
Chapter 19
Particle Swarm Optimisation Aided MIMO
Transceiver Designs

S. Chen, W. Yao, H.R. Palally, and L. Hanzo

Abstract. Multiple-input multiple-output (MIMO) technologies are capable of sub-
stantially improving the achievable system’s capacity, coverage and/or quality of
service. The system’s ability to approach the MIMO capacity depends heavily on
the designs of MIMO receiver and/or transmitter, which are generally expensive op-
timisation tasks. Hence, researchers and engineers have endeavoured to develop effi-
cient optimisation techniques that can solve practical MIMO designs with affordable
costs. In this contribution, we demonstrate that particle swarm optimisation (PSO)
offers an efficient means for aiding MIMO transceiver designs. Specifically, we con-
sider PSO-aided semi-blind joint maximum likelihood channel estimation and data
detection for MIMO receiver, and we investigate PSO-based minimum bit-error-rate
multiuser transmission for MIMO systems. In both these two MIMO applications,
the PSO-aided approach attains an optimal design solution with a significantly lower
complexity than the existing state-of-the-art scheme.

19.1 Introduction

Multiple-input multiple-output (MIMO) technologies are widely adopted in prac-
tice to improve the system’s achievable capacity, coverage and/or quality of service
[14, 15, 30, 32, 33, 41, 42, 43, 45]. The designs of MIMO receiver and/or transmit-
ter critically influence the system’s ability to approach the MIMO capacity. MIMO
transceiver designs, which are typically expensive optimisation tasks, have moti-
vated researchers and engineers to develop efficient optimisation techniques that
can attain optimal MIMO designs with affordable costs. Hence, the particle swarm
optimisation (PSO) as an advanced optimisation tool can offer an efficient means
for aiding MIMO transceiver designs. PSO [25] is a population based stochastic op-
timisation technique inspired by social behaviour of bird flocking or fish schooling.
The algorithm commences with random initialisation of a swarm of individuals, re-
ferred to as particles, within the problem’s search space. It then endeavours to find

S. Chen · W. Yao · H.R. Palally · L. Hanzo
School of Electronics and Computer Science,
University of Southampton, Southampton SO17 1BJ, UK
e-mail: {sqc,wy07r,hrp1v07,lh}@ecs.soton.ac.uk

Y. Tenne and C.-K. Goh (Eds.): Computational Intel. in Expensive Opti. Prob., ALO 2, pp. 487–511.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

{sqc,wy07r,hrp1v07,lh}@ecs.soton.ac.uk


488 S. Chen et al.

a global optimal solution by gradually adjusting the trajectory of each particle to-
ward its own best location and toward the best position of the entire swarm at each
evolutionary optimisation step. The PSO method is popular owing to its simplic-
ity in implementation, ability to rapidly converge to a “reasonably good” solution
and its robustness against local minima. The PSO method has been successfully ap-
plied to wide-ranging optimisation problems [10, 12, 13, 16, 18, 26, 27, 35, 37, 38].
In particular, many research works have applied the PSO techniques to multiuser
detection (MUD) [11, 17, 28, 29, 36]. In this contribution we consider the PSO
aid MIMO transceiver designs. Specifically, we develop the PSO aided semi-blind
joint maximum likelihood (ML) channel estimation and data detection for MIMO
receivers and we investigate the PSO-based minimum bit error rate (MBER) mul-
tiuser transmission (MUT) for MIMO systems.

In a MIMO receiver, if the channel state information (CSI) is available, opti-
mal ML data detection can be performed using for example the optimised hierarchy
reduced search algorithm (OHRSA) aided detector [2], which is an advanced exten-
sion of the complex sphere decoder [34]. Accurately estimating a MIMO channel
however is a challenging task, and a high proportion of training symbols is required
to obtain a reliable least square channel estimate (LSCE) which considerably re-
duces the achievable system throughput. Although blind joint ML channel estima-
tion and data detection does not reduce the achievable system throughput, it suffers
from drawbacks of excessively high computational complexity and an inherent es-
timation and decision ambiguities [40]. An interesting scheme for semi-blind joint
ML channel estimation and data detection has been proposed in [1], in which the
joint ML channel estimation and data detection optimisation is decomposed into
two levels. At the upper level a population-based optimisation algorithm known as
the the repeated weighted boosting search (RWBS) algorithm [7] searches for an
optimal channel estimate, while at the lower level the OHRSA detector [2] recovers
the transmitted data. Joint ML channel estimation and data detection is achieved by
iteratively exchanging information between the RWBS-aided channel estimator and
the OHRSA data detector. The scheme is semi-blind as it employs a few training
symbols, approximately equal to the rank of the MIMO system, to provide an ini-
tial LSCE for aiding the RWBS channel estimator to improve its convergence. The
employment of a minimum training overhead has an additional benefit in terms of
avoiding the ambiguities inherent in pure blind joint channel estimation and data
detection. This study advocates the PSO aided alternative for semi-blind joint ML
channel estimation and data detection. We will demonstrate that this PSO aided
scheme compares favourably with the existing state-of-the-art RWBS based method,
in terms of performance and complexity.

