
IEEE Communications Magazine • January 2015258 0163-6804/15/$25.00 © 2015 IEEE

Yong Li and Depeng Jin are
with Tsinghua National
Laboratory for Information
Science and Technology,
Department of Electronic
Engineering, Tsinghua Uni-
versity.

Pan Hui is with Hong
Kong University of Sci-
ence and Technology,
Telekom Innovation Lab-
oratories, and Aalto Uni-
versity.

Sheng Chen is with the
University of Southamp-
ton and King Abdulaziz
University.

This work is supported
by National Basic
Research Program of
China (973 Program)
(No. 2013CB329105),
National Nature Science
Foundation of China
(No. 61301080, No.
91338102, 61321061, and
No. 61171065), National
High Technology
Research and Develop-
ment Program (No.
2013AA013501 and No.
2013AA013505), and
China’s Next Generation
Internet (No. CNGI-12-
03-007).

INTRODUCTION
Delay-tolerant networks (DTNs) [1, 2] have
attracted lots of attention in the past 10 years,
and many related interesting applications have
been experimented and tested, including mobile
social networks based on human mobility, sensor
networks for wildlife tracking and habitat moni-
toring, vehicular ad hoc networks for road safety
and commercial applications, and deep-space
interplanetary networks. In a DTN, most of the
time there are no end-to-end paths from com-
munication sources to destinations due to node
mobility, wireless propagation effects, sparse
node density, and other adverse factors. For this
kind of network, traditional ad hoc routing pro-
tocols, which rely on end-to-end paths, fail to
work [1]. Therefore, a new routing mechanism,
called store-carry-and-forward [3], was proposed
to provide communication. In order to improve
message delivery probability, a variety of routing
schemes have been proposed, such as two-hop
relaying, spray and wait, and MaxProp [3], which
aim to reduce the overhead of epidemic routing.
Furthermore, some of these routing schemes

claim to obtain optimal system performance, and
typically they attempt to achieve short message
delivery delay with relatively low transmission
cost. However, there is a trade-off between mes-
sage delivery delay and delivery cost. Generally
speaking, shorter delivery delay is obtained at
the expense of higher cost, and vice versa. There-
fore, it is critically important to accurately evalu-
ate these routing schemes in order to show their
advantages and drawbacks objectively.

Recently, theoretical analysis frameworks,
such as Markov models [4] and ordinary differ-
ential equation (ODE) models [5], are being
used to evaluate the performance of DTN proto-
cols. However, these models are far too simpli-
fied to be capable of faithfully representing
highly complicated DTNs, and the ability of
these models to evaluate DTN protocols is
severely limited. Therefore, more realistic simu-
lation and experiment-based evaluation tools are
needed [3, 6]. Current testing tools can be classi-
fied into two types: software-based simulation
and testbed-based experimentation. Software-
based simulation can be carried out using gener-
al network simulation software like NS-2 and
OPNET, or specialized DTN simulation tools
like ONE [7] and OMNeT++ [8]. Recently
emerging real-life DTN testbeds include UMass
DieselNet [9] and ORBIT [10], which are built
to carry out experiments for evaluating DTN
related algorithms and protocols. These testbeds
offer realistic DTN environments. However, set-
ting up an experiment in such a testbed involves
vast investment in terms of money and time.

In this article, we first review the evolution of
the protocol testing and evaluation for DTN and
discuss the trend toward large-scale mobility
trace supported emulation by surveying the
emerging approaches to DTN protocol testing.
In order to overcome the shortcomings of both
the existing simulation tools and experimental
testbeds, we propose TUNIE, a large-scale emu-
lation testbed for DTN protocol evaluation
based on network virtualization, which offers the
following highly desired features. First, TUNIE
enables the implementation of realistic environ-
ments for credible evaluation of DTNs by con-
trolling the data transmission through regulated
wired and wireless links. Second, it provides
deep programmability of networking functions to
customize system-level parameters as well as

ABSTRACT

Delay-tolerant networks, DTNs, are charac-
terized by lacking end-to-end paths between
communication sources and destinations. A vari-
ety of routing schemes have been proposed to
provide communication services in DTNs, and
credible and flexible protocol evaluation tools
are in demand in order to test these DTN rout-
ing schemes. By examining the evolution of
DTN protocol testing and evaluation, this article
discusses the trend toward large-scale mobility
trace supported emulation, and we propose
TUNIE, a large-scale emulation testbed for
DTN protocol evaluation based on network vir-
tualization. Unlike the existing simulation tools
and real-life testbeds, which either cannot pro-
vide a realistic DTN environment setup or are
too costly and time-consuming, our proposed
TUNIE architecture is capable of simulating
reliable DTN environments and obtaining an
accurate system performance evaluation. By sys-
tem prototype and implementation, we demon-
strate TUNIE as a flexible platform for
evaluating DTN protocol performance.

AD HOC AND SENSOR NETWORKS

Yong Li, Pan Hui, Depeng Jin, and Sheng Chen

Delay-Tolerant Network Protocol
Testing and Evaluation

LI_LAYOUT.qxp_Author Layout 1/7/15 4:56 PM Page 258

IEEE Communications Magazine • January 2015 259

abundant mobility environments to enable the
experimenters to repeat their different evalua-
tions. Third, TUNIE is remotely accessible and
sharable by the research community, which sub-
stantially reduces the capital costs and human
effort required to perform experiments. We
implement a prototype of TUNIE to demon-
strate that it offers a flexible platform for simu-
lating realistic DTN environments and evaluating
DTN protocol performance.

