
Int. J. Modelling, Identification and Control, Vol. 1, No. 4, 2006 245

Parsimonious least squares support vector
regression using orthogonal forward selection
with the generalised kernel model

Xunxian Wang and David Lowe
Neural Computing Research Group,
Aston University, Birmingham B4 7ET, UK
E-mail: x.wang@aston.ac.uk
E-mail: d.lowe@aston.ac.uk

Sheng Chen* and Chris J. Harris

School of Electronics and Computer Science,
University of Southampton,
Southampton SO17 1BJ, UK
E-mail: sqc@ecs.soton.ac.uk
E-mail: cjh@ecs.soton.ac.uk
*Corresponding author

Abstract: A sparse regression modelling technique is developed using a generalised kernel model
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covariance matrix. An orthogonal least squares forward selection procedure is employed to append
the regressors one by one. After the determination of the model structure, namely the selection
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Lagrange dual problem of the original least squares problem. Different from the least squares
support vector regression, this regression modelling procedure involves neither reproducing kernel
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involving two real data sets demonstrate the effectiveness of the proposed regression modelling
approach.

Keywords: generalised kernel model; least squares support vector machine; orthogonal least
squares forward selection; regression; sparse modelling.

Reference to this paper should be made as follows: Wang, X., Chen, S., Lowe, D. and Harris, C.J.
(2006) ‘Parsimonious least squares support vector regression using orthogonal forward selection
with the generalised kernel model’, Int. J. Modelling, Identification and Control, Vol. 1, No. 4,
pp.245–256.

Biographical notes: Xunxian Wang received his PhD in the control theory and application from
Tsinghua University, Beijing, China, in July 1999. From January 2005, he has been a Research
Fellow at Neural Computing Research Group, Aston University, UK. His main interests are in
machine learning and neural networks, control theory and systems as well as robotics.

Sheng Chen received his PhD in control engineering from the City University, London, UK, in
1986. He joined the School of Electronics and Computer Science, University of Southampton,
Southampton, UK, in September 1999. Professor Chen’s research interests include wireless
communications, machine learning, finite-precision digital controller design and evolutionary
computation.

David Lowe has held the Chair of Neural Computing at Aston University, UK, since 1994. He is a
Coinventor of the Radial Basis Function neural network architecture. His current research activities
relate to stochastic generative control, biomedical applications of statistical pattern processing
focussing on DNA microarrays and EEG/MEG brain signal analysis and non-linear methods for
digital steganography.

Chris J. Harris is a Professor of Computational Intelligence at the University of Southampton.
His research interests include intelligent autonomous systems, intelligent control, estimation
of dynamic processes, and multi-sensor data fusion. He is a follow of the Royal Academy of
Engineering. He was awarded the IEE Faraday medal in 2001 for his work in intelligent control
and neurofuzzy systems.

Copyright © 2006 Inderscience Enterprises Ltd.



246 X. Wang et al.

1 Introduction

Having a good generalisation capability and a sparse
representation are the two key requirements in establishing
a learning machine. Forward selection using the Orthogonal
Least Squares (OLS) algorithm (Chen et al., 1989, 1991,
1999, 2003 and 2004) is a simple and efficient construction
method that is capable of producing parsimonious linear-in-
the-weights non-linear models with excellent generalisation
performance. Alternatively, the state-of-the-art sparse kernel
modelling techniques, such as the Support Vector Machine
(SVM) (Chapelle et al., 2002; Cristianini and Shawe-Taylor,
2000; Duan et al., 2003; Ong et al., 2005; Scholkopf
et al., 1997; Scholkopf et al.,2000; Scholkopf and Smola,
2000; Vapnik, 1995; Vapnik et al., 1997), have become
popular in data modelling applications. Originated from
the maximum margin linear classification problem, one
of the main features of the SVM approach is to use a
hyperplane in a high dimensional space to perform both the
classification and regression. In classification, the hyperplane
is adjusted to obtain the maximum classification margin.
In regression, the gradient of the hyperplane is kept to be as
small as possible. The Least Squares SupportVector Machine
(LS-SVM) regression (de Kruif and de Vries, 2003; Suykens
and Van-dewalle, 1999; Suykens et al., 2002; Van Gestel
et al., 2001) is an algorithm for solving the Least Squares
(LS) problem in its Lagrange dual space, just as the SVM.
In an LS-SVM-type method, the training data are mapped to
a high dimensional space where they can be approximated by
a hyperplane. The parameter of the hyperplane is obtained by
minimising the combined cost function consisting of the least
squares error and the squared gradient of the hyperplane.