In the downlink of a space-division multiple-access (SDMA) induced MIMO
system, mobile terminal (MT) receivers are incapable of cooperatively perform-
ing sophisticated MUD. In order to facilitate the employment of a low-complexity
high-power efficiency single-user-receiver, the transmitted signals have to be pre-
processed at the base station (BS), leading to the appealing concept of multiuser
transmission (MUT) [50], provided that accurate downlink CSI is available at the
transmitter. The assumption that the downlink channel impulse response (CIR) is
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known at the BS may be deemed valid in time division duplex (TDD) systems,
where the uplink and downlink signals are transmitted at the same frequency, pro-
vided that the co-channel interference is also similar at the BS and the MTs. MUT-
aided transmit preprocessing may hence be deemed attractive, when the channel’s
coherence time is longer than the transmission burst interval. However, for fre-
quency division duplex (FDD) systems, where the uplink and downlink channels
are expected to be different, CIR feedback from the MT’s receivers to the BS trans-
mitter is necessary [51]. Most of the MUT techniques are designed based on the
minimum mean-square-error (MMSE) criterion [44, 51]. Since the achievable bit
error rate (BER) is the ultimate system performance indicator, interests on mini-
mum BER (MBER) based MUT techniques have increased recently [21, 39]. The
optimal MBER-MUT design is a constrained nonlinear optimisation [21, 39], and
the sequential quadratic programming (SQP) algorithm [31] is typically used to ob-
tain the precoder’s coefficients for the MBER-MUT [21, 23, 39]. In practice, the
computational complexity of the SQP based MBER-MUT solution can be excessive
for high-rate systems [23] and, therefore, it is difficult for practical implementation.
In this contribution, the PSO algorithm is invoked to find the precoder’s coefficients
for the MBER-MUT in order to reduce the computational complexity to a practi-
cally acceptable level. Our results obtained in [52] have demonstrated that the PSO
aided MBER-MUT design imposes a much lower computational complexity than
the existing SQP-based MBER-MUT design.

The rest of this contribution is structured as follows. In Section 19.2, the PSO
algorithm is presented. Section 19.3 is devoted to the development of the PSO-aided
semi-blind joint ML scheme, while Section 19.4 derives the PSO assisted optimal
MBER-MUT scheme. Our conclusions are then offered in Section 19.5.

Throughout our discussions we adopt the following notational conventions. Bold-
face capitals and lower-case letters stand for complex-valued matrices and vectors of
appropriate dimensions, respectively, while IK and 1K×L denote the K ×K identity
matrix and the K × L matrix of unity elements, respectively. The (p,q)th element
hp,q of H is also denoted by H|p,q. Furthermore, ()T and ()H represent the trans-
pose and Hermitian operators, respectively, while ‖‖2 and | | denote the norm and
the magnitude operators, respectively. E [ ] denotes the expectation operator, while
ℜ[ ] and ℑ[ ] represent the real and imaginary parts, respectively. Finally, j =

√−1.

19.2 Particle Swarm Optimisation

Consider the generic optimisation task defined as follows

Uopt = arg min
U

F(U) (19.1)

s.t. U ∈ UN×M (19.2)

where F() is the cost function of the optimisation problem, U is a N ×M complex-
valued parameter matrix to be optimised, and
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U =
[−Umax, Umax

]
+ j
[−Umax, Umax

]
(19.3)

defines the search range for each element of U. The flowchart of the PSO algorithm

is given in Fig. 19.1. A swarm of particles, {U(l)
i }S

i=1, that represent potential solu-
tions are evolved in the search space UN×M , where S is the swarm size and index l
denotes the iteration step. The details of the algorithm is now explained.
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Fig. 19.1 Flowchart of the PSO algorithm

19.2.1 PSO Algorithm

a) The swarm initialisation. Set l = 0 and generate the initial particles, {U(l)
i }S

i=1,
in the search space UN×M with a prescribed way. Typically, the initial particles are
randomly generated.

b) The swarm evaluation. For each particle U(l)
i , compute its associated cost F

(
U(l)

i

)
.

Each particle U(l)
i remembers its best position visited so far, denoted as Pb(l)

i , which
provides the cognitive information. Every particle also knows the best position vis-
ited so far among the entire swarm, denoted as Gb(l), which provides the social
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information. The cognitive information {Pb(l)
i }S

i=1 and the social information Gb(l)

are updated at each iteration:

For (i = 1; i ≤ S; i++)
If (F(U(l)

i ) < F(Pb(l)
i )) Pb(l)

i = U(l)
i ;

End for;
i∗ = arg min1≤i≤S F(Pb(l)

i );
If (F(Pb(l)

i∗ ) < F(Gb(l))) Gb(l) = Pb(l)
i∗ ;

c) The swarm update. Each particle U(l)
i has a velocity, denoted as V(l)

i , to direct
its “flying” or search within the search space. The velocity and position of the ith
particle are updated in each iteration according to:

V(l+1)
i = ξ ∗V(l)

i + c1 ∗ϕ1 ∗ (Pb(l)
i −U(l)

i )+ c2 ∗ϕ2 ∗ (Gb(l) −U(l)
i ), (19.4)

U(l+1)
i = U(l)

i + V(l+1)
i , (19.5)

where ξ is the inertia weight, c1 and c2 are the two empirically chosen acceleration
coefficients, while ϕ1 = rand() and ϕ2 = rand() denotes the two random variables
uniformly distributed in (0, 1).