The rest of this article is organized as follows.
After reviewing the current testing tools and
platforms, we provide the design goals of TUNIE
and describe the experiment workflow of
TUNIE. We then describe the deployment of
TUNIE and conduct some preliminary experi-
ments in our implemented TUNIE to show its
flexibility as a DTN performance evaluation
platform. We conclude the article in the final
section.

FROM SIMULATION TO EXPERIMENT
The performance of a DTN may vary significant-
ly, depending on how the mobile nodes move,
how densely the nodes are distributed, and how
far apart the sender and receiver are. The key
factors that determine DTN performance are
the routing and forwarding algorithms used, and
how well their design assumptions match the
actual mobility patterns. Many routing schemes
have been proposed. Simulation and, subse-
quently, experiment testing play an important
role in evaluating these DTN protocols. Table 1
categorizes the testing tools into simulation and
experiment-based classes, and summarizes the
main features of different schemes.

SIMULATION TESTING
Simulation testing for DTN protocol evaluation
began with the use of general network simula-
tion software, such as NS-2, NS-3 and OPNET.
These simulation tools are designed for general
networks, which also include wireless and mobile
networks. Therefore, they have been used for
DTN protocol evaluation, particularly in the
early days. As mobility patterns are important
for characterizing DTNs, mobility generators
based on simple models are available for NS-2
and NS-3 as part of their toolsets or as specific
extensions.

OMNeT++ [8] is a public source simulation
platform that has primarily been used for simu-
lating communication networks, and [8] propos-

es mechanisms for simulating DTN in the
OMNeT++ discrete event simulator. These
mechanisms allow open systems of wireless
mobile nodes to be simulated, where mobility or
contact traces are used to drive the simulation.
In this approach, the mobility generations, which
are separate from the core OMNeT++ protocol
simulations, facilitate importing synthetic or real
data from external mobility generators, real
mobility tracking data, or real contact traces.

While NS-2 and OPNET can offer sound
generic open simulation platforms for packet-
based communications, and OMNeT++ is
embedded with the specific settings to simulate
node mobility, generic support for DTN simula-
tion in these platforms is fairly limited. To allevi-
ate this drawback, the ONE simulator [7]
contributes an environment for DTN protocol
evaluation with embedded internal and external
mobility models, enabling different DTN routing
schemes and interactive inspection. ONE is an
agent-based discrete event simulation engine. At
each simulation step, the engine updates a num-
ber of modules that implement the main simula-
tion functions, which include the modeling of
node movements, inter-node contacts, routing,
and message handling. Result collection and
analysis are done through visualization, reports,
and post-processing tools.

EXPERIMENTAL TESTING
Using the above-mentioned simulation tools,
however, it is difficult to realize realistic DTN
environments in terms of both physical proper-
ties and wireless network phenomena. This is
because the mobility, channel, and radio charac-
teristics, power consumption, and many other
features of wireless mobile networks interact in
very complex relationships, and these software
simulators simply cannot faithfully reproduce
these highly complex and interdependent charac-
teristics. To address these challenges, ORBIT
[10] and UMass DieselNet [9] have been
designed and built for realistic mobile network-
ing experimentation.

The ORBIT radio grid testbed was developed
for scalable and reproducible evaluation of next-
generation wireless network protocols by provid-
ing a flexible, open-access, multi-user
experimental facility. The ORBIT testbed con-
sists of an indoor radio grid emulator for con-
trolled experimentation and an outdoor field
trial network for end-user evaluations in real-
world settings. This testbed currently consists of

Table 1. Comparison of approaches and tools in DTN protocol testing and evaluation: from simulation
to experiment.

Categories Main features Representative platforms

General simulation software Software simulated networks,
simple mobility models NS-2, NS-3, OPNET

DTN specific platform Discrete event simulator, realistic
mobility trace integration OMNeT++[8], The ONE[7]

Experimental testbed Realistic wireless environment,
realistic hardware and system UMass DieselNet[9], ORBIT[10]

The key factors that

determine DTN per-

formance are the

routing and forward-

ing algorithms used,

and how well their

design assumptions

match the actual

mobility patterns.

Many routing

schemes have been

proposed. Simulation

and subsequently

experiment testing

play an important

role in evaluating

these DTN protocols.

LI_LAYOUT.qxp_Author Layout 1/7/15 4:56 PM Page 259

IEEE Communications Magazine • January 2015260

400 wireless nodes having 802.11a/b/g wireless
cards laid out in a 20 × 20 grid. In this way,
DTN protocols can be assessed by the experi-
menter via an Internet portal, which provides a
variety of services to assist the user with setting
up network topology, programming radio nodes,
executing experimental code, and collecting
measurements.

DieselNet consists of computer-equipped
buses, battery-powered nomadic nodes, organic
WiFi APs, and a municipal WiFi mesh network
serving the area surrounding the University of
Massachusetts, Amherst campus. More specifi-
cally, UMass DieselNet consists of 40 buses,
each carrying a small-form desktop computer
with 40 GB of storage and a GPS device. Each
bus operates a 802.11b radio that scans for other
buses 10 times a second and an 802.11b access
point that accepts incoming connections. It is a
realistic vehicular DTN testbed, and protocols to
be evaluated can be implemented on DieselNet
as the first step toward real-world deployment.
Moreover, testing on DieselNet allows the exper-
imenter to study the effects of certain critical
events, such as delays caused by computation,
wireless channel interference, and operating sys-
tem delays, which could not be perfectly mod-
eled in a software simulator.

