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Abstract—This paper proposes a space-time decision feedback
equalization (ST-DFE) assisted multiuser detection (MUD) scheme
for multiple receiver antenna aided space division multiple access
systems. A minimum bit error rate (MBER) design is invoked
for the MUD, which is shown to be capable of improving the
achievable bit error rate performance and enhancing the attain-
able system capacity over that of the standard minimum mean
square error (MMSE) design. An adaptive implementation of the
MBER ST-DFE assisted MUD is proposed using a stochastic gra-
dient-based least bit error rate algorithm, which is demonstrated
to consistently outperform the classical least mean square (LMS)
algorithm, while achieving a lower computational complexity
than the LMS algorithm for the binary signalling scheme. Our
simulation results demonstrate that the MBER ST-DFE assisted
MUD is more robust to channel estimation errors as well as to
potential error propagation imposed by decision feedback errors,
compared to the MMSE ST-DFE assisted MUD.

Index Terms—Decision feedback equalizer, minimum bit error
rate, minimum mean square error, multiple antennas, multiple-
input multiple-output, multiuser detection, space-division multiple
access, space-time processing.

I. INTRODUCTION

I N an effort to further increase the achievable system ca-
pacity, antenna arrays can be employed for supporting

multiple users in a space-division multiple access (SDMA)
communications scenario [1]–[12]. We investigate a space-time
(ST) decision feedback equalization (DFE) assisted mul-
tiuser detection (MUD) scheme designed for multiple receiver
antenna aided SDMA systems. To interpret the multiuser-sup-
porting capability of such a novel SDMA system [13], it is
useful to relate it to classic code-division multiple access
(CDMA) multiuser systems [11]. In a CDMA system, each
user is separated by a unique user-specific spreading code.
By contrast, an SDMA system differentiates each user by
the associated unique user-specific channel impulse response
(CIR) encountered at the receiver antennas. In a simplistic but
conceptually appealing interpretation, the unique user-specific
CIR plays the role of a user-specific CDMA signature. In this
analogy, the CIR-signatures are not orthogonal to each other,
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but this is not a serious limitation, because even orthogonal
spreading codes become non-orthogonal upon convolution by
the CIR. However, owing to the non-orthogonal nature of the
CIRs, an effective multiuser receiver is required for separating
the users in an SDMA system.

The most popular SDMA-receiver design is constituted by
the minimum mean square error (MMSE) MUD [5], [10]–[14].
However, as recognized by [15] in a CDMA context and
by [16] in an adaptive beamforming-based MUD scenario,
a better strategy is to choose the detector’s coefficients by
directly minimizing the system’s bit error ratio (BER). For the
single-user single-antenna system, the minimum BER (MBER)
equalization design has become popular [17]–[24], and it has
been shown that the MBER DFE is less sensitive to the error
propagation due to decision feedback errors compared to the
MMSE DFE [24]. For the base station employing multiple
transmit antennas, an MBER multiuser transmission scheme
has been proposed in [25], while for the multiple antenna
assisted receiver, an MBER rake receiver has been discussed
in [26]. Against this background, the novelty of this paper is
that the MBER ST DFE assisted MUD (ST-DFE-MUD) is
proposed for the first time in the literature in the context of
SDMA. In addition to the theoretically MBER ST-DFE-MUD,
which is unachievable in practice, the adaptive least bit error
rate (LBER) aided ST-DFE-MUD is proposed for its practical
implementation and characterized in terms of its steady-state
BER and convergence performance.