With the aid of the reproducing kernel Hilbert space
through Mercer theorem (Aronszajn, 1950), a Mercer kernel
can be used and the required mapping from the input
space to the high dimensional space is defined implicitly
by this kernel function. How to select an appropriate
kernel which realises exactly the required mapping is a
key problem and some techniques, such as the hyperkernel
method, have been used to determine the kernel type as well
as the kernel parameters (Duan et al., 2003; Ong et al., 2005).
Lanckriet et al. (2004) describe a method for combining
multiple kernel representations in an optimal fashion, by
formulating a convex optimisation problem which is solvable
by semidefinite programming. By combining several kernels
together, the produced system model will have an improved
performance. A limitation of the SVM-based regression
modelling techniques is the fact that the kernel centres or
mean vectors are typically placed at the training input data and
a fixed common kernel variance is used for all the regressor
kernels. The value of this common kernel variance obviously
has a critical influence on the sparsity and generalisation
capability of the resulting model and it has to be determined
via some sort of cross validation. If the positions of kernel
regressors are more flexible and different kernel regressors
can have their own diagonal covariance matrices, a better
system model can be established. However, putting a
kernel function at a position not occupied by a training
data point or giving different kernel regressors at different
positions different covariance matrices are not allowed for the
SVM-based methods due to the use of Mercer theorem.

It should also be pointed out that the model representation
obtained by the LS-SVM is not sparse. To obtain a sparse
model, pruning technique can be applied (de Kruif and
de Vries, 2003). By contrast, the SVM approach is capable
of producing sparse models. However, we found that the
models produced by the SVM method are typically not as
sparse as those obtained by the OLS algorithm (Chen et al.,
2003, 2004).

In the method proposed in this paper, we determine
the kernel parameters based on the given training data
before doing a classical LS-SVM procedure. Thus, the
proposed method can use non-Mercer kernels. Specifically,
the generalised kernel function is used in which each
kernel regressor has its tunable centre vector and diagonal
covariance matrix. Unlike the LS-SVM formulation, we
consider an alternative Lagrange dual problem of the general
regularised LS problem, which does not restrict to the use
of Mercer kernels. To arrive at a sparse representation,
an OLS forward selection procedure is adopted to append
regressors one by one by incrementally minimising the
regularised training Mean Square Eerror (MSE). Unlike the
standard OLS algorithm (Chen et al., 1989), however, at
each stage of selection, the optimisation with respect to
the kernel centre vector and diagonal covariance matrix is
performed using a guided random search algorithm called the
Repeated Weighted Boosting Search (RWBS) (Chen et al.,
2005). The RWBS algorithm is a global optimisation search
method that adopts some ideas from boosting (Breiman,
1999; Freund and Schapire, 1997; Meir and Ratsch, 2003;
Schapire, 1990). This optimisation algorithm is simple,
robust, easy to implement and can be used in the situation
where the cost function is multimodal and/or non-smooth.
After the selection of a parsimonious model representation,
the associate kernel weights are then calculated from
the Lagrange dual problem of the original regularised
LS problem. This proposed generalised kernel regression
modelling approach has the potential of improving modelling
capability and producing sparser final models, compared
with the standard approach of restricting the kernel centres to
the training inputs and using a single fixed common variance.
The advantages of the proposed method are illustrated using
two real-life data modelling examples.

