI(k) ≤ cR1(uq + 1)

for 2 ≤ q ≤
√

M − 1
u√

M , if yI(k) > cR1(u
√

M − 1)
(7)

where y(k) = yR(k)+jyI(k) and b̂1(k) is the estimate for b1(k) =
bR1(k) + jbI1(k). Fig. 1 depicts the decision thresholds associated
with the decision b̂1(k) = bl,q . In general, c1 = wHp1 is complex-
valued and the rotating operation

w
new =

cold
d
∣

∣cold
d

∣

∣

w
old (8)

can be used to make c1 real and positive. This rotation is a linear
transformation and does not alter the system’s SER. Thus the de-
sired user’s channel A1 and steering vector s1 are required at the
receiver in order to apply the decision rules (6) and (7).

III. MINIMUM SYMBOL ERROR RATE BEAMFORMING

The classical MMSE solution for the beamformer (4) is given by

wMMSE =

(

PP
H +

2σ2
n

σ2
b

IL

)−1

p1, (9)

Since the SER is the true performance indicator, it is desired to con-
sider the optimal MSER Beamforming solution. Denote the Nb =
MS number of possible sequences of b(k) as bi, 1 ≤ i ≤ Nb.
Then x̄(k) can only take values from the finite signal set defined by

X 4
= {x̄i = Pbi, 1 ≤ i ≤ Nb}. The set X can be partitioned into

M subsets, depending on the value of b1(k)

Xl,q
4
= {x̄i ∈ X : b1(k) = bl,q}, 1 ≤ l, q ≤

√
M. (10)

The noise-free part of the beamformer’s output ȳ(k) only takes val-

ues from the scalar set Y 4
= {ȳi = wH x̄i, 1 ≤ i ≤ Nb}, and Y

can be divided into the M subsets conditioned on the value of b1(k)

Yl,q
4
= {ȳi ∈ Y : b1(k) = bl,q}, 1 ≤ l, q ≤

√
M. (11)

Lemma 1: The subsets Yl,q , 1 ≤ l, q ≤
√

M , satisfy the shifting
properties

Yl+1,q = Yl,q + 2c1, 1 ≤ l ≤
√

M − 1, (12)

Yl,q+1 = Yl,q + j2c1, 1 ≤ q ≤
√

M − 1, (13)

Yl+1,q+1 = Yl,q + (2 + j2)c1, 1 ≤ l, q ≤
√

M − 1. (14)

The proof of Lemma 1 is straightforward.

Lemma 2: The points of Yl,q are distributed symmetrically
around the symbol point c1bl,q .

Lemma 2 is a direct consequence of symmetric distribution of the
symbol constellation (2). This symmetric property is also illustrated
in Fig. 1. Note that the distribution of Yl,q is symmetric with respect
to the two vertical decision thresholds cR1(ul ±1) and with respect
to the two horizontal decision threshold cR1(uq ± 1).

For the beamformer with weight vector w, denote

PE(w) = Prob{b̂1(k) 6= b1(k)}, (15)

PER
(w) = Prob{b̂R1(k) 6= bR1(k)}, (16)

PEI
(w) = Prob{b̂I1(k) 6= bI1(k)}. (17)

It is then easy to see that the SER is given by

PE(w) = PER
(w) + PEI

(w) − PER
(w)PEI

(w). (18)

The conditional probability density function (PDF) of y(k) given
b1(k) = bl,q is a Gaussian mixture defined by

p(y|bl,q) =
1

Nsb2πσ2
nwHw

Nsb
∑

i=1

e
−

|y−ȳ
(l,q)
i

|2

2σ2
nw

H
w , (19)

where Nsb = Nb/M is the size of Yl,q , ȳ
(l,q)
i = ȳ

(l,q)
Ri

+ jȳ
(l,q)
Ii

∈
Yl,q , and y = yR + jyI . Noting that c1 is real-valued and pos-
itive and taking into account the symmetric distribution of Yl,q

(lemma 2), for 2 ≤ l ≤
√

M − 1, the conditional error probability
of b̂R1(k) 6= ul given bR1(k) = ul can be shown to be

PER,l(w) =
2

Nsb

Nsb
∑

i=1

Q(g
(l,q)
Ri

(w)), (20)

where

Q(u) =
1√
2π

∫ ∞

u

e−
z2

2 dz, (21)

g
(l,q)
Ri

(w) =
ȳ
(l,q)
Ri

− cR1 (ul − 1)

σn

√
wHw

. (22)

Further taking into account the shifting property (lemma 1), it is
straightforward to show that

PER
(w) = γ

1

Nsb

Nsb
∑

i=1

Q(g
(l,q)
Ri

(w)), (23)



where γ = 2
√

M−2√
M

. It is seen that PER
can be evaluated using

(real part of) any single subset Yl,q . Similarly, PEI
can be evaluated

using (imaginary part of) any single subset Yl,q as

PEI
(w) = γ

1

Nsb

Nsb
∑

i=1

Q(g
(l,q)
Ii

(w)) (24)

with

g
(l,q)
Ii

(w) =
ȳ
(l,q)
Ii

− cR1 (uq − 1)

σn

√
wHw

. (25)

Note that the SER is invariant to a positive scaling of w.