In this paper, it is shown that the MBER ST-DFE-MUD de-
sign results in an enhanced BER performance in comparison to
the standard MMSE design. Moreover, unlike the MMSE de-
sign, whose performance degrades significantly owing to de-
cision feedback errors in the presence of multiuser feedback
loops, the MBER ST-DFE-MUD is robust to the error prop-
agation, as will be demonstrated by our simulation study. An
adaptive implementation of the MBER ST-DFE-MUD is con-
sidered based on a stochastic gradient learning algorithm re-
ferred to as the LBER technique. It is demonstrated that this
LBER ST-DFE-MUD consistently outperforms the least mean
square (LMS)-based ST-DFE-MUD and yet has a lower com-
putational complexity than the latter in the case of the binary
phase-shift keying (BPSK) modulation scheme. Simulation re-
sults are also provided in support of the theoretical analysis.
In this paper, we restrict attention to binary signalling. How-
ever, the technique can readily be extended to the quadrature
phase-shift keying (QPSK) scheme [27] and other modulation
schemes with multiple bits per symbol [24].
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Fig. 1. Schematic of an antenna array aided SDMA uplink scenario, where
each of the M users is equipped with a single transmit antenna and the base
station’s receiver is assisted by an L-element antenna array.

II. SYSTEM MODEL

Consider the multiple antenna aided SDMA system sup-
porting users, as depicted in Fig. 1, where each of the
users is equipped with a single transmit antenna and the receiver
is assisted by an -element antenna array. The received signal
samples at the symbol rate for are given by

(1)
where is an independently identically distributed com-
plex-valued Gaussian white noise process with

, denotes the noise-free part of the th receive an-
tenna’s output, is the th transmitted symbol of user

, and denotes the tap
vector of the CIR connecting the user and the th receive an-
tenna. For notational simplicity, we have assumed that each of
the ( ) CIRs has the same length of . We assume further-
more that BPSK modulation is employed and hence

. The physical interpretation of the CIRs associated with
the model (1) in the generic content of multiple-input multiple-
output systems can be found, for example, in [10].

A bank of the ST-DFEs constitutes the MUD, and the soft
outputs of the ST-DFEs are given by

(2)

for , where denotes the deci-
sion for the transmitted symbol and

denotes the feedforward filter
weight vector of the th user’s detector associated with the
th receive antenna, while

denotes the th user’s detector feedback filter weight vector

associated with the th user detector’s feedback signal. Again,
for notational simplicity, we have assumed that each of the
ST-DFEs has the same decision delay , all the feedforward
filters have the same order , and all the feedback filters have
the same order . The detectors’ decisions are defined by

(3)

where denotes the real part of and
the sign function. Let us define

,
, and

(4)

(5)

(6)

(7)

Then the output of the th ST-DFE can be written as

(8)

The ST-DFE structure’s parameters are chosen as follows:
, , and . For the single-an-

tenna single-user case, this particular choice of the DFE struc-
ture’s parameters is sufficient for guaranteeing that the subsets
of noise-free signal states are always linearly separable at the de-
tector’s output and therefore they guarantee an adequate perfor-
mance [18], [19]. This linearly separable property is also valid in
the present multiuser system. This choice of the ST-DFE struc-
ture’s parameters may not always be optimal, but it does guar-
antee an adequate performance. Upon stipulating and

, let us first introduce the two overall CIR
matrices as

...
and ...

(9)

where the and dimensional CIR
matrices and are given by

(10)

and

(11)
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respectively, with the 1 and dimensional
CIR matrices and defined by

. . .
...

...
. . .

. . .
(12)

and

. . .
...

...
. . .

(13)

respectively. Let us define furthermore

(14)

(15)

(16)

where ,
, and

. Then the received signal vector
is modeled as

(17)

Under the assumption that the past decisions are correct,
and the received signal vector can be expressed

as . Thus, as argued
in [18] and [28], the decision feedback can be viewed as a
translation of the original observation space into a new
space

(18)
In the translated space , the original ST-DFE described by
(8) is “translated” into a ST “linear equalizer” described as

(19)
where is Gaussian distributed, having a zero
mean and . Note that we
have with

. By extending the
results of [18] and [19], the elements of can be computed
recursively according to

for

(20)

where defines the unit delay operator. Note that the recur-
sion (20) realizes exactly the space translation (18) in a com-

Fig. 2. Schematic of the observation space translation with n = n , n =

n � 1, and d = n � 1.

putationally more efficient manner. A schematic of this space
translation (20) is illustrated in Fig. 2.