The outline of the paper is as follows. Section 2 reviews
the standard kernel regression modelling, which positions the
kernel regressors at the training input data points and adopts
a common variance for every kernel regressor. The classical
LS-SVM formulation is first summarised. An alternative
Lagrange dual problem of the general regularised LS problem
is then considered, which does not restrict to the use of Mercer
kernels. This method will be referred to as the Extended
LS-SVM (LS-ESVM). Thirdly, to derive a sparse
representation, the standard OLS algorithm (Chen et al.,
1989) is used to select a parsimonious model and this is
followed by solving the corresponding Sparse Extended
LS-SVM problem to yield the model weight parameters.
This method will be called the Sparse Extended LS-SVM
(LS-SESVM). Here it is worth pointing out that many
existing kernel selection algorithms, such as the kernel
matching pursuit (Vincent and Bengio, 2002), are in fact
identical or equivalent to the OLS algorithm (Chen et al.,
1989) and therefore, the similarity between the LS-SESVM
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algorithm and these kernel selection methods should be
apparent. The main contribution of this paper is presented in
Section 3, where the generalised kernel regression modelling
is considered. A new OLS forward selection procedure is
proposed which uses the RWBS algorithm (Chen et al.,
2005) to determine the kernel centres and diagonal covariance
matrices. This guarantees a sparse representation. Again,
the associated kernel weights are solved from a similar
LS-ESVM problem after obtaining a sparse representation.
We will refer to this proposed new method as the Generalised
Sparse Extended LS-SVM (LS-GSESVM) for the purpose
of comparison with the methods of Section 2. Section 4
describes our modelling experiments, while Section 5 offers
our conclusions.

2 Standard kernel regression modelling

The task of kernel regression modelling is to construct a
kernel model from the given training data set {xi , yi}Ni=1,
where xi is the ith training input vector of dimension m,
yi is the desired output for the input xi and N the number of
training data. The LS-SVM method is a standard approach to
solve this problem.

2.1 The least squares support vector
machine problem

The minimisation problem of the LS-SVM can be stated as
below:

min J (w, e) = min

{
1

2
wT w + C

2

N∑
i=1

e2
i

}
(1)

s.t. yi = wT ϕ(xi ) + b + ei, i = 1, . . . , N (2)

whereϕ(x) is the selected mapping from the input space to the
high-dimensional space, y = wT ϕ(x) + b is the regression
linear function (hyperplane) in the high dimensional space, w
is the gradient of the hyperplane, e = [e1 e2 · · · eN ]T denotes
the regression error vector, and C is a constant that determines
the trade off between regularisation and training error. Let
us define the Mercer kernel matrix

K =

⎡
⎢⎢⎢⎣

k1,1 k1,2 · · · k1,N

k2,1 k2,2 · · · k2,N

...
...

. . .
...

kN,1 kN,2 · · · kN,N

⎤
⎥⎥⎥⎦ (3)

where the Mercer kernel

ki,j = k(xi , xj ) = 〈
ϕ(xi ), ϕ(xj )

〉
(4)

with 〈•, •〉denoting the inner product in the high-dimensional
space. It is well known that the dual problem of Equations
(1) and (2) is:

max L̄(α) = max

{
−1

2
αT Kα − 1

2C
αT α + αT y

}
(5)

s.t.
N∑

i=1

αi = 0 (6)

where αT = [α1 α2 · · · αN ] and y = [y1 y2 · · · yN ]T . The
regression model is given by

ŷ(x) = wT ϕ(x) + b =
N∑

i=1

αik(xi , x) + b (7)

The most common choice of kernel function is the Gaussian
function of the form:

k(xi , x) = exp

(
−‖x − xi‖2

2σ 2

)
(8)

The common kernel variance σ 2 is not provided by
the algorithm and has to be determined by other means,
such as via cross validation. The model obtained by
the LS-SVM algorithm is not sparse. In de Kruif and de
Vries (2003), a pruning method is used to obtain a sparse
representation.