In order to avoid excessive roaming of particles beyond the search space [18], a
velocity space VN×M with

V =
[−Vmax, Vmax

]
+ j
[−Vmax, Vmax

]
(19.6)

is imposed so that each element of V(l+1)
i is within the search range V defined in

(19.6), namely,

If (ℜ[V(l+1)
i |p,q] > Vmax) ℜ[V(l+1)

i |p,q] = Vmax;

If (ℜ[V(l+1)
i |p,q] < −Vmax) ℜ[V(l+1)

i |p,q] = −Vmax;

If (ℑ[V(l+1)
i |p,q] > Vmax) ℑ[V(l+1)

i |p,q] = Vmax;

If (ℑ[V(l+1)
i |p,q] < −Vmax) ℑ[V(l+1)

i |p,q] = −Vmax;

Moreover, if V(l+1)
i approaches zero, it is reinitialised proportional to Vmax with a

small control factor γ according to:

If (ℜ[V(l+1)
i |p,q] == 0)

If(rand() < 0.5)

ℜ[V(l+1)
i |p,q] = ϕv ∗ γ ∗Vmax;

Else
ℜ[V(l+1)

i |p,q] = −ϕv ∗ γ ∗Vmax
)

;
End if;

Else if (ℑ[V(l+1)
i |p,q] == 0)

If(rand() < 0.5)

ℑ[V(l+1)
i |p,q] = ϕv ∗ γ ∗Vmax;
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Else
ℑ[V(l+1)

i |p,q] = −ϕv ∗ γ ∗Vmax
)

;
End if;

End if;

where ϕv = rand() is another uniform random variable in (0, 1).
Similarly, each U(l+1)

i is checked to ensure that it stays inside the search space
UN×M . This can be done for example with the rule:

If (ℜ[U(l+1)
i |p,q] > Umax) ℜ[U(l+1)

i |p,q] = Umax;

If (ℜ[U(l+1)
i |p,q] < −Umax) ℜ[U(l+1)

i |p,q] = −Umax;

If (ℑ[U(l+1)
i |p,q] > Umax) ℑ[U(l+1)

i |p,q] = Umax;

If (ℑ[U(l+1)
i |p,q] < −Umax) ℑ[U(l+1)

i |p,q] = −Umax;

An alternative rule is, if a particle is outside the search space, it is moved back inside
the search space randomly, rather than forcing it to stay at the border as the previous
rule does. That is,

If (ℜ[U(l+1)
i |p,q] > Umax) ℜ[U(l+1)

i |p,q] = rand()∗Umax;

If (ℜ[U(l+1)
i |p,q] < −Umax) ℜ[U(l+1)

i |p,q] = −rand()∗Umax;

If (ℑ[U(l+1)
i |p,q] > Umax) ℑ[U(l+1)

i |p,q] = rand()∗Umax;

If (ℑ[U(l+1)
i |p,q] < −Umax) ℑ[U(l+1)

i |p,q] = −rand()∗Umax;

This is similar to the checking procedure given in [18].

d) Termination condition check. If the maximum number of iterations, Imax, is
reached, terminate the algorithm with the solution Uopt = Gb(Imax); otherwise, set
l = l + 1 and go to Step b).

19.2.2 Complexity of PSO Algorithm

Let the computational complexity of one cost function evaluation be Csingle. Given
the swarm size S, assume that the algorithm converges in Imax iterations. Then the
total number of cost function evaluations is simply Ntotal = S× Imax, and the com-
plexity of the algorithm is given by

C = Ntotal ×Csingle = S× Imax ×Csingle. (19.7)

19.2.3 Choice of PSO Algorithmic Parameters

We now comment on the choices of PSO algorithmic parameters. The search bound
Umax is specified by the optimisation problem considered, while the velocity limit
Vmax is typically related to the value of Umax. The swarm size S depends on how hard
the optimisation problem (19.1) is. For small to medium size optimisation problems,
a standard choice recommended in the literature is S = 20 to 50. The maximum
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number of iterations, Imax, is generally determined by experiment. In our experi-
ments we choose the optimal swarm size S to minimise the total complexity C of
(19.7).

It was reported in [35] that a time varying acceleration coefficient (TVAC) en-
hances the performance of PSO. In this TVAC mechanism [35], c1 for the cognitive
component is reduced from 2.5 to 0.5 and c2 for the social component varies from
0.5 to 2.5 respectively during the iterative procedure according to

c1 = (0.5−2.5)∗ l/Imax+ 2.5

c2 = (2.5−0.5)∗ l/Imax+ 0.5

}
(19.8)

The reason given for this TVAC mechanism is that at the initial stages, a large cog-
nitive component and a small social component help particles to wander around
or exploit better the search space and to avoid local minima. In the later stages, a
small cognitive component and a large social component help particles to converge
quickly to a global minimum.

We also experiment an alternative TVAC mechanism in which c1 is varies from
0.5 to 2.5 and c2 changes from 2.5 to 0.5 during the iterative procedure according to

c1 = (2.5−0.5)∗ l/Imax+ 0.5

c2 = (0.5−2.5)∗ l/Imax+ 2.5

}
(19.9)

Which TVAC mechanism to choose is decided by empirical performance in our
applications.

Several choices of the inertia weight can be considered, including the zero inertia
weight ξ = 0, a constant inertia weight ξ or a random inertia weight ξ = rand(). In
our applications, empirical experience suggests that ξ = 0 is appropriate. An appro-
priate value of the control factor γ in reinitialising zero velocity found empirically
for our applications is γ = 0.1.

19.3 PSO Aided Semi-blind Joint ML Estimation

Our first application of PSO to multiple-input multiple-output (MIMO) transceiver
design involves the PSO-aided semi-blind joint maximum likelihood (ML) channel
estimation and data detection for MIMO receiver.

19.3.1 MIMO System Model

We consider a MIMO system consisting of nT transmitters and nR receivers, which
communicates over flat fading channels [42]. The system is described by the well-
known MIMO model [32]

y(k) = Hx(k)+ n(k), (19.10)
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where k is the symbol index, H denotes the nR × nT complex-valued MIMO
channel matrix, x(k) = [x1(k) x2(k) · · ·xnT (k)]T is the transmitted symbols vec-
tor of the nT transmitters with the symbol energy given by E

[|xm(k)|2] = σ2
x for

1 ≤ m ≤ nT , y(k) = [y1(k) y2(k) · · ·ynR(k)]T denotes the received signal vector, and
n(k) = [n1(k) n2(k) · · ·nnR(k)]T is the complex-valued Gaussian white noise vector
associated with the MIMO channels with E

[
n(k)nH(k)

]
= 2σ2

n InR = NoInR . The
signal-to-noise ratio (SNR) of the system is defined by SNR = Eb/No = σ2

x /2σ2
n .