It is important to emphasize that using the detector struc-
ture of (19) with the space translation (20) is exactly the same
as using the original DFE structure (8). The feedback coeffi-
cient vector does not simply “disappear.” It has in fact been
set to its “optimal value,” which is . Thus,
in an adaptive implementation, one has to estimate the coef-
ficients of the CIRs, rather than estimating the coefficients of
the feedback filters, when adopting the detector structure of
(19) and (20). Moreover, when the MMSE solution, as given in
(21), is used in the detector (19), the feedback filter coefficient
vector in (8) is automatically set to its MMSE solution, which
is . Similarly, if in (19) is
set to the MBER solution, as discussed in the next section,
in (8) is automatically set to the corresponding MBER solution.

III. MINIMUM BIT ERROR RATE MULTIUSER DETECTION

Classically, the th detector’s weight vector is de-
termined by minimizing the MSE criterion

, which leads to the following MMSE solution:

(21)

for , where is the dimen-
sional identity matrix and denotes the th
column of . An adaptive implementation of the MMSE so-
lution can be realized, for example, using the LMS algorithm.
The main contribution of this paper is to derive the MBER so-
lution for the weight vectors of the ST-DFEs and develop an
adaptive MBER multiuser detector for the SDMA systems. Let
us denote the number of possible transmitted
symbol sequences of as , . Denote fur-
thermore the 1 th element of , corresponding to the
symbol , as . The noise-free part of the th de-
tector input signal, namely, , assumes values from the finite
signal set defined as

(22)

This set can be partitioned into two subsets, depending on the
specific value of , as follows:

(23)
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Similarly, the noise-free part of the th detector’s output
assumes values from the set

(24)

Thus can only take the values from the set

(25)

and can be divided into the two subsets conditioned on the
value of

(26)

The conditional probability density function (pdf) of
given is a Gaussian mixture given by [15], [16]

(27)

where and is the number of the

constellation points in . Thus the BER of the th ST-DFE
associated with the detector’s weight vector is given by

(28)

where

(29)

and

(30)
Note that the BER is invariant to a positive scaling of . Simi-
larly, the BER may be calculated based on the other subset .

The MBER solution for the th detector is then defined as the
weight vector that minimizes the error probability (28), namely

(31)

This MBER solution may be found by setting the derivative of
to zero. The gradient of with respect to

is given by

(32)

Given the gradient expression (32), the optimization problem
(31) can be solved iteratively by commencing the iterations from
an appropriate initialization point using a gradient algorithm.
Since the BER is invariant to a positive scaling of , it is
computationally advantageous to normalize to a unit length
after every iteration, so that the gradient expression (32) can be
simplified to

(33)

The simplified conjugate gradient algorithm of [29] and [15]
provides an efficient means of finding an MBER solution for
the optimization problem formulated in (31).

IV. ADAPTIVE MINIMUM BIT ERROR RATE IMPLEMENTATION

The evaluation of the error probability requires the knowledge
of the pdf of the ST-DFE’s output signal . The pdf of

can be explicitly expressed as

(34)
and the associated BER can alternatively be calculated ac-
cording to

(35)

with

(36)

where the summation is carried out over the number of el-
ements . In reality, the pdf of is channel
dependent and hence is unknown. Hence, some form of pdf es-
timation is required for supporting the adaptive implementation
of the MBER ST-DFE assisted MUD.