2.2 The dual of the regularised least
squares problem

Consider the regularised LS regression problem stated as
below

min J (α, e) = min

{
1

2
αT α + C

2

N∑
i=1

e2
i

}
(9)

s.t. yi =
M∑

j=1

αjgj (xi ) + b + ei, i = 1, . . . , N (10)

where the regression model is defined by

ŷ(x) =
M∑

j=1

αjgj (x) + b (11)

M is the number of kernel regressors and gj (x), 1 ≤ j ≤ M ,
are the regressors, which may take (but not restrict to) the
form of gj (x) = k(xj , x) with M = N . Let us introduce the
following definitions b = [b b · · · b]T , α = [α1 α2 · · · αM ]T
and

G = [g1 g2 · · · gM ] (12)

with

gj = [gj (x1) gj (x2) · · · gj (xN)]T , 1 ≤ j ≤ M (13)

Then the optimisation Problem (9) and (10) can be written in
the matrix form as

min J (α, e) = min

{
1

2
αT α + C

2
eT e

}
(14)

s.t. y = Gα + b + e (15)

The Lagrangian of this optimisation problem is given by

L(γ , α, b, e)= 1

2
αT α+ C

2
eT e−γ T (Gα + b + e − y) (16)

where γ T = [γ1 γ2 . . . γN ] are the Lagrange multipliers.
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From the Kuhn-Tucker conditions, we have

∂L

∂α
= α − GT γ = 0 (17)

∂L

∂b
=

N∑
j=1

γj = 0 (18)

∂L

∂e
= Ce − γ = 0 (19)

The dual problem of the primal Problem (14) and (15) can be
obtained as

max L̄(γ ) = max

{
−1

2
γ T GGT γ − 1

2C
γ T γ + γ T y

}
(20)

s.t.
N∑

j=1

γj = 0 (21)

After γ is known, the kernel weight vector α in (11) can be
obtained from (17) as follows

α = GT γ (22)

The difference between the regularised LS problem of
equations (9) and (10) and the one given in Equations (1)
and (2) is that in the former problem the regularisation item
controls the weight of the kernel function directly while in
the latter it controls the gradient of the unseen hyperplane.
Note that the kernel function used in this LS-ESVM approach
does not restrict to a Mercer kernel.

2.3 Construction of sparse kernel models

The LS-ESVM algorithm of Section 2.2 cannot give a sparse
system model. To obtain a sparse model, we propose first
to use the OLS algorithm (Chen et al., 1989) to select a
parsimonious subset model from the full regression model
(12). Without the loss of generality, we will assume the
bias term b = 0 in the model (11). Let an orthogonal
decomposition of the regression matrix G be

G = P D (23)

where P = [p1 p2 . . . pM ] with orthogonal columns
satisfying pT

i pj = 0 if i �= j and

D =

⎡
⎢⎢⎢⎢⎣

1 d1,2 · · · d1,M

0 1
. . .

...
...

. . .
. . . dM−1,M

0 · · · 0 1

⎤
⎥⎥⎥⎥⎦ (24)

The regression model (15) can alternatively be expressed as

y = P Dα + e = Pθ + e (25)

where the weight vector θ in the orthogonal model space
satisfies the triangular system θ = Dα.

Consider the regularised LS cost for this M-term
regression model stated as below

JM = 1

2
θT θ + C

2
eT e (26)

By substituting the regularised LS solution for θ in (26) and
using the orthogonal property of P, it can be shown that

JM = CyT y −
M∑

j=1

(
yT pj

)2

CpT
j pj + 1

(27)

Define the error reduction due to the j th term pj as

ERj =
(
yT pj

)2

CpT
j pj + 1

(28)

Based on this error reduction criterion, a subset model can
be obtained in a forward selection procedure (Chen et al.,
1989). At the lth selection stage, a model term is selected
from the remaining candidates pj , l ≤ j ≤ M , as the lth
model term in the subset model, if it maximises the error
reduction criterion ERj . The details of the selection algorithm
are readily available in (Chen et al., 1989, 1991, 1999, 2003,
2004) and therefore, will not be repeated here. The selection
is terminated at the Ms stage if

JMs ≤ ξ (29)

where the small positive tolerance value ξ controls the
sparsity level of the selected subset model. This produces a
parsimonious model containing Ms terms. Appropriate value
for ξ is problem dependent and may be learnt via cross
validation. Alternatively, the Akaike information criterion
(Akaike, 1974; Leonataritis and Billings, 1987) can be
adopted to terminate the subset model selection procedure.
Moreover, the optimal experimental design criteria can
be combined with the regularised LS criterion (26) to
automatically terminate the selection with an appropriate Ms-
term subset model without the need for the user to specify a
tolerance value ξ , see (Chen et al., 2003; Hong and Harris,
2002; Hong et al., 2003).

