ELEC6021 — COMMS Assignment II

- Complete the set of simulations as indicated in Assignment II
- Hand in your assignment to the ECS Student Services (Course Office) on ——-
- Mark contribution to the unit: 25% (Total 25 marks)
- A few "hints" are given in this lecture
- Assignment and this lecture notes can be downloaded from http://www.ecs.soton.ac.uk/~sqc/EZ619/
- There will be no lecture for 2nd lecture time slot use it for you to do this assignment

Baseband System with Symbol-Spaced Equaliser

- Baseband model with symbol-spaced equaliser and equivalent symbol-spaced model:
 - T_s : symbol period
 - k: indicates symbol-spaced sampling quantity
 - Baseband "channel": $a(t) = g_R(t) \star c(t) \star g_T(t)$, convolution of Tx filter, channel (medium) and Rx filter
 - Symbol-spaced "channel": $\mathbf{a} = [a_0 \quad a_1 \cdots a_{n_a}]^T$ is obtained by sampling a(t) at symbol rate

$$e(t)$$

$$s(k)$$

$$a(t)$$

$$F(k)$$

$$e(k)$$

$$e(k)$$

$$r(k)$$

$$w$$

$$y(k)$$

$$w$$

$$y(k)$$

$$w$$

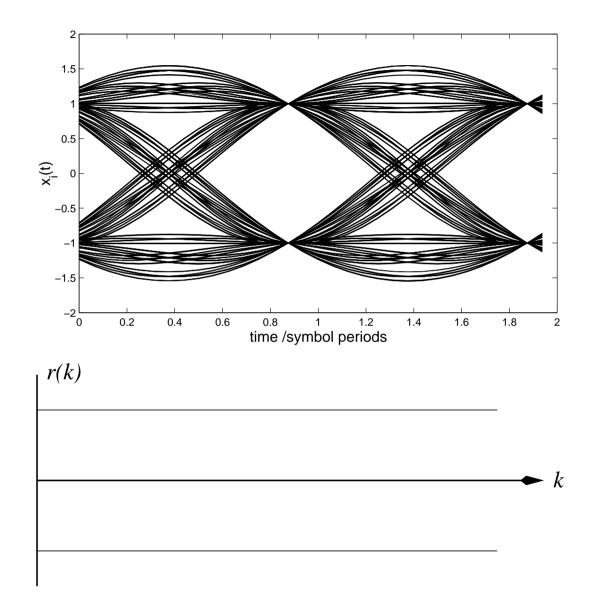
$$y(k)$$

1.1

- Symbol spaced equaliser:
$$\mathbf{w} = [w_0 \ w_1 \cdots w_M]^T$$

Eye Diagram and Correct Sampling

- BPSK modulation with ideal channel c(t) and no noise, eye diagram of r(t) looks like:
- Sampling $t = kT_s + \tau$: you have to choose correct sampling offset τ
- If sampling correctly and with a long sequence, r(k) should look like:
- If sampling incorrectly, what r(k) looks like?



Symbol Spaced Channel Model

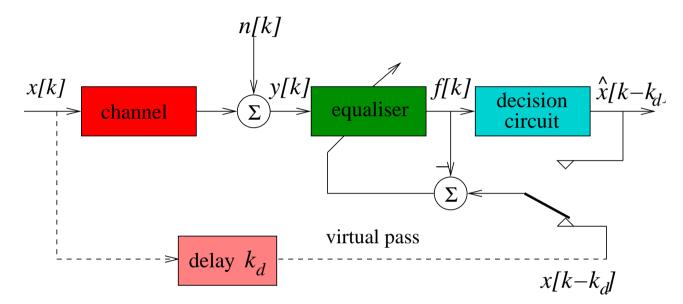
- Symbol spaced channel model \mathbf{a} is obtained by sampling a(t) at symbol rate
- If $c(t) = \delta(t) + 0.5\delta(t T_s)$ and pulse shaping filter pair $g_T(t)$ and $g_R(t)$ are designed properly as square root of raised cosine pulse, then $\mathbf{a} = \begin{bmatrix} 1.0 & 0.5 \end{bmatrix}^T$ by ignoring the delay length of pulse shaping

This is only valid for the channel c(t) having symbol-spacing paths

- Again, you'll have to choose sampling instances correctly, or the equaliser output y(k) will not look as expected
- Can you see that the equaliser in the Assignment II 1 (c) is a zero-forcing one?
- For the MMSE solution and adaptive LMS algorithm, read for example your Digital Transmission Lecture Notes

Adaptive Equalisation

• The generic framework of adaptive equalisation:



- Training mode: Tx transmits a prefixed sequence known to Rx. The equaliser uses the locally generated symbols x[k] as the desired response to adapt the equaliser
- Decision-directed mode: the equaliser assumes the decisions $\hat{x}[k k_d]$ are correct and uses them to substitute for $x[k k_d]$ as the desired response
- *Blind equalisation*: adapt equaliser based only on Rx signal (Note that decision-direct adaptation is a blind equalisation)