TRENDS
Because software-based simulation has difficul-
ties in realizing realistic wireless link and node
mobility properties, it is hard for a software sim-
ulator to emulate a complicated DTN environ-
ment. Recently, emerging real-life DTN testbeds,
like DieselNet and ORBIT, offer realistic DTN
environments, and they are built to carry out
experiments for evaluating DTN related algo-
rithms and protocols. However, setting up an
experiment in such a testbed involves huge costs;
moreover, the wider research community may
not have access to these testbeds. Furthermore,
it is very difficult to set up a truly large-scale
experiment in these testbeds. It is highly desired
that DTN testing platforms are supported by
real-world large-scale mobility traces and are
flexible to realize. On the other hand, the recent-
ly emerging testbed MoViT [11] shows that emu-
lation is an effective and useful approach to
evaluate mobile networks. Based on this trend
and the above motivations, we propose a large-
scale DTN testbed, TUNIE, which exploits virtu-
alization technology and OpenFlow [12] to
implement a realistic and reliable DTN environ-
ment, while providing remote accessing and
sharing for the research community to emulate
customized system-level parameters. Thus,
TUNIE offers a realistic testing environment
and is convenient to use.

TUNIE SYSTEM DESIGN
TUNIE stands for Tsinghua University Network
Innovation Environment. Our design focuses on
providing a reputable and controllable emulation
testbed for accurate DTN protocol evaluation
using the technology of network virtualization.
In this section, we first describe the system goals,
and then provide the details of the system in
terms of controller, node and link design.

DESIGN GOALS

The primary design of TUNIE is to enable con-
trollable and reliable performance evaluation for
DTN protocols. Specifically, TUNIE is designed
to achieve the following goals.

High Credibility — To avoid inaccurate evalu-
ations of DTN protocols, which may happen
when using simulation tools like NS-2 and ONE,
TUNIE should provide an accurate assessment
approach that reflects the realistic DTN environ-
ment. This environment should include realistic
node mobility scenarios, wireless link layer prop-
erties, and system-level parameters in network
layer implementations. The best choice would be
to use a realistic wireless testbed. However, the
huge cost in terms of time and money involved
makes it unrealistic to implement such a wireless
testbed. In TUNIE, we rely on a virtualized
testbed to implement realistic DTN environ-
ments by controlling the data transmission
through regulated wireless links, which exhibit
intermittent connectivity with time-varying inter-
ference, bit rates, error rates, and transmission
delays. At the same time, these realistic experi-
ment environments can easily be configured by
remotely accessing the central control center.

System-Level Parameter Realization — New
DTN algorithms, protocols, and architectures
often require specific customizations of system-
level parameters. Therefore, the experiment
platform must provide deep programmability of
networking functions to implement and emulate
system-level parameters, such as operation sys-
tem (OS) information, network stack settings,
distributed protocol states, and interactions on
different modules. Consequently, TUNIE should
offer sufficient customization to enable the
implementation of these system-related parame-
ter details in terms of network stack and trans-
mission links in the deployment of new
algorithms and protocols. In the implementation
of TUNIE, we use virtual machines supporting a
customized OS to run full network stack imple-
mentation with new routing protocols and appli-
cations, which process the network packets with
system-level parameters of processing delay and
buffer size, and use a centralized control center
to control the link behavior according to differ-
ent mobility models, and passes through a wild
wireless interface as required by the experi-
menter, which results in real-world link parame-
ters of packet loss rate, transmission delay, and
so on.

Remotely Accessible and Repeatable Exper-
iments — In the DTN protocol evaluation, we
need to validate the performance of the new
algorithms using different mobility scenarios.
Therefore, a testbed emulator should provide
abundant mobility environments to enable the
experimenters to repeat their different evalua-
tions and experiments, in which similar environ-
ments can be repeated to obtain similar results.
Moreover, it should be remotely accessible to
provide the DTN research community with a
convenient and practical platform to use. TUNIE
offers the experimenter a wide range of choices

TUNIE stands for

Tsinghua University

Network Innovation

Environment. Our

design focuses on

providing a rep-

utable and control-

lable emulation

testbed for accurate

DTN protocol evalua-

tion using the tech-

nology of network

virtualization.

LI_LAYOUT.qxp_Author Layout 1/7/15 4:56 PM Page 260

IEEE Communications Magazine • January 2015 261

in terms of mobile environments, and gives the
experimenter a high level of control over proto-
cols and software used on the network nodes. In
particular, it allows the experimenter to imple-
ment a customized system by remote operation
and to deal with the issues occurring during the
emulation robustly.

Scalability and Shareable Access — Properly
evaluating a DTN protocol requires testing its
scalability by changing the system size. With the
existing testbeds, it is hard to support a large
number of nodes, say thousands. On the other
hand, as an evaluation platform, a testbed emula-
tor should be a public facility to be shared among
many researchers. To enable large-scale experi-
ments and sharable access by many users, TUNIE
uses operation system based network virtualiza-
tion technology to allow many logical nodes to
operate on the same shared physical infra-
structure for efficient utilization of the available
infrastructure among different experiments. The
virtual nodes behave like realistic nodes with
real-life node mobility and system parameters of
network layer implementations, and a unified
management system controls the network
resource for effective node allocation and usage
by all experiments. Due to TUNIE’s remote
access and sharing capability, the capital costs
and human effort required to perform an experi-
ment are substantially reduced, which makes our
testbed emulator more economical to run.