In the standard kernel regression modelling, each kernel
regressor is positioned at a training input data point and
a common kernel variance σ 2 is used for every regressor.
Using the OLS forward selection procedure described above,
we first obtain a sparse representation containing Ms kernel
regressors. The corresponding kernel weights are then
calculated using the LS-ESVM method of Section 2.2.
We will referred to this approach of constructing sparse
kernel models as the sparse extended LS-SVM (LS-SESVM)
method.

3 Generalised kernel regression modelling

In Section 2.2, the deduction of the dual problem does not
assume the concept of reproducing kernel Hilbert space and
Mercer theorem. Therefore, we are not restricted to Mercer
kernels. For example, we will allow a kernel function to
take position other than the training input data points and
to have an individually tunable diagonal covariance matrix.
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This leads to the generalised kernel regression modelling.
Specifically, we consider the regressors which take the form
of the generalised Gaussian kernel:

gj (x) = g(x; µj , �j )

= exp

(
−1

2

(
x − µj

)T
�−1

j

(
x − µj

))
(30)

for 1 ≤ j ≤ M , where µj is the mean vector of the j th kernel
and �j = diag{σ 2

j,1, σ
2
j,2, · · · σ 2

j,m} its diagonal covariance
matrix.

3.1 Construction of sparse generalised
kernel models

In this section, we develop an incremental construction
procedure for obtaining sparse generalised kernel models.
We will adopt an orthogonal forward selection to append the
kernels one by one. At the lth stage of model construction,
the lth kernel regressor is determined by maximising the
following error reduction criterion:

ERl(µl , �l) =
(
yT pl

)2

CpT
l pl + 1

(31)

where pl is obtained by an orthogonal transformation of the
lth model column gl via

pl = gl −
l−1∑
j=1

dj,lpj (32)

and pj , 1 ≤ j ≤ l−1, are the orthogonalised model columns
already selected. All the discussions in Section 2.3 regarding
the termination of selection apply here. For example, the
model appending process can be terminated when

JMs = CyT y −
Ms∑
l=1

ERl(µl , �l) ≤ ξ (33)

yielding an Ms-term generalised kernel model. The
corresponding kernel weights can readily be calculated
using the LS-ESVM method of Section 2.2. For
a comparison purpose, we will called this construction
approach the generalised sparse extended LS-SVM
(LS-GSESVM) method.

3.2 Determination of the generalised
kernel parameters

It can be seen that at each increment regression stage, the
basic task is to minimise the cost function

f (u) = 1

ERl(u)
, u ∈ U (34)

where u contains the regressor mean vector µl and diagonal
covariance matrix �l . This optimisation task may be carried
out with a gradient based optimisation method. A gradient
method however depends on the initial condition and may
be trapped at the local minima. Alternatively, the global
optimisation methods, such as the Genetic Algorithm (GA)

(Golodberg, 1989; Man et al., 1998) and Adaptive Simulated
Annealing (ASA) (Chen and Luk, 1999; Ingber, 1993), can
be used. We propose to perform this optimisation task using
a guided random search algorithm called the RWBS (Chen
et al., 2005). The RWBS algorithm is a simple yet efficient
global search algorithm. In several global optimisation
applications investigated in (Chen et al., 2005), the RWBS
algorithm was shown to achieve a similar convergence
speed as the GA and ASA. The RWBS algorithm has
additional advantages of requiring minimum programming
effort and having very few algorithmic parameters that
require to tune.

3.3 Repeated Weighted Boosting Search

The procedure of using the RWBS algorithm to determine
the generalised kernel parameters at the lth incremental
modelling stage can now be summarised as follows. Let
PS be the population size, NG the number of generations
in the repeated search and ξB the accuracy for terminating
the weighted boosting search.

Outer loop: generations For n = 1 : NG

Generation initialisation: Initialise the population by setting
u(n)

1 = u(n−1)
best and randomly generating rest of the population

members u(n)
i , 2 ≤ i ≤ PS , where u(n−1)

best denotes the solution
found in the previous generation. If n = 1, u(n)

1 is also
randomly chosen.