A. Block-Data Based Gradient Adaptive MBER ST-DFE

The Parzen window method [30]–[32] constitutes an efficient
means of estimating a pdf. Specifically, the Parzen window
method estimates a pdf using a window or block of the ST-DFE
output signal by placing a symmetric unimodal kernel
function centered on each sample and averaging over
all the data points. This density estimation technique is capable
of producing reliable pdf estimates with the aid of short data
records and is natural when dealing with Gaussian mixtures,
such as the one given in (34). In our application, it is convenient
to choose a Gaussian kernel function having a kernel width
of that is similar to the noise standard devia-
tion of . Given a block of training samples
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, a Parzen window density estimate of
the pdf in (34) takes the form

(37)
where the radius parameter is related to the standard devi-
ation of the system’s noise. The accuracy analysis of the
Parzen window density estimate is well documented in the lit-
erature [30]–[32]. The pdf estimate (37) is known to possess a
mean integrated square error convergence rate having an order
of [30].

Based on the estimated pdf of (37), the estimated BER is
given by

(38)

with

(39)

The gradient of is given as

(40)

Upon substituting by in the simplified
conjugate gradient updating mechanism, for example, a block-
data-based adaptive algorithm is obtained [15], where the step
size and the radius parameter are two algorithmic param-
eters that control the rate of convergence. The radius parameter

also has an influence on the accuracy of the pdf and hence
on that of the BER estimate.

B. Stochastic Gradient-Based Adaptive MBER ST-DFE

Our aim is to develop a sample-by-sample adaptive imple-
mentation of the MBER ST-DFE. In the Parzen window es-
timate (37), the kernel width explicitly depends
on the detector’s weight vector . However, the BER is in-
variant to , and a constant kernel width may also be
adopted in the density estimate. An advantage of using a con-
stant kernel width , rather than , in the density
estimate is that the gradient of the resultant estimated BER has a
simpler form, which leads to a considerable computational com-
plexity reduction. Adopting this approach, an alternative fixed
kernel-width-based Parzen window estimate of the true pdf (34)
is given by

(41)

and the resultant approximate BER formula becomes

(42)

where we have

(43)

This approximation is an adequate one, provided that the width
is chosen appropriately.

In order to derive a sample-by-sample adaptive algorithm for
updating the detector’s weight vector , consider a single-
sample estimate of , namely

(44)

Conceptually, from this single-sample pdf “estimate,” we have
a single-sample or instantaneous BER “estimate” .
Using the instantaneous stochastic gradient formula of

(45)

gives rise to a stochastic gradient adaptive algorithm, which we
referred to as the LBER algorithm

(46)
The adaptive gain as well as the kernel width are the two
algorithmic parameters that have to be set appropriately. Specif-
ically, they are chosen to ensure adequate performance in terms
of both the achievable convergence rate and the steady-state
BER misadjustment. Note that there is no need to normalize the
weight vector to a unit length after each update.

The CIR taps for , , and
, which are needed to perform the space transformation

(20), can be estimated using the standard LMS algorithm. It is
interesting to compare the LBER ST-DFE (46) with the standard
LMS ST-DFE, which is given by

(47)

with

(48)

It can readily be shown that for the BPSK case, the LBER
ST-DFE is computationally simpler than the LMS ST-DFE,
imposing about half the computational complexity required by
the LMS algorithm [16]. It can also be shown that for QPSK
modulation, the LBER ST-DFE has a similar computational
complexity as the LMS ST-DFE [27].
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TABLE I
SYSTEM’S CIRS FOR A FOUR-ANTENNA FOUR-USER TIME-INVARIANT SDMA SYSTEM

V. SIMULATION STUDY

In our simulation investigations, unless otherwise stated,
perfect channel estimates are assumed in performing the space
translation (20). Hence our attention is focused on the per-
formance of the adaptive MBER and MMSE designs, rather
than on the adaptive channel estimator, which is well doc-
umented in the classic adaptive signal-processing literature
[33]. The effect of imperfect channel estimates on the perfor-
mance of a ST-DFE-MUD, however, was investigated in our
simulation study. In order to avoid obfuscating the prevalent
MBER/MMSE performance trends by asynchronous trans-
missions, we assumed synchronous communications and an
identical CIR dispersion for all users.