More specifically, the narrowband MIMO channel matrix is defined by H =
[hp,m], for 1 ≤ p ≤ nR and 1 ≤ m ≤ nT , where hp,m denotes the channel coeffi-
cient linking the mth transmitter to the pth receiver. The fading is assumed to be
sufficiently slow, so that during the time period of a short block of L symbols, all
the entries in the MIMO channel matrix H may be deemed unchanged. From frame
to frame, the channel impulse response (CIR) taps hp,m are independently and iden-
tically distributed (i.i.d.) complex-valued Gaussian processes with zero mean and
E
[|hp,m|2

]
= 1. Note that frequency selective MIMO channels can be made narrow-

band using for example the orthogonal frequency division multiplexing (OFDM)
technique [19]. We also assume that the modulation scheme is the quadrature phase
shift keying (QPSK) and, therefore, the transmitted symbol takes the value from the
symbol set

xi(k) ∈ X = {±1± j}. (19.11)

All the results discussed here are equally applicable to higher-throughput modu-
lation schemes, such as the quadrature amplitude modulation (QAM) [20], with
increased complexity.

19.3.2 Semi-blind Joint ML Channel Estimation and Data
Detection

Let us consider the joint channel estimation and data detection based on the obser-
vation vector y(k) over a relatively short length of L symbols. First define the nR×L
matrix of the received data as Y = [y(1) y(2) · · ·y(L)] and the corresponding nT ×L
matrix of the transmitted symbols as X = [x(1) x(2) · · ·x(L)]. Then the probability
density function (PDF) of the received data matrix Y conditioned on the MIMO
channel matrix H and the transmitted symbol matrix X can be written as

p(Y|H,X) =
1

(2πσ2
n )nR×L e

− 1
2σ2

n
∑L

k=1‖y(k)−Hx(k)‖2

. (19.12)

The ML estimation of X and H can be obtained by jointly maximising p(Y|H,X)
over X and H. Equivalently, the joint ML estimation is obtained by minimsing the
cost function

JML(X̌,Ȟ) =
1

nR ×L

L

∑
k=1

∥∥y(k)− Ȟ x̌(k)
∥∥2

, (19.13)
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which is a function of the symbol matrix X̌ = [x̌(1) x̌(2) · · · x̌(L)] and the channel
matrix Ȟ. Thus the joint ML channel and data estimation is obtained as

(X̂,Ĥ) = arg

{
min
X̌,Ȟ

JML(X̌,Ȟ)
}

. (19.14)

The joint ML optimisation defined in (19.14) is computationally prohibitive. The
complexity of this optimisation process may be reduced to a tractable level, if it is
decomposed into an iterative search carried out over all the possible data symbols
first and then over the channel matrices as

(X̂,Ĥ) = arg

{
min

Ȟ

[
min

X̌
JML(X̌,Ȟ)

]}
. (19.15)

At the inner-level optimisation we can use the the optimised hierarchy reduced
search algorithm (OHRSA) based ML detector [2] to find the ML data estimate
for the given channel. The detailed implementation of the OHRSA-aided ML de-
tector can be found in [2] and will not be repeated here. In order to guarantee a
joint ML estimate, the search algorithm used at the outer or upper-level optimisa-
tion should be capable of finding a global optimal channel estimate efficiently. A
joint ML solution is achieved with the following iterative loop.

Outer-level Optimisation: A search algorithm searches the MIMO channel parame-
ter space to find a global optimal estimate Ĥ by minimising the mean square error
(MSE)

JMSE(Ȟ) = JML(X̂(Ȟ),Ȟ), (19.16)

where X̂(Ȟ) denotes the ML estimate of the transmitted data for the given channel
Ȟ.

Inner-level Optimisation: Given Ȟ the OHRSA detector finds the ML estimate of
the transmitted data and feeds back the ML metric JMSE(Ȟ) to the upper level.

Pure blind joint data and channel estimation converges very slowly and suffers
from an inherent permutation and scaling ambiguity problem [40]. To resolve this
permutation and scaling ambiguity, a few training symbols are employed to provide
an initial least square channel estimate (LSCE) for aiding the outer-level search al-
gorithm. Let the number of training symbols be K, and denote the available training
data as YK = [y(1) y(2) · · ·y(K)] and XK = [x(1) x(2) · · ·x(K)]. The LSCE based
on {YK ,XK} is readily given by

ȞLSCE = YKXH
K

(
XKXH

K

)−1
. (19.17)

To maintain the system throughput, we only use the minimum number of training
symbols, namely, K = nT , which is equal to the rank of the MIMO system. The
training symbol matrix XK should be designed to yield the optimal estimation per-
formance [4]. Specifically, XK is designed to have nT orthogonal rows. This yields
the most efficient estimate and removes the need for matrix inversion.