SYSTEM OVERVIEW
In order to support large-scale experiments and
node customization for credible DTN protocol
evaluation, we use the OS and network virtual-
ization technologies to set up virtual DTN emu-
lation platforms. In every DTN node of the

TUNIE architecture, an integral of protocol
stacks is deployed, which includes the DTN bun-
dle router and bundle forwarder modules, based
on the OS visualization. Therefore, the experi-
menter can easily set up typical routing and for-
warding protocols in a DTN node, such as
epidemic routing, two-hop forwarding, and spray
and wait, or other customized routing and for-
warding protocols. To simulate realistic commu-
nication links in the DTN paradigm, which relies
on intermittent opportunistic connection to
transmit packets, we use OpenFlow [12] to con-
trol the link events, such as link up and down,
according to different inputs of the mobility sce-
narios. The bandwidths of the transmission links
are controlled by the centralized controller, and
they vary with time and space. Moreover, we fur-
ther use the link virtualization technology to con-
trol each real-time transmission on the
opportunistic links. In this way, we make a virtual
wireless interface behave like a real wireless link,
including the realistic behaviors of time-varying
interference, bit rate, error rate, and transmission
delay. This is in contrast to many existing DTN
simulators, which either neglect the details of
wireless link characteristics and simply assume
that any two nodes can communicate with each
other when they are in the transmission range of
each other, or use the simple time-varying link
transmission model to simulate the wireless
transmission behaviors as in ONE [7].

The TUNIE architecture is shown in Fig. 1,
where two important features can be observed.
First, we use OS virtualization to emulate DTN
nodes. Specifically, we use a XEN virtual
machine hypervisor to run a series of virtual
machines as DTN nodes. Each DTN node con-
tains a CentOS supported realistic network stack
that includes the upper layer of TCP/IP and core

Figure 1. TUNIE architecture: network virtualization based DTN emulation testbed overview.

Bundle
router

Application
IPC

Contact
manager

Fragment
module

Bundle
store

Bundle
forwarder

DTN2

DTN2

IP

OS

VM1...VMn

TCP/IP

Guest OS (Cent 0S5.5)

XEN virtual machine hypervisor

Link information

Data forwarding

Opportunistic links

Lin
k s

ched
uling Controller

OpenFlow forwarding

Open vSwitch
configuration

Experimental
data collection

VM
configuration

VM image
transmission

Centralized experimental control layer
initialization, trace-driven mobility simulation, link control

Virtual DTN nodes

Multi-core server

To enable large-scale

experiments and

sharable access by

many users, TUNIE

uses the operation

system based net-

work virtualization

technology to allow

many logical nodes

to operate on the

same shared physical

infrastructure for effi-

cient utilization of

the available infra-

structure among dif-

ferent experiments.

LI_LAYOUT.qxp_Author Layout 1/7/15 4:56 PM Page 261

IEEE Communications Magazine • January 2015262

layer of DTN, which allow users to program
each node to customize their own designed algo-
rithms and protocols. Second, OpenFlow is used
to control the links of all DTN nodes in order to
ensure that they behave like the required real
opportunistic links. Specifically, a controller run-
ning in a PC transforms the mobility settings
given by the experimenter into the link up and
down events, and sends these events to the
OpenFlow switches, which connect all the virtual
nodes through wired and wireless links. The
OpenFlow switches control the connectivity
between all node pairs to ensure that the trans-
missions occur in the required opportunistic way,
and the wild wireless transmissions ensure they
behave as they should in a realistic wireless net-
work. Next, we detail the important components
of TUNIE, including node architecture, link
structure, and controller.

NODE DESIGN
The DTN node in TUNIE is a software-based
solution that provides the virtual environment
for running a DTN protocol stack and specific
applications for the required protocol evaluation
settings. As shown in Fig. 1, we use XEN virtual-
ization technology [13] in our system, where
multiple concurrent virtual machines running the
Linux OS CentOS coexist in a physical machine,
and a DTN node is implemented as a virtual
machine. In the virtual machine, the core com-
ponent is the DTN protocol stack, which is run-
ning on the TCP/IP protocol stack. In our
deployment, we use the open source implemen-
tation of DTN bundle protocol, DTN2 [14]. In
this DTN stack, Bundle Router and Bundle For-
warder are the two most important components
to implement the bundle protocol. Specifically,
Bundle Router makes the routing decision based
on the application requirements and contact
information generated by the contact manager.
In the virtual machine, most general router algo-
rithms, including epidemic routing, two-hop
relaying, and spray and wait [3], are available to
provide the routing functionality. Through the
user configuration interface, experimenters can
choose their favorite routing components or
implement a new one. The physical machine
host provides the software interface between the
processes in different virtual machines. For a
Bundle Forwarder, we use the Click [15] engine
to configure the router decision from the Bundle
Router into the Click data plane. It then for-
wards the data into the network interface
through the bundle store according to the deci-
sion of the fragmentation module. All the packet
processing, including the TCP/IP layer packet
disassembly and congestion control, will induce
delays in packet forwarding. At the same time,
the DTN stack with a buffer for message storing,
and the buffer size, which is an important system
parameter for determining the system perfor-
mance, are open for user configuration. TUNIE
is able to emulate a real DTN system with all
these system-level features of the network stack,
which are impossible or hard to capture by simu-
lation tools and analytical methods.

The host uses an OpenFlow vSwitch (OVS)
[16] to connect virtual nodes, to be discussed
later. The OVS can control the bandwidth of

each virtual node to share the physical link
capacity. After receiving the link bandwidth sent
by the controller according to the transmission
scheduling, the host can dynamically change the
bandwidth. This control mechanism is enabled
by the XEN network interface virtualization
scheme, where the host can view and control the
virtual interface in each virtual node.