Adaptive Algorithm

- Adaptive equalisation with training
 - The LMS algorithm

$$w_i(k) = w_i(k-1) + \mu(s(k-d) - y(k))r(k-i), \quad 0 \le i \le M$$

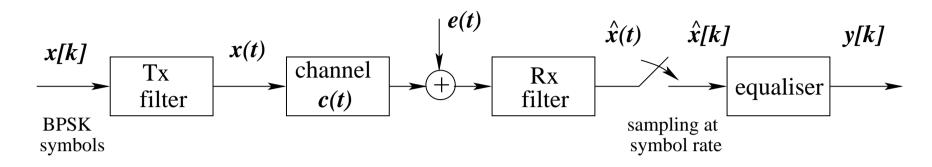
- μ is a small positive adaptive gain, d is equaliser decision delay (In assignment II we choose d = 0), and initialisation $\mathbf{w} = [0 \ 0 \cdots 0]^T$
- Blind adaptive equalisation
 - The decision directed adaptation: Let $\hat{s}(k-d) = \mathcal{Q}(y(k))$,

$$w_i(k) = w_i(k-1) + \mu(\hat{s}(k-d) - y(k))r(k-i), \quad 0 \le i \le M$$

- μ is a small positive adaptive gain, and initialisation $\mathbf{w} = [0 \cdots 0 \ 1 \ 0 \cdots 0]^T$

• Adaptive step size μ should be small enough to ensure convergence, but if it is too small convergence will be too slow

A Few Hints



- Make sure that your system is so implemented such that the overall system gain from x[k] to $\hat{x}[k]$ is unity for ideal channel c(t)
- Make sure the gain from the noise e(t) to Rx signal is also unity, as we want a signal to noise ratio (SNR) of $10 \cdot \log_{10} \frac{1}{0.04} \approx 14$ dB, with a noise variance of 0.04
- Choose sampling instances carefully (consider half length of the combined Rx/Tx filters impulse response), and use eye diagram to tune sampling instances if needed
- Think how are you going to plot Bit Error Rate versus Signal to Noise Ratio

Symbol-Spaced Signal Model

• Received signal model

$$r(k) = \sum_{i=0}^{n_a} a_i s(k-i) + e(k)$$

• Equaliser model

$$y(k) = \sum_{i=0}^{M} w_i r(k-i)$$

• In vector/matrix form

$$y(k) = \mathbf{w}^T \mathbf{r}(k), \quad r(k) = \mathbf{A} \mathbf{s}(k) + \mathbf{e}(k)$$

where $\mathbf{w} = [w_0 \ w_1 \cdots w_M]^T$, $\mathbf{r}(k) = [r(k) \ r(k-1) \cdots r(k-M)]^T$, $\mathbf{e}(k) = [e(k) \ e(k-1) \cdots e(k-M)]^T$, $\mathbf{s}(k) = [s(k) \ s(k-1) \cdots s(k-M-n_a)]^T$, and

$$\mathbf{A} = \begin{bmatrix} a_0 & a_1 & \cdots & a_{n_a} & 0 & \cdots & 0 \\ 0 & a_0 & a_1 & \cdots & a_{n_a} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & a_0 & a_1 & \cdots & a_{n_a} \end{bmatrix}$$

8

Minimum Mean Square Solution

• Mean square error

$$J(\mathbf{w}) = E[|s(k-d) - y(k)|^2]$$

• Minimum mean square error solution

$$\mathbf{w}_{\text{MMSE}} = \arg\min_{\mathbf{w}} J(\mathbf{w}) = \left(\mathbf{A}\mathbf{A}^T + \frac{\sigma_e^2}{\sigma_s^2}\mathbf{I}\right)^{-1}\mathbf{A}|_d$$

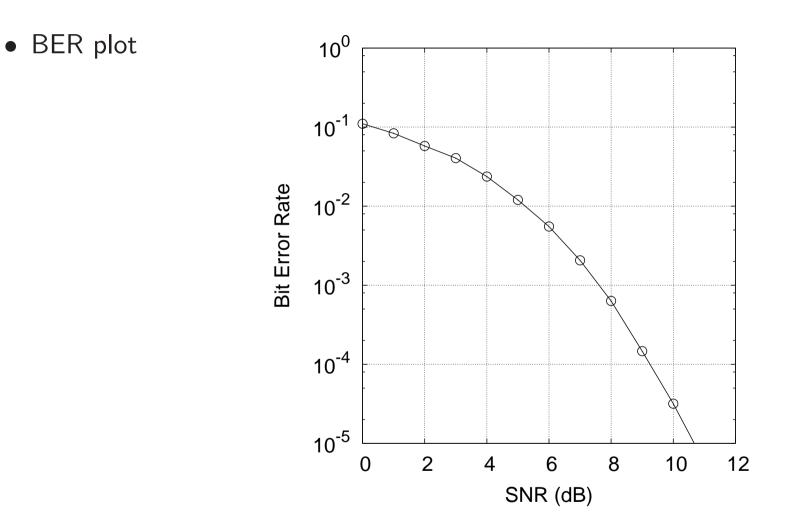
where I is the identity matrix, $\sigma_s^2 = 1$ is symbol power of s(k), $\mathbf{A}|_d$ denotes d-th column of \mathbf{A} , and d is equaliser's decision delay

• Signal to noise ratio:

$$\mathsf{SNR} = \frac{\sigma_s^2}{\sigma_e^2} \sum_{i=0}^{n_a} a_i^2$$

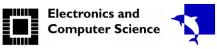
University

of Southampton



You can calculate the theoretical BER, or you can use simulation to compute BER

 think how to get adequate simulation result



University

of Southampton

Investigation of Least Mean Square Algorithm

 $E[\mathbf{a}(k)]$ and $J(\mathbf{a}(k))$ are approximated using sample averages over 500 runs