496 S. Chen et al.

19.3.3 PSO Aided Semi-blind Joint ML Scheme

The above semi-blind joint ML data and channel estimation is a very expensive
optimisation problem. Firstly, let us exam the inner-level optimisation. For a given
channel Ȟ, the ML data detection solution X̂(Ȟ) must be calculated. Note that the
data matrix X̌ has M L×nR legitimate combinations, where M = 4 is the size of the
QPSK symbol set (19.11). A exhausted search would require to calculate the cost
function (19.13) M L×nR times and to find the data matrix that attains the minimum
value of the cost function. This is obviously prohibitive. The OHRSA-aided ML
detector [2] manages to reduce dramatically the complexity required for attainding
the ML solution X̂(Ȟ). Even so the OHRSA detector is by no means low-complexity
and is in fact inherently expensive owing to the nature of the optimal ML detection.
The detailed complexity analysis can be found for example in [46] and is beyond
the scope of this contribution. Now consider the outer-level optimisation, which has
to search through the (2nR)× (2nT ) dimensional real-valued channel space. Each
point evaluated requires to call the OHRSA detector once. Any search algorithm
will require a large number of OHRSA evaluations in order to attain the joint ML
solution X̂(Ĥ).

In the previous work [1], we have applied the repeated weighted boosting search
(RWBS) algorithm [7] to perform the outer-level optimisation search of the joint ML
iterative loop. The results shown in [1] demonestrate that the RWBS-aided semi-
blind joint ML scheme performs well and is efficient in terms of its convergence
speed. In this contribution, we show that by invoking the PSO method as the outer-
level search algorithm, further performance enhancement can be achieved in terms
of reduced complexity. The cost function for the PSO algorithm to optimise in this
case is F(Ȟ) = JMSE(Ȟ) with the dimensions of the search space specified by N =
nR and M = nT .

In Step a) The swarm initialisation, the initial particles are chosen as Ȟ(0)
1 =

ȞLSCE and
Ȟ(0)

i = ȞLSCE + ϕh(1nR×nT + j1nR×nT ), 2 ≤ i ≤ S, (19.18)

where ϕh is a uniformly distributed random variable defined in the range [−α, α].
Appropriate value for α is determined by experiment.

In Step c) The swarm update, we adopt the zero inertia weight ξ = 0 and the
TVAC mechanism (19.9). For any particle wandering outside the search space, we
force it back to stay at the border of the search space. These provisions are found to
be appropriate for this application empirically.

Let COHRSA(L) be the complexity of the OHRSA algorithm to decode the L-
symbol data matrix X and let NOHRSA be the number of calls for the OHRSA al-
gorithm required by the PSO algorithm to converge. Then the complexity of the
proposed semi-blind method is expressed as

C = NOHRSA ×COHRSA(L), (19.19)

where COHRSA(L) is given in [46], and NOHRSA = S × Imax with Imax being the
maximum number of iterations and S the swarm size. It can be seen that the
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computational complexity of the PSO aided semi-blind joint ML estimation scheme
is characterised by the number of OHRSA cost function evaluations NOHRSA. Obvi-
ously, the number of iterations that the PSO algorithm requires to converge is Imax,
and the value of Imax depends on the choice of S. It is easily seen that the optimal
choice of the swarm size S should lead to the minimum value of NOHRSA.

19.3.4 Simulation Study

A simulation study was carried out to investigate the PSO aided semi-blind joint
ML channel estimation and data detection scheme. We considered the benchmark
MIMO system with nT = 4 and nR = 4 used in [1]. The achievable performance was
assessed in the simulation using three metrics, and these were the MSE defined in
(19.16), the mean channel error (MCE) defined as

JMCE(Ȟ) = ‖H− Ȟ‖2, (19.20)

where H denotes the true MIMO channel matrix and Ȟ the channel estimate, and
the bit error rate (BER). All the simulation results were averaged over 50 different
channel realisations of H.

We set the population size to S = 20, which led to the maximum number of
evolutionary steps Imax = 50. This choice of S appeared to be adequate for this
application as it resulted in the smallest NOHRSA for the algorithm to converge. Thus,
the complexity of the PSO based semi-blind scheme was determined by NOHRSA =
1000. Since ℜ[hp,q] and ℑ[hp,q] of each MIMO channel tap hp,q were Gaussian
distributed with a variance 0.5, we chose the search space bound to be Umax = 1.8
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Fig. 19.2 Mean channel error average over 50 different channel realisations as a function of
α after 1000 OHRSA evaluations, for two values of Eb/No and two values of L
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which lay between 2 to 3 standard deviations of the true tap distribution. We also set
the velocity limit to Vmax = 1.0 which was confirmed in simulation to be a suitable
value for this application. The control factor γ in reinitialising zero velocity was
found empirically to be γ = 0.1. The optimal value for the control parameter α in
the channel population initiation (19.18) was first found empirically. Fig. 19.2 shows
the MCE performance after 1000 OHRSA evaluations over a range of α values. It
can be seen from Fig. 19.2 that the optimal value of α in this case was 0.15. This
value of α was used in all the other simulations.

Fig. 19.3 depicts the BER performance of the PSO based semi-blind scheme hav-
ing a frame length L = 100 after 1000 OHRSA evaluations and averaging over 50
different channel realisations, in comparison with the performance of the training-
based OHRSA detector having K = 4, 8 and 16 training symbols for the LSCE,
respectively, as well as with the case of perfect channel knowledge. It can be ob-
served from Fig. 19.3 that, for the training-based scheme to achieve the same BER
performance of the PSO-aided semi-blind one having only 4 pilot symbols, the num-
ber of training symbols had to be more than 16. This example was identical to the
MIMO system investigated in [1]. The BER performance of the PSO-based semi-
blind scheme depicted in Fig. 19.3 was slightly better than the BER of the RWBS-
based semi-blind scheme shown in [1]. Moreover, the performance of the PSO-aided
scheme was achieved after 1000 OHRSA evaluations, while the performance of the
RWBS-based scheme reported in [1] was obtained after 1200 OHRSA evaluations.
Thus, for this 4× 4 MIMO benchmark, the computational saving achieved by the