Weighted boosting search initialisation: Assign the initial
distribution weightings δi(0) = 1

PS
, 1 ≤ i ≤ PS , for the

population. Then

1 For 1 ≤ i ≤ PS , generate g(i)
l from u(n)

i , the candidates
for the lth regressor and orthogonalise them:

d
(i)
j,l = pT

j g(i)
l

pT
j pj

, 1 ≤ j < l (35)

p(i)
l = g(i)

l −
l−1∑
j=1

d
(i)
j,l pj (36)

2 For 1 ≤ i ≤ PS , calculate the cost function value of
each u(n)

i :

fi = f (u(n)
i ) =

C
(

p(i)
l

)T

p(i)
l + 1((

p(i)
l

)T

y
)2 (37)

Inner loop: weighted boosting search Set t = 0; For
t = t + 1

Step 1: Boosting

1 Find

ibest = arg min
1≤i≤PS

fi

iworst = arg max
1≤i≤PS

fi

Denote u(n)
best = u(n)

ibest
and u(n)

worst = u(n)
iworst

.
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2 Normalise the cost function values

f̄i = fi∑PS
m=1 fm

, 1 ≤ i ≤ PS

3 Compute a weighting factor βt according to

ηt =
PS∑
i=1

δi(t − 1)f̄i , βt = ηt

1 − ηt

4 Update the distribution weightings for 1 ≤ i ≤ PS

δi(t) =
{

δi(t − 1)β
f̄i
t , for βt ≤ 1

δi(t − 1)β
1−f̄i
t , for βt > 1

and normalise them

δi(t) = δi(t)∑PS
m=1 δm(t)

, 1 ≤ i ≤ PS

Step 2: Parameter updating

1 Construct the (PS + 1)th point using the formula

uPS+1 =
PS∑
i=1

δi(t)u
(n)
i

2 Construct the (PS + 2)th point using the formula

uPS+2 = u(n)
best +

(
u(n)

best − uPS+1

)

3 Calculate g(PS+1)

l and g(PS+2)

l from uPS+1 and uPS+2,
orthogonalise these two candidate model columns
(as in (35) and (36)), and compute their corresponding
cost function values fi , i = PS + 1, PS + 2 (as in (37)).
Then find

i∗ = arg min
i=PS+1,PS+2

fi

4 The pair (ui∗ , fi∗) then replaces (u(n)
worst, fiworst ) in the

population
If ‖uPS+1 − uPS+2‖ < ξB , exit inner loop

End of inner loop
The solution found in the nth generation is u = u(n)

best.

End of outer loop
This yields the solution u = u(NG)

best , that is, µl and �l of the
lth regressor, as well as the corresponding orthogonal model
column pl .

The motivation and analysis of the RWBS algorithm
as a global optimiser are detailed in (Chen et al., 2005).
To guarantee a global optimal solution as well as to achieve
a fast convergence, the algorithmic parameters, PS , NG

and ξB , need to be set carefully. The appropriate values
for these algorithmic parameters depends on the dimension
of u and how hard the objective function to be optimised.
Generally, these algorithmic parameters have to be found
empirically, just as in any global optimisation algorithm.
The elitist initialisation adopted in the algorithm is very
useful, as it keeps the information obtained by the previous
search generation, which otherwise would be lost due to

the randomly sampling initialisation. In the inner loop
optimisation, there is no need for every members of the
population to converge to a (local) minimum and it is
sufficient to locate where the minimum lies. Thus, the
accuracy for stopping the weighted boosting search, ξB , can
be set to a relatively large value. This makes the search
efficient, achieving convergence with a small number of
the cost function evaluations. The number of repeats or
generations NG should be sufficiently large so that the
parameter space will be sampled sufficiently.

4 Modelling experiments

Two real data sets were used to demonstrate the effectiveness
of the proposed LS-GSESVM construction procedure. The
standard SVM algorithm with the ε-insensitive loss function
(ε-SVM) (Gunn, 1998) was used as the benchmarker in our
modelling experiments.