A. Time-Invariant System

The system used in our simulations supported users
with the aid of receiver antennas. All the four users had an
equal transmit power. The resultant 16 CIRs are listed in Table I,
each having taps. In the simulations, all the 16 CIRs
were normalized according to for the sake of
providing a channel gain of unity. Since the length of the CIRs
was , the ST-DFE structure was defined by the parame-
ters of , , and . The theoretical BER curves
of the MMSE and MBER ST-DFE-MUDs, computed using the
BER expression of (28), are plotted in Fig. 3 over a range of
signal-to-noise ratio (SNR) conditions, where the MMSE solu-
tions were calculated using (21) while the MBER solutions were
obtained numerically using the simplified conjugate gradient
optimization algorithm. It can be seen that for all four users,
the MBER ST-DFE-MUD provided a better BER performance
than the MMSE ST-DFE-MUD. The BER calculated using the
BER expression (28) represents the theoretical best case perfor-
mance, since it was obtained assuming that the correct symbols
were fed back in the ST-DFE-MUD’s feedback loop. In reality,
the ST-DFE-MUD may produce erroneous symbol feedback.

For the sake of investigating the effects of decision feedback
induced error propagation, the BERs of the MMSE and MBER
ST-DFE-MUDs were also calculated using simulations with the
error-prone detected symbols being fed back, and the results
are also depicted in Fig. 3, in comparison to the corresponding
theoretical best case performance. It is interesting to see that
the BER performance degradation owing to DFE-induced error
propagation is less serious for the MBER ST-DFE-MUD than
for the MMSE ST-DFE-MUD. Note that this phenomenon has

Fig. 3. Theoretical and simulated bit error rate comparison of the MMSE and
MBER ST-DFE-MUDs for the four-user four-antenna time-invariant system,
where DF indicates simulated BER with detected symbols being fed back:
(a) user 1, (b) user 2, (c) user 3, and (d) user 4.

been observed before in the single-antenna single-user scenario
of [24]. In the multiuser case, the effects of error propagation
are aggravated for the MMSE ST-DFE-MUD to some degree
owing to the multiple-user feedback effects. In particular, the
users originally benefitting from the best performance owing
to their specific CIRs suffer the most serious degradation, as
seen by comparing user 2 and user 3 in Fig. 3. By contrast, the
MBER ST-DFE-MUD appears to be significantly more robust
to error propagation. This has important implications, especially
in decision-directed (DD) adaptation.

The effect of imperfect channel estimates to the perfor-
mance of a ST-DFE-MUD was next investigated. We added
the Gaussian white noise with standard deviation 0.1 to each
tap of the CIRs to represent channel estimation errors. The
resultant “estimated” CIRs were then used to perform the space
translation (20) as well as to calculate the MMSE and MBER



3096 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 8, AUGUST 2006

Fig. 4. Theoretical bit error rate comparison of the MMSE and MBER
ST-DFE-MUDs for the four-user four-antenna time-invariant system, where
“est” indicates imperfect channel estimates were used: (a) user 1, (b) user 2,
(c) user 3, and (d) user 4.

solutions. The theoretical BERs of the MMSE and MBER
ST-DFE-MUDs so obtained based on the “estimated” CIRs
were averaged over ten “estimations” and the results are illus-
trated in Fig. 4, in comparison with the performance derived
using the perfect channel knowledge. It can be seen from Fig. 4
that the performance degradation due to imperfect channel
estimates is less serious for the MBER ST-DFE-MUD than
for the MMSE one. We conclude that MBER design is more
robust to channel estimation errors than the MMSE design. This
agrees with the previous conclusion regarding the robustness to
error propagation due to decision feedback errors.