LINK DESIGN
The virtual link is a key component of TUNIE.
We use the link virtualization technology to
enable the emulation of wireless opportunistic
links. We first set up a virtual interface, which is
a tap device, for each virtual node. We then use
the software bridge of the OVS in the XEN vir-
tualization environment to connect all the tap
devices with the WiFi physical interface in the
host node, which itself is connected to the Open-
Flow access point (AP). The OVS and OpenFlow
AP together let any two virtual nodes set up a
link at any time, and can also block any connec-
tion at any time. The link control is achieved by
the flow management in OpenFlow, which is fur-
ther controlled by the centralized controller. The
link view of TUNIE is illustrated in Fig. 2, where
it can be seen that the OpenFlow AP connects
the physical multi-core servers through the WiFi
interfaces, and this in turn allows virtual nodes to
connect with each other through the wireless
links. With the OpenFlow link controlling func-
tion, all the links among node pairs are con-
trolled by the system; therefore, it is easy for
experimenters to simulate different mobility sce-
narios. On the other hand, the controller controls
all the transmissions over virtual links either
across multi-servers or insider one physical serv-
er, illustrated by virtual link a and b, respectively,
in Fig. 2, as they pass the wild WiFi interfaces.
Consequently, wireless characteristics, such as
radiation patterns of the antennas, are taken into
account in the emulation testbed. In this way,
data transmissions in TUNIE undergo real-word
packet loss rate, transmission delay, and through-
put fluctuation. Thus, these important system-
level parameters are built in naturally to help
obtain accurate and correct performance results
for the DTN protocol evaluations.

CONTROLLER DESIGN
The controller is a centralized network link con-
trol component in the OpenFlow network, which
is running on the network OS and has an
overview of the network. The controller can
inject specific flow rules into the OpenFlow
switch according to the behaviors of the net-
work, which depend on the routing algorithm,
load balance, and so on. Our TUNIE controller
is built on OpenFlow NOX, and is implemented
in Java and Python languages. Specifically, we
develop a centralized experiment control layer in
NOX. The input parameters of this control layer
include the number of nodes, mobility model,
and emulated applications. Based on the given
input, the control layer provides the functions of
VM Image transmission and configuration to set
up virtual DTN nodes, open vSwitch configura-
tion to control the links, and experimental con-
trolling and data collection, as shown in Fig. 1.
To control the experiment, for instance, it first

Data transmissions in

TUNIE undergo real-

word packet loss

rate, transmission

delay, and through-

put fluctuation.

Thus, these impor-

tant system-level

parameters are built

in naturally to help

obtain accurate and

correct performance

results for the DTN

protocol evaluations.

LI_LAYOUT.qxp_Author Layout 1/7/15 4:56 PM Page 262

IEEE Communications Magazine • January 2015 263

computes the opportunistic links among all
nodes based on the given mobility model to
obtain the specific link up and down events. Sec-
ond, it calculates the data transmission rate of
each opportunistic link according to the posi-
tions of the communicating nodes. After obtain-
ing the link events and transmission rates, it
computes the flow rules at different times, and
then sends them to the OpenFlow switch at the
appropriate times, as well as deleting certain
rules after their link times are done. With this
mechanism, we can use the OpenFlow switch to
control the links of different nodes to emulate
an opportunistic DTN.

TUNIE EXPERIMENT
WORKING FLOW

The experiment working flow of TUNIE is
depicted in Fig. 3. When setting up an experi-
ment in TUNIE, the user needs to configure the
controller first by setting the overall network
parameters, including the number of nodes,
mobility model, and so on. TUNIE will generate
the virtual nodes by communicating with the
required multi-core servers. The user then needs
to log in to the virtual nodes to configure and
prototype the algorithms and protocols. The
TUNIE controller will translate the experiment
settings into link control events and, through the
OpenFlow flow rules, controls the links among
virtual nodes to ensure that they behave as the
required opportunistic links. We now illustrate
the experiment working flow by introducing our

mobility scenarios, and routing and application
settings implemented in TUNIE.

MOBILITY SCENARIOS
Mobility is the most important consideration for
DTN performance evaluation. Usually, different
performance evaluations of a protocol require
different mobility models. For example, to evalu-
ate the scalability properties, we may adopt a
random mobility model, with which the scale of
the network is easy to change. On the other
hand, to evaluate the transmission efficiency, we
need real traces covering different mobility sce-
narios in order to get accurate results. To satisfy
these different requirements, in TUNIE we inte-
grate different mobility scenarios in the con-
troller, including random mobility models,
map-based mobility, and real-world human and
vehicular mobility traces, as indicated in Fig. 3.

In terms of random mobility, we cover a
broad set of random mobility models by includ-
ing random waypoint, random walk, and random
direction walk. For map-based mobility, we use a
map model in the ONE simulator [7]. For realis-
tic human mobility, we integrate four human
mobility traces, Infocom05, Infocom06, Reality,
and Cambridge, in the system. Among these four
human mobility traces, Reality was collected
from the MIT Reality Mining Project, and the
other three were gathered by the Haggle Project.
We also integrate two vehicular mobility traces,
Shanghai and Beijing. The Shanghai trace was
collected by involving 2019 operational taxis in
Shanghai over the whole month of February
2007 without any interruptions. The Beijing

Figure 2. Link design and virtual links in TUNIE.

Multi-core server

Virtual DTN nodes

OVS

WiFi inter.