Fig. 19.3 BER of the PSO aided semi-blind scheme with frame length L = 100 after 1000
OHRSA evaluations and average over 50 different channel realisations in comparison with
the training-based cases using 4, 8 and 16 pilot symbols as well as the case of perfect channel
knowledge
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Fig. 19.4 Mean square error convergence performance of the PSO aided semi-blind scheme
averaged over 50 different channel realisations for different values of Eb/No and L

proposed PSO-based semi-blind method over the previous RWBS-based scheme
was approximately

1200×COHRSA(L)−1000×COHRSA(L)
1000×COHRSA(L)

= 20%. (19.21)

Figs. 19.4 and 19.5 depict the convergence performance of the proposed PSO-aided
semi-blind joint ML channel estimation and data detection scheme averaged over
50 different channel realisations in terms of the MSE and MCE, respectively, for
different SNR values as well as for two frame lengths L = 50 and 100. It can be seen
from Fig. 19.4 that the MSE converged to the noise floor. The MCE performance
shown in Fig. 19.5 was seen to be slightly better and converging faster than the
results obtained by the RWBS-based semi-blind joint ML scheme shown in [1].

19.4 PSO Based MBER Multiuser Transmitter Design

In this second application, we adopt the PSO for designing the minimum BER
(MBER) multiuser transmission (MUT) for the downlink of a space-division
multiple-access (SDMA) induced MIMO system.
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Fig. 19.5 Mean channel error convergence performance of the PSO aided semi-blind scheme
averaged over 50 different channel realisations for different values of Eb/No and L

19.4.1 Downlink of SDMA Induced MIMO System

In the downlink of the SDMA induced MIMO system, the base station (BS)
equipped with nT transmit antennas communicates over flat fading channels with nR

mobile terminals (MTs), each employing a single-receive antenna. Again we point
out that frequency selective channels can be converted to a multiplicity of parallel
narrowband channels using the OFDM technique [19]. Let the vector of nR informa-
tion symbols transmitted in the downlink be x(k) = [x1(k) x2(k) · · ·xnR(k)]T , where
k denotes the symbol index, xm(k) denotes the transmitted symbol to the mth MT,
and the symbol energy is given by E[|xm(k)|2] = σ2

x , for 1 ≤ m ≤ nR. The modu-
lation scheme is again assumed to be the QPSK of the symbol set (19.11), but the
extension to the generic QAM modulation scheme can be achieved by considering
the minimum symbol error rate criterion [9]. The nT ×nR precoder matrix C of the
BS’s MUT is defined by

C = [c1 c2 · · ·cnR ], (19.22)

where cm, 1 ≤ m ≤ nR, is the precoder’s coefficient vector for pre-processing the
mth user’s data stream. Given a fixed total transmit power ET at the BS, an appro-
priate scaling factor should be used to fullfill this transmit power constraint, which
is defined as

ρ =
√

ET/E[‖Cx(k)‖2]. (19.23)

Thus, the signal vector to be launched from the nT transmit antennas is ρCx(k).
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The downlink of the SDMA system is specified by its channel matrix H, which
is given by

H = [h1 h2 · · ·hnR ], (19.24)

where hm = [h1,m h2,m · · ·hnT ,m]T , 1≤m≤ nR, is the mth user’s spatial signature. The
channel taps hi,m for 1 ≤ i ≤ nT and 1 ≤ m ≤ nR are independent of each other and
obey the complex-valued Gaussian distribution with E[|hi,m|2] = 1. At the receiver,
the reciprocal of the scaling factor, namely ρ−1, is used to scale the received signal
to ensure unity-gain transmission, and the baseband model of the system can be
described as

y(k) = ρ−1HT ρ Cx(k)+ ρ−1n(k) = HT Cx(k)+ ρ−1n(k), (19.25)

where n(k) = [n1(k) n2(k) · · ·nnR(k)]T is the channel additive white Gaussian noise
vector, nm(k), 1 ≤ m ≤ nR, is a complex-valued Gaussian random process with zero
mean and E[|nm(k)|2] = 2σ2

n = No, and y(k) = [y1(k) y2(k) · · ·ynR(k)]T denotes the
received signal vector. Note that ym(k), 1 ≤ m ≤ nR, constitutes sufficient statistics
for the mth MT to detect the transmitted data symbol xm(k). The SNR of the down-
link is defined as SNR = Eb/No, where Eb = ET/(nT log2 M ) is the energy per bit
per antenna for M -ary modulation. In our case, M = 4.

19.4.2 MBER MUT Design

The minimum mean square error (MMSE) MUT design, denoted as CTxMMSE,
is popular owing to its appealing simplicity [44, 51], but it does not minimise the
achievable system’s BER. The average BER of the in-phase component of y(k) at
the receiver is given by [8]

PeI (C) =
1

nRM nR

M nR

∑
q=1

nR

∑
m=1

Q

(
sgn(ℜ[x(q)

m ])ℜ[hT
mCx(q)]

σn

)
, (19.26)

where Q( ) is the standard Gaussian error function, M nR = 4nR is the number of
equiprobable legitimate transmit symbol vectors x(q) for QPSK signalling (19.11)

and x(q)
m the mth element of x(q), with 1 ≤ q ≤ M nR . Similarly, the average BER of

the quadrature-phase component of y(k) can be shown to be [8]

PeQ(C) =
1

nRM nR

M nR

∑
q=1

nR

∑
k=1

Q

(
sgn(ℑ[x(q)

m ])ℑ[hT
mCx(q)]

σn

)
. (19.27)

Thus the average BER of the MUT with the precoder matrix C is given by

Pe(C) =
(
PeI (C)+ PeQ(C)

)
/2, (19.28)
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Table 19.1 Computational complexity per iteration of two MBER MUT designs for QPSK
signalling, where nT is the number of transmit antennas, nR the number of mobile terminals,
M = 4 is the size of symbol constellation and S is the swarm size

Algorithm Flops
SQP nR × (8×n2

T ×n2
R +6×nT ×nR +6×nT +8×nR +4)×M nR

+O(8×n3
T ×n3

R)+8×n2
T ×n2

R +16×nT ×n2
R +8×n2

T ×nR

+12×nT ×nR +6×n2
R −2×n2

T +nT −2×nR +11
PSO ((16×nT ×nR +7×nR +6×nT +1)×M nR +20×nT ×nR +2)×S+8

and the solution of the average MBER MUT is defined as

CTxMBER = arg min
C

Pe(C) (19.29)

s.t. E[‖Cx(k)‖2] = ET.