The LMS and LBER ST-DFE-MUDs were also investigated
under the condition of SNR dB. Fig. 5 depicts the learning
curves of the two adaptive MUDs, averaged over 20 runs and
started from an initial condition of , . The
adaptive MUD operated in two modes, namely, the training
mode in which the transmitted symbols were
known to the receiver and the DD adaptation mode, in which
the detected symbols were used for substituting

. The adaptive algorithmic parameters, namely, the
adaptive gain of the LMS algorithm, and the adaptive gain

as well as the kernel variance of the LBER technique,
were empirically tuned for achieving the best performance in
terms of the achievable convergence speed and steady-state
BER misadjustment. For example, was found
to be appropriate for the LMS ST-DFE-MUD, and if was
increased to 0.005, divergence occurred. It can be seen that
the LBER ST-DFE-MUD consistently outperformed the LMS

Fig. 5. Learning curves of the LMS and LBER ST-DFE-MUDs in terms of
theoretical BERs averaged over 20 runs for the four-user four-antenna time-in-
variant system with SNR = 1 dB and given w (0) with the first element
being 0.1�j0.1 and the rest of elements all being 0.0+j0.0 for 1 � m � 4,
where DD denotes the decision directed adaptation with ŝ (k � d) substi-
tuting s (k � d): (a) user 1, (b) user 2, (c) user 3, and (d) user 4. For the
LMS algorithm, � = 0:001 was used for all four users while for the LBER
algorithm, � = 0:2 and � = 16� � 6:34 for user 1, � = 2:0 and
� = 100� � 39:71 for user 2, � = 0:2 and � = 16� � 6:34 for
user 3, and � = 0:4 and � = 20� � 7:94 for user 4. In the LBER case, the
training and DD learning curves are mostly indistinguishable.

ST-DFE-MUD. In particular, the LBER ST-DFE-MUD was
capable of taking full advantage of DD adaptation, as is clearly
demonstrated in Fig. 5, where it can also be seen that the DD
LMS ST-DFE-MUD clearly failed to converge to the MMSE
solution for user 3. A range of different initial conditions,
including for , were tested,
and the same conclusions were observed.

B. Slow Fading System

The system again supported four users with four receive an-
tennas. However, fading channels were simulated and each of
the 16 CIRs had taps. Magnitudes of the CIR taps were
uncorrelated Rayleigh processes, each having the root mean
power of . The normalized Doppler frequency for
the simulated system was 10 , which for a carrier of 900 MHz
and a symbol rate of 3 Msymbols/s corresponded to a user ve-
locity of 1 m/s (3.6 km/h). Continuously fluctuating fading was
used, which provided a different fading magnitude and phase
for each transmitted symbol. The ST-DFE structure parameters
were set to , , and . The step size for the
LMS algorithm was chosen as , while for the LBER
algorithm the step size and kernel variance .
The transmission frame structure consisted of 50 training sym-
bols followed by 450 data symbols. The BER of an adaptive
ST-DFE-MUD was calculated using Monte Carlo simulation.
Fig. 6 compares the BERs of the LBER ST-DFE-MUD for the
four users with those of the LMS-based ones. It can be seen from
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Fig. 6. Bit error rate comparison of the LMS and LBER ST-DFE-MUDs for
the four-user four-antenna slow fading system: (a) user 1, (b) user 2, (c) user 3,
and (d) user 4.

Fig. 6 that the LBER ST-DFE-MUD consistently outperformed
the LMS ST-DFE-MUD for all four users.

VI. CONCLUSIONS

A novel minimum bit error rate design has been proposed
for the space-time decision feedback equalization assisted mul-
tiuser detector employed in multiple antenna aided space-divi-
sion multiple-access systems. It has been demonstrated that this
MBER design is capable of achieving better performance and
hence of improving the attainable system capacity, compared
to the classic MMSE design. An adaptive implementation of
the MBER ST-DFE-MUD has also been derived based on the
LBER algorithm, which has been shown to consistently out-
perform the classic LMS algorithm and yet maintain a lower
computational complexity than the latter for BPSK modula-
tion. Another interesting result observed in this paper is that
the MBER ST-DFE-MUD is significantly more robust against
the error propagation caused by error-prone detected symbols
used in the MUD’s feedback loop, in comparison to the stan-
dard MMSE ST-DFE-MUD. This is an important advantage,
especially in situations, where decision-directed adaption has to
be employed.
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