OpenFlow
switch

Virtual link bVirtual link a

OpenFlow
WiFi AP

Link controller

OVS

OVS

Multi-core server

Multi-core server

Virtual DTN nodes

Virtual DTN nodes

WiFi inter.

WiFi inter.

OVS

Multi-core server

Virtual DTN nodes

WiFi inter.

Related to the rout-

ing protocols, users

can choose epidemic

routing, two-hop

relaying, and spray

and wait, which are

available in the sys-

tem for configuring

the DTN nodes.

Users can also imple-

ment new routing

and resource alloca-

tion schemes to eval-

uate their own

protocols.

LI_LAYOUT.qxp_Author Layout 1/7/15 4:56 PM Page 263

IEEE Communications Magazine • January 2015264

trace includes the mobility traces of 27,000 par-
ticipating Beijing taxis collected during the
entire month of May in 2010, which is the largest
vehicular data trace available.

ROUTING AND APPLICATIONS
Related to the routing protocols, users can
choose epidemic routing, two-hop relaying, and
spray and wait, which are available in the system
for configuring the DTN nodes. Users can also
implement new routing and resource allocation
schemes to evaluate their own protocols. All
these functions are openly accessible in the DTN
Bundle module of the DTN stack. In terms of
applications, similar to the ONE simulator,
TUNIE provides two ways to generate applica-
tion packets in the virtual nodes: packet genera-
tors and external traffic event files. The packet
generator in TUNIE creates packets for the
selected source and destination with the given
packet size and deadline, which are set by the
user. A separate tool to generate packet event
files is also included in TUNIE. In this way,
users can generate messages very conveniently.
For both ways of generating application packets,
the application is implemented in the module of
the Application IPC, which communicates with
the router (i.e., injects bundles into the Bundle
Router) via an inter-process communication
channel in the experiment control layer.

IMPLEMENTATION AND DEPLOYMENT
In implementing the TUNIE design on hardware
devices, we use 40 high-performance servers with
Intel Xeon X5550 2.6 GB four core CPU, 16 GB

memory, and WiFi interface as the hosts to pro-
vide the virtual DTN nodes. For the OpenFlow
switches, we use 8 WiFi APs of a Broadcom chip
and 3 Pronto OpenFlow-enabled switches as the
OpenFlow devices, where the WiFi APs provide
the wireless connections of the servers through
their WiFi interfaces. The system-level parame-
ters and characteristics are summarized in Table
2, which provides detailed information, in terms
of nodes, links, and DTN protocol stack, on our
implemented testbed emulator. This virtualized
programmable DTN emulation testbed contains
the resources of software virtualization compo-
nent and OpenFlow component. With our uni-
fied user configuration interface in the controller
and host, experimenters have access to all the
resources in the platform, and can build their
own experiments to test the designed DTN algo-
rithms and protocols. Moreover, the same imple-
mented code of these evaluated targets can
directly run on a real-life DTN system, and no
translation is required from the testbed emulator
to the real DTN environment.

Based on the virtualized environment, we
install the virtual DTN nodes with the DTN2
protocol stack on the TCP/IP network stack, and
we also install a network connecting with all the
physical multi-core servers to support the plat-
form management system. We design the system
with the GUI interface by web service for users
to apply the DTN node resources, and to use
them by configuring and customizing the net-
work. All these operations and configurations
over the virtual environment are carried out by
web-based remote access, and experimenters are
able to build their own experiments concurrently
in their individual and separated virtual net-
works. Although building TUNIE involves the
cost of the required hardware servers and switch-
es, it is significantly less than deploying a similar
large-scale dedicated hardware testbed. More-
over, such a dedicated testbed can only run a sin-
gle experiment, but our TUNIE testbed emulator
enables multiple different experiments to run
concurrently, and its hardware resources can be
remotely accessed, controlled, and shared by
many researchers. Additionally, unlike a dedicat-
ed DTN testbed, the invested hardware resources
are not restricted to DTN experiments, and
TUNIE can conveniently be used for other net-
work experiments and application. Clearly, our
TUNIE testbed emulator provides an economi-
cal, repeatable, and reliable platform for DTN
protocol testing and evaluation, and it will be
open to the wider DTN research community.

We carried out some basic experiments to
investigate the capability of the system. The well-
known ODE model is widely used to model the
message propagation in DTN network [5]. Here,
we verify this model in our testbed emulator to
investigate the efficiency and accuracy of TUNIE
as a DTN performance evaluation platform. We
evaluated the accuracy of the ODE model by
comparing the theoretical results obtained based
on the model given in [5] with the experimental
results, which were obtained by simulating the
message dissemination under the epidemic rout-
ing with the random walk mobility model in
TUNIE. The system settings and performance
metrics obtained from the experiment on

Figure 3. System functions and experiment workflow of TUNIE.

OpenFlow switch

Link events

Link up

Link down

Bandwidth change

Wireless control

Experiment controller

Multi-core serverVirtual DTN nodes

Mobility scenarios

Link controlDTN nodes

Random mobility

Bandwidth adjustRouting schemes

Connectivity con.Applications

Wireless trans.Results collection

Map-based mobility

Human real trace

Vehicular real trace

LI_LAYOUT.qxp_Author Layout 1/7/15 4:56 PM Page 264

IEEE Communications Magazine • January 2015 265

TUNIE in terms of one-hop transmission and
network-level performance are summarized in
Table 3.