The optimisation problem (19.29) is a constrained nonlinear optimisation prob-
lems, and it is typically solved by an iterative gradient based optimisation algorithm
known as the SQP [21, 23, 39]. The computational complexity per iteration of the
SQP-based MBER MUT, quoted from [39], is listed in Table 19.1 for QPSK mod-
ulation, where O(8× n3

T × n3
R) stands for order of 8× n3

T × n3
R complexity and we

assume that the complexity of a real-valued multiplication is equal to a real-valued
addition. Note that O(8× n3

T × n3
R) is the complexity for matrix inversion required

by the SQP algorithm, and the exact value of O(8×n3
T ×n3

R) depends on the inver-
sion algorithm employed. The total computational complexity equals the number of
iterations that the algorithm required to arrive at a global optimal solution multiplied
by this complexity per iteration.

19.4.3 PSO Aided MBER MUT Design

In practice, the computational complexity of the SQP based MBER-MUT solution
may be excessively high for high-rate systems [23]. In this contribution, we invoke
the PSO algorithm to solve the MBER-MUT design (19.29) in order to bring down
the computational complexity to a practically acceptable level. A penalty function
approach is adopted to convert the constrained optimisation process (19.29) into the
unconstrained one and to automatically perform power allocation in order to meet
the transmit power constraint. Let us define the cost function for the PSO algorithm
to minimise as

F(C) = Pe(C)+ G(C) (19.30)

with the penalty function given by

G(C) =

{
0, E[‖Cx(k)‖2]−ET ≤ 0,

λ (E[‖Cx(k)‖2]−ET), E[‖Cx(k)‖2]−ET > 0.
(19.31)
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With an appropriately chosen penalty factor λ , the MBER-MUT design (19.29) can
be obtained as the solution of the following unconstrained optimisation

CTxMBER = arg min
C

F(C). (19.32)

The value of λ is linked to the value of SNR. Since the BS has the knowledge of
the downlink SNR, it is not difficult at all to assign an appropriate λ value. The
dimensions of the search space for the PSO optimisation are specified by N = nT

and M = nR.
In Step a) The swarm initialisation, we set C(0)

1 = CTxMMSE, the MMSE MUT

solution, and randomly generate the rest of the initial particles, {C(0)
i }S

i=2, in the
search space UnT×nR .

In Step c) The swarm update, we adopt the zero inertia weight ξ = 0 and the
TVAC mechanism (19.8). If a particle wanders outside the search space, we move
it back inside the search space randomly rather than forcing it to stay at the border
of the search space. These measures are tested empirically to be appropriate for this
application.

The computational complexity per iteration for the PSO-aided MBER-MUT
scheme is also listed in Table 19.1. We will demonstrate that the PSO-aided MBER
MUT design imposes a considerably lower complexity than the SQP based MBER
MUT design. This is owing to the fact that the designed PSO algorithm is very
efficient in searching through the precoder’s parameter space to find an optimal so-
lution, as demonstrated in the following simulation study.

19.4.4 Simulation Study

We considered the downlink of a multiuser system that employed nT = 4 transmit
antennas at the BS to communicate over the 4×4 flat Rayleigh fading MIMO chan-
nels to nR = 4 single-receive-antenna QPSK MTs. The size of the swarm was chosen
to be S = 20, and the corresponding maximum number of iterations for the PSO al-
gorithm to arrive at the MBER performance was in the range of Imax = 20 to 40,
depending on the value of the downlink SNR. The choice of S = 20 was appropriate
in this application as it led to the lowest computational cost for the algorithm to
converge. Our empirical results suggested that the search limit Umax = 1.0 and the
velocity bound Vmax = 1.0 were appropriate for this application. The control factor γ
in avoiding zero velocity was found to be γ = 0.1 by experiments. All the simulation
results were obtained by averaging over 100 different channel realisations.

We first assumed the perfect channel state information (CSI) at the BS. Fig. 19.6
compares the BER performance of the MMSE-MUT scheme with that of the PSO-
based MBER-MUT scheme. It can be seen from Fig. 19.6 that, given the per-
fect CSI, the PSO-aided MBER-MUT provided an SNR gain of 3 dB over the
MMSE-MUT scheme at the target BER level of 10−4. The robustness of the PSO-
aided MBER-MUT design to channel estimation error was next investigated by
adding a complex-valued Gaussian white noise with a standard deviation of 0.05 per



504 S. Chen et al.

dimension to each channel tap hi,m to represent channel estimation error. The BERs
of the MMSE-MUT and the PSO-based MBER-MUT under this channel estimation
error are also plotted in Fig. 19.6. It can be seen that the PSO-aided MBER-MUT
design was no more sensitive to channel estimation error than the MMSE-MUT
design. The convergence performance and computational requirements of the PSO-
aided MBER-MUT design were investigated, using the SQP-based MBER-MUT
counterpart as the benchmark. Fig. 19.7 compares the convergence performance of
the SQP-based and PSO-aided MBER MUT schemes, operating at the SNR values
of Eb/No = 10 dB and 15 dB, respectively.