The MSER solution wMSER is defined as the one that minimizes
the upper bound of the SER given by

PEB
(w) = PER

(w) + PEI
(w), (26)

that is,
wMSER = arg min

w

PEB
(w). (27)

The upper bound PEB
(w) is very tight, i.e. very close to the true

SER PE(w). The gradients of PER
(w) and PEI

(w) with respect
to w can be shown to be respectively

∇PER
(w) =

γ

2Nsb

√
2πσn

√
wHw

Nsb
∑

i=1

e
−

(

ȳ
(l,q)

Ri
−cR1

(ul−1)

)2

2σ2
nw

H
w

×
(

ȳ
(l,q)
Ri

− cR1(ul − 1)

wHw
w − x̄

(l,q)
i + (ul − 1)p1

)

, (28)

∇PEI
(w) =

γ

2Nsb

√
2πσn

√
wHw

Nsb
∑

i=1

e
−

(

ȳ
(l,q)

Ii
−cR1

(uq−1)

)2

2σ2
nw

H
w

×
(

ȳ
(l,q)
Ii

− cR1(uq − 1)

wHw
w + jx̄

(l,q)
i + (uq − 1)p1

)

, (29)

where x̄
(l,q)
i ∈ Xl,q . With the gradient ∇PEB

(w) = ∇PER
(w)+

∇PEI
(w), the optimization problem (27) can be solved iteratively

using a gradient optimization algorithm, such as the simplified con-
jugate gradient algorithm [11]. The rotating operation (8) should be
applied after each iteration, to ensure a real and positive c1.

The PDF p(y) of y(k) can be estimated using the Parzen win-
dow estimate based on a block of training data. This leads to an
estimated SER for the beamformer. Minimizing this estimated SER
based on a gradient optimization yields an approximated MSER so-
lution. To derive a sample-by-sample adaptive algorithm, consider
a single-sample “estimate” of p(y)

p̃(y, k) =
1

2πρ2
n

e
− |y−y(k)|2

2ρ2
n (30)

and the corresponding one-sample SER “estimate” P̃EB
(w, k).

Using the instantaneous stochastic gradient of ∇P̃EB
(w, k) =

∇P̃ER
(w, k) + ∇P̃EI

(w, k) with

∇P̃ER
(w, k) =

γ

2
√

2πρn

e
−

(yR(k)−ĉR1
(k)(bR1

(k)−1))2

2ρ2
n

× (−x(k) + (bR1(k) − 1)p̂1) (31)

and

∇P̃EI
(w, k) =

γ

2
√

2πρn

e
−

(yI (k)−ĉR1
(k)(bI1

(k)−1))2

2ρ2
n

× (jx(k) + (bI1(k) − 1)p̂1) (32)

gives rise to a stochastic gradient adaptive algorithm, which we refer
to as the LSER algorithm

w(k + 1) = w(k) + µ
(

−∇P̃EB
(w(k), k)

)

, (33)

ĉ1(k + 1) = w
H(k + 1)p̂1, (34)

w(k + 1) =
ĉ1(k + 1)

|ĉ1(k + 1)|w(k + 1), (35)

where p̂1 is an estimated p1. The step size µ and the kernel width
ρn are the two algorithmic parameters that should be set appropri-
ately in order to ensure an adequate performance in terms of con-
vergence rate and steady-state SER misadjustment.

IV. SIMULATION STUDY

Stationary system. The example consisted of four sources and
a three-element antenna array. Fig. 2 shows the locations of the
desired source and the interfering sources graphically. The simu-
lated channel conditions were Ai = 1 + j0, 1 ≤ i ≤ 4. Thus
SIRi = 0 dB for 2 ≤ i ≤ 4. The modulation scheme was 16-
QAM. Fig. 3 compares the SER performance of the MSER solution
with that of the MMSE solution under three different conditions:
(a) the minimum spatial separation between the desired user 1 and
the interfering user 4 θ = 32◦ (b) θ = 30◦, and (c) θ = 28◦. For
this example, the MSER beamformer achieved significantly better
performance than the MMSE beamformer.

Performance of the adaptive LSER algorithm was investigated
using the system with θ = 30◦ and SNR= 26 dB. Given w(0) =
wMMSE and with the step size µ = 0.001 and the kernel width
ρn = σn, Fig. 4 (a) depicts the learning curves of the LSER al-
gorithm, where DD denotes the decision-directed adaptation with
b̂1(k) substituting for b1(k). Fig. 4 (b) shows the learning curves of
the LSER algorithm under the same conditions except that w(0) =
[0.1 + j0.1 0.1 − j0.01 0.1 − j0.1]T . It can be seen from Fig. 4
that the LSER beamformer had a reasonable convergence speed. It
can also be seen that the initial condition w(0) had some influence
on convergence rate.

λ/2λ /2

1
interferer

interferer

4
source 

2
−θ

65

(desired)

interferer3

−70
o

o

Fig. 2. Locations of the desired source and the interfering sources with respect to the
three-element linear array with λ/2 element spacing, λ being the wavelength.
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(c) θ = 28◦

Fig. 3. Comparison of symbol error rate performance for the stationary system.
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(a) w(0) = wMMSE

 1e-5

 1e-4

 1e-3

 1e-2

 1e-1

 1

 0  500  1000  1500  2000

B
it 

E
rr

or
 R

at
e

sample

MMSE
DD: k=250

training
MSER

(b) w(0) = [0.1 + j0.1 0.1 − j0.01 0.1 − j0.1]T

Fig. 4. Learning curves of the stochastic gradient adaptive LSER algorithm for the
stationary system averaged over 20 runs, given θ = 30◦ and SNR= 26 dB, where
DD denotes decision-directed adaptation with b̂1(k) substituting for b1(k). The
step size µ = 0.001 and kernel width ρn = σn.

V. CONCLUSIONS

An adaptive MSER beamforming technique has been proposed
for multiple antenna aided multiuser wireless communication sys-
tems with QAM signalling. It has been demonstrated that the MSER
beamforming design can provide significant performance enhance-
ment, in terms of the system SER, over the standard MMSE beam-
forming design. An adaptive implementation of the MSER beam-
forming solution has been realized using the stocastic gradient adap-
tive algorithm known as the LSER technique.
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