We simulated the network with different net-
work sizes of N from 100 to 1000, where 20 per-
cent of the nodes in the network were randomly
chosen to be infected, and the system was simu-
lated 100 times. From the average deviation
between the theoretical and experimental results
of the average infected node ratio in Table 3, we
inferred that the number of message-infected
nodes computed from the ODE model agreed
with the average values obtained by the experi-
ment. On the other hand, the deviations, which
were influenced by TUNIE’s system-level param-
eters of network stack and wireless links, indicat-
ed that the deviations happened in realistic DTN
environments with network stack interactions
and wild wireless transmissions. These aspects
could not be obtained by the analytical method,
which only captured the average system perfor-
mance. These results clearly demonstrate the
credibility and accuracy of TUNIE as an emula-
tion testbed to evaluate DTN performance.

CONCLUSIONS
In this article, we have reviewed the evolution of
DTN protocol testing and evaluation. Based on
a survey of the existing simulation tools and
experimental testbeds, particularly their advan-
tages and drawbacks, we have designed and
implemented TUNIE, a network virtualization
based DTN testbed emulator. TUNIE integrates
XEN virtualization and OpenFlow technologies.
Specifically, XEN enables setting up large-scale
DTN networks, and OpenFlow is used to emu-
late the DTN opportunistic links. TUNIE opens
up a wide range of choices to users, in terms of
mobility scenarios, routing protocols, and appli-
cations, and also allows users to design their own
experimental environments conveniently. Our
initial implementation validated that TUNIE is
an efficient platform to evaluate DTN perfor-

mance, which needs to further integrate other
abundant models about the network properties
(i.e., link models from MoViT[11] and device
characteristics (i.e., energy consumption) to sim-
ulate some specific DTN environments. TUNIE’s
web-based interface for remotely accessing, con-
trolling, and sharing ensures that TUNIE will be
open to the wider DTN research community.

REFERENCES
[1] K. Fall, “A Delay-Tolerant Network Architecture for Chal-

lenged Internets,” Proc. ACM SIGCOMM 2003 Conf.
Applications, Technologies, Architectures, and Protocols
for Computer Commun., Karlsruhe, Germany, Aug.
25–29, 2003, pp. 27–34.

[2] K. Fall and S. Farrell, “DTN: An Architectural Retrospec-
tive,” IEEE JSAC, vol. 26, no. 5, June 2008, pp. 828–36.

[3] Z. Zhang, “Routing in Intermittently Connected Mobile
Ad Hoc Networks and Delay Tolerant Networks:
Overview and Challenges,” IEEE Commun. Surveys &
Tutorials, vol. 8, no. 1, 2006, pp. 24–37.

Table 2. System-level parameters and characteristics of our deployed TUNIE testbed emulator.

Category Parameters

Node virtualization

Physical server Intel X5550 2.6G 4 core CPU, 16 GB memory, 800 GB hard disc, and Cisco 350 WiFi
adaptor.

Virtual node 1 virtual CPU, 256 MB memory, 4 GB hard disc, virtual tap network interface, CentOS.

Virtualization efficiency 32 virtual nodes/physical server, full virtualization, CPU utilization
efficiency > 80 %.

Link virtualization

Wired port and link Tap rate = 10,000 ± 100kb/s, Open vSwitch port rate control: max = 20 Mb/s, min
= 0.5 Mb/s.

Wireless links Frequency: 2.4–2.4897GHz; Data Rates: 1, 2, 5.5, and 11 Mb/s; transmit power: 0-
20dBm.

DTN protocol stack

Routing protocols Static, flooding, two-hop relaying, spray and wait, delay-tolerant link state routing.

Transmission protocols TCP, UDP, Ethernet, BlueTooth, serial.

Storage size setting Bundle storage: 2 MB–10 GB; message storage: 16 KB–2 MB.

Table 3. System-level settings and performance of the experiment of ODE
model validation in TUNIE.

Category Metrics Values

One-hop
performance

Wireless transmission rate 5.5 Mb/s

Average wireless link throughput 2.4 Mb/s

Throughput standard deviation 1.3 Mb/s

Link packet loss rate 9.5%

Network
performance

The number of nodes (N) 100~1000

System simulated time (T) 5 × 103 s

Average message delivery ratio 91.2%

Average message transmission delay 1.7 × 103 s

Average deviation of infected ratio 99% ± 8%

LI_LAYOUT.qxp_Author Layout 1/7/15 4:56 PM Page 265

IEEE Communications Magazine • January 2015266

[4] Y. Li et al., “Evaluating the Impact of Social Selfishness on
the Epidemic Routing in Delay Tolerant Networks,” IEEE
Commun. Lett., vol. 14, no. 11, Nov. 2010, pp. 1026–28.

[5] X. Zhang et al., “Performance Modeling of Epidemic
Routing,” Computer Networks, vol. 51, no. 10, Oct.
2007, pp. 2867–91.

[6] S. Jain, K. Fall, and R. Patra, “Routing in a Delay Toler-
ant Network,” Proc. ACM SIGCOMM 2004 Conf. Appli-
cations, Technologies, Architectures, and Protocols for
Computer Commun., Kyoto, Japan, Aug. 30–Sept. 3,
2004, pp. 145–58.

[7] A. Keränen, J. Ott, and T. Kärkkäinen, “The ONE Simulator
for DTN Protocol Evaluation,” Proc. 2nd Int’l. Conf. Simula-
tion Tools and Techniques for Commun., Networks and
Sys., Rome, Italy, Mar. 2–6, 2009, pp. 50–55.