At the SNR of 10 dB, it can be seen from Fig. 19.7 that the SQP algorithm
converged to the MBER-MUT solution after 100 iterations, while the PSO counter-
part arrived at the same MBER-MUT solution after 20 iterations. Fig. 19.8 shows
the computational complexities required by the SQP-based and PSO-aided MBER-
MUT designs, respectively, to arrive at the MBER MUT solution, in term of (a) the
total number of operations (Flops) and (b) the total run time (seconds) recorded. In
deriving the number of operations required by the SQP algorithm, we had approxi-
mated O(8×n3

T ×n3
R) by 8×n3

T ×n3
R. It can be observed from Fig. 19.8 (a) that the

SQP-based algorithm needed 229,351,100 Flops to converge to the MBER-MUT
solution, while the PSO-aided algorithm converged to the same MBER-MUT solu-
tion at the cost of 34,561,760 Flops. Therefore, the PSO-aided MBER-MUT design
imposed an approximately seven times lower complexity than the SQP counterpart
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Fig. 19.6 BER versus SNR performance of the PSO-aided MBER-MUT communicating
over flat Rayleigh fading channels using nT = 4 transmit antennas to support nR = 4 QPSK
MTs, in comparison with the benchmark MMSE-MUT
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for this scenario. From Fig. 19.8 (b), it can be seen that the SQP-based design re-
quired 1730.6 seconds to converge to the optimal MBER-MUT solution, while the
PSO-aided design only needed 257.3 seconds to arrive at the same optimal MBER-
MUT solution. This also confirms that the PSO-aided MBER-MUT scheme was
approximately seven times faster than the SQP-based counterpart in this case.

From Fig. 19.7 it can also been that, with the SNR of 15 dB, the SQP based al-
gorithm converged after 140 iterations, which required a total cost of 321,091,540
Flops, while the PSO-aided scheme archived the convergence after 40 iterations,
which required a total cost of 63,541,120 Flops. Thus, the PSO-aided design im-
posed an approximately five times lower complexity than the SQP counterpart in
this scenario.

Further investigation showed that the convergence results obtained for SNR<
10 dB were similar to the case of SNR= 10 dB, while the convergence results ob-
tained under SNR> 15 dB agreed with the case of SNR= 15 dB. Thus, we may
conclude that for this 4×4 MIMO benchmark the PSO-aided MBER-MUT design
imposed approximately five to seven times lower complexity than the SQP-based
MBER-MUT counterpart.

Finally, we showed that why the choice of the swarm size S = 20 was optimal
in this application. Fig. 19.9 illustrates the convergence performance and the total
required complexity for the PSO-aided algorithm with the different swarm sizes of
S = 10, 20, 30 and 40 at the SNR value of 15 dB. It is clear that S = 10 was too small

Fig. 19.7 Convergence performance of the SQP-based and PSO-aided MBER-MUT schemes
for the system employing nT = 4 transmit antennas to support nR = 4 QPSK MTs over flat
Rayleigh fading channels at Eb/No = 10 dB and 15 dB, respectively
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Fig. 19.8 Complexity comparison of the SQP-based and PSO-aided MBER-MUT schemes
for the system employing nT = 4 transmit antennas to support nR = 4 QPSK MTs over flat
Rayleigh fading channels at Eb/No = 10 dB, in terms of (a) number of FLOPs, and (b) run
time (seconds)
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Fig. 19.9 Convergence performance (a) and required total complexity (b) of the PSO-aided
MBER-MUT scheme with different swarm sizes for the system employing nT = 4 transmit
antennas to support nR = 4 QPSK MTs over flat Rayleigh fading channels at Eb/No = 15 dB
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for the algorithm to converge to the optimal MBER-MUT solution in this case. The
results of Fig. 19.9 also show that with S = 20 the algorithm took 40 iterations to
converge at the cost of 63,541,120 Flops, and with S = 30 it needed 27 iterations
at the cost of 64,335,276 Flops, while the algorithm given S = 40 only required 25
iterations to converge but its cost was 79,426,200 Flops. Thus the choice of S = 20
led to the lowest computational cost for the algorithm to converge in this application.

19.5 Conclusions

State-of-the-art MIMO transceiver designs impose expensive optimisation prob-
lems, which require the applications of sophisticated and advanced optimisation
techniques, such as evolutionary computation methods, in order to achieve the op-
timal performance offered by MIMO technologies at practically affordable cost.
In this contribution, we have demonstrated that the PSO provides an efficient tool
for aiding MIMO transceiver designs. Specifically, we have applied the PSO al-
gorithm to the semi-blind joint ML channel estimation and data detection for
MIMO receiver, which offers significant complexity saving over an existing state-
of-the-art RWBS-based scheme. Furthermore, we have employed the PSO to de-
sign the MBER MUT scheme for the downlink of a SDMA induced MIMO system,
which imposes much lower computational complexity than the available SQP-based
MBER MUT design.

The Communication Research Group at the University of Southampton has ac-
tively engaged in research of state-of-the-art MIMO transceiver designs using var-
ious powerful evolutionary computation methods for a long time. In particular, we
have extensive experience using the genetic algorithm [3, 5, 6, 22, 24, 53] and the ant
colony optimisation [47, 48, 49] for MUD designs. Further research is warranted to
further investigate various evolutionary computation methods in benchmark MIMO
designs and to study their performance-complexity trade-offs with the aim of pro-
viding useful guidelines for aiding practical MIMO system designs.
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