[8] O. R. Helgason and K. V. Jónsson, “Opportunistic Net-
working in OMNeT++,” Proc. ACM 1st Int. Conf. Simu-
lation Tools and Techniques for Commun., Networks
and Sys., Marseille, France, Mar. 3–7, 2008, pp. 76–82.

[9] A. Balasubramanian, B. N. Levine, and A. Venkataramani,
“DTN Routing as a Resource Allocation Problem,” Proc.
ACM SIGCOMM 2007 Conf. Applications, Technologies,
Architectures, and Protocols for Computer Commun.,
Kyoto, Japan, Aug. 27–31, 2007, pp. 373–84.

[10] W. Ivancic et al., “Experience with Delay-Tolerant Net-
working from ORBIT,” Proc. IEEE 4th Conf. Advanced
Satellite Mobile Sys., Bologna, Italy, Aug. 26–28, 2008,
pp. 173–78.

[11] E. Giordano et al., “MoViT: the Mobile Network Virtu-
alized Testbed,” Proc. ACM VANET ’12, Lake District,
U.K., June 25, 2012, pp. 3–12.

[12] N. McKeown et al., “Openflow: Enabling Innovation in
Campus Networks,” ACM SIGCOMM Computer Com-
mun. Rev., vol. 38, no. 2, April. 2008, pp. 69–74.

[13] P. Barham et al., “Xen and the Art of Virtualization,”
ACM SIGOPS Op. Sys. Rev., vol. 37, no. 5, Dec. 2003,
pp. 164–77.

[14] S. Burleigh, “Interplanetary Overlay Network: An
Implementation of the DTN Bundle Protocol,” Proc.
IEEE Consumer Commun. and Networking Conf., Las
Vegas, NV, Jan. 11–13, 2007, pp. 222–26.

[15] E. Kohler et al., “The Click Modular Router,” ACM Trans.
Computer Sys., vol. 18, no. 3, Aug. 2000, pp. 263–97.

[16] B. Pfaff et al., “Extending Networking into the Virtual-
ization Layer,” Proc. 8th ACM Workshop on Hot Topics
in Networks, New York, NY, Oct. 22–23, 2009, pp. 1–6.

BIOGRAPHIES
YONG LI [M’09]received his B.S. degree in electronics and
information engineering from Huazhong University of Sci-
ence and Technology, Wuhan, China, in 2007 and his Ph.D.
degree in electronic engineering from Tsinghua University,
Beijing, China, in 2012. During July to August 2012 and
2013, he was a visiting research associate with Telekom
Innovation Laboratories and Hong Kong University of Sci-
ence and Technology, respectively. During December 2013
to March 2014, he was a visiting scientist with the Univer-

sity of Miami, Florida. He is currently a faculty member of
the Department of Electronic Engineering, Tsinghua Univer-
sity. His research interests are in the areas of networking
and communications, including mobile opportunistic net-
works, device-to-device communication, software-defined
networks, network virtualization, and future Internet.

PAN HUI received his Ph.D degree from the Computer Labo-
ratory, University of Cambridge, and earned his M.Phil. and
B.Eng. from the Department of Electrical and Electronic
Engineering, University of Hong Kong. He is currently a fac-
ulty member of the Department of Computer Science and
Engineering at the Hong Kong University of Science and
Technology, where he directs the System and Media Lab.
He also serves as a Distinguished Scientist of Telekom Inno-
vation Laboratories (T-labs) Germany and an adjunct pro-
fessor of social computing and networking at Aalto
University, Finland. Before returning to Hong Kong, he
spent several years in T-labs and Intel Research Cambridge.
He has published more than 100 research papers, and has
several granted and pending European patents. He has
founded and chaired several IEEE/ACM conferences/work-
shops, and served on the Technical Program Committees of
numerous international conferences and workshops includ-
ing IEEE INFOCOM, SECON, MASS, GLOBECOM, WCNC, and
ITC.

DEPENG JIN received his B.S. and Ph.D. degrees from
Tsinghua University in 1995 and 1999, respectively, both in
electronics engineering. He is an associate professor at
Tsinghua University and vice chair of Department of Elec-
tronic Engineering. He was awarded the National Scientific
and Technological Innovation Prize (Second Class) in 2002.
His research fields include telecommunications, high-speed
networks, ASIC design, and future Internet architecture.

SHENG CHEN [M’90, SM’97, F’08] obtained his B.Eng. degree
from the East China Petroleum Institute, Dongying, China,
in January 1982, and his Ph.D. degree from City University,
London, United Kingdom, in September 1986, both in con-
trol engineering. In 2005, he was awarded a D.Sc. from
the University of Southampton, United Kingdom. From
1986 to 1999, he held research and academic appoint-
ments at the Universities of Sheffield, Edinburgh, and
Portsmouth, all in the United Kingdom. Since 1999, he has
been with the Department of Electronics and Computer
Science, University of Southampton, where he currently
holds the post of professor in intelligent systems and sig-
nal processing. He is a distinguished adjunct professor at
King Abdulaziz University, Jeddah, Saudi Arabia. He is a
Chartered Engineer (CEng) and a Fellow of IET (FIET). His
recent research interests include adaptive signal processing,
wireless communications, modeling and identification of
nonlinear systems, neural network and machine learning,
intelligent control system design, evolutionary computation
methods, and optimization. He has published over 470
research papers. He is an ISI highly cited researcher in the
engineering category (March 2004).

LI_LAYOUT.qxp_Author Layout 1/7/15 4:56 PM Page 266

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus settings for Acrobat Distiller 9)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Cadmus_Flattener_Presert)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