Example 1 This example constructed a model representing
the relationship between the fuel rack position (input v(t))
and the engine speed (output y(t)) for a Leyland TL11
turbocharged, direct injection diesel engine operated at low
engine speed. Detailed system description and experimental
setup can be found in (Billings et al., 1989). The data
set, depicted in Figure 1, contained 410 samples. The first
210 data points were used in training and the last 200 points
were used to form the test set. The previous study (Billings
et al., 1989) has shown that this data set can be modelled
adequately as yi = FS(xi ) + ei , where yi = y(i) and
xi = [y(i − 1) v(i − 1) v(i − 2)]T , FS(•) describes the
unknown underlying system to be identified and ei denotes
the system noise. Five sets of the results were obtained.
Firstly, the modelling result of using the standard LS-SVM
method of Section 2.1 was obtained. Secondly, the alternative
LS-ESVM method of Section 2.2 was used to perform
the modelling experiment. In the third experiment, the
LS-SESVM method of Section 2.3 was used to obtain a
sparse model by applying the standard OLS forward selection
to yield a sparse representation and then calculating the
kernel weights of the resultant model based on the LS-ESVM
method. The fourth modelling result was produced based
on the generalised kernel modelling with the generalised
Gaussian kernel function of (30), where each regressor had
its tunable mean vector and diagonal covariance matrix. The
LS-GSESVM algorithm of Section 3 was adopted to
construct a sparse model representation. Lastly, the ε-SVM
(Gunn, 1998) was employed to produced a spare model
and the result obtained was used for comparison with the
proposed LS-GSESVM method. For the first three cases and
for the ε-SVM, the kernel function, chosen as the Gaussian
function of (8), had a common variance σ 2 for every regressor
and the regressors were positioned at the training input data
points. The previous study (Chen et al., 2003, 2004) has
shown that when using the Gaussian kernel model to model
this engine data set, the appropriate value of the common
kernel variance is σ 2 = 1.69. This value of σ 2 was thus
used in all the four Gaussian kernel modelling cases. For
the construction of a generalised Gaussian kernel model, the
appropriate values of the RWBS optimisation algorithmic
parameters, PS , NG and ξB , were determined empirically.



Parsimonious least squares support vector regression 251

Figure 1 The engine data set: (a) system input v(t) and (b)
system output y(t)

The choices of the regularisation parameter C for the
LS-SVM, LS-ESVM, LS-SESVM and LS-GSESVM were
first determined. For the two non-sparse modelling methods,
the LS-SVM and LS-ESVM, Figure 2 shows the influence
of C on modelling performance. A property of the proposed
LS-ESVM method can be clearly seen from Figure 2. Both
the training and test performance continuously improved as
C increased with the rate of improvement slowing down
for large C but the ratio of the test MSE over the training
MSE was approximately constant over a large range of C

values. This was not the case for the standard LS-SVM,
whose test performance deteriorated rapidly for C > 104.
From Figure 2, it is clear that C = 104 is appropriate for the
LS-SVM. By contrast, a much larger C, up to 5×108, can be
used for the LS-ESVM. We chose to use the same C = 104

for the two non-sparse LS-SVM and LS-ESVM methods and
the resulting two models are summarised in Table 1. With

C = 5 × 108, the LS-SESVM and LS-GSESVM algorithms
were used to construct a sparse Gaussian kernel model and
a sparse generalised Gaussian kernel model, respectively.
Figure 3 depicts the modelling performance as a function
of the subset model size for the LS-SESVM method. It
can be seen that the training MSE stopped improving after
18 model terms had been selected and at the model size of 22,
the training and test MSE values were approximately equal.
This suggested that a 22-term model was appropriate. For the
LS-GSESVM, Figure 4 shows the modelling performance as
a function of the subset model size. The result of Figure. 4
suggested that a 12-term generalised Gaussian kernel model
was adequate. The results of using the LS-SESVM and
LS-GSESVM are also summarised in Table 1.

Apart from σ 2, the ε-SVM algorithm requires two other
learning parameters, the regularisation parameter C and ε

value. We first fixed ε to a value of 0.02 and investigated
the influence of C to the modelling performance. The results
obtained are depicted in Figure 5, where it can be seen that
the value C = 40 is appropriate. We next used C = 40 and
examined the influence of ε. The results obtained are shown
in Figure 6, which confirms that the appropriate ε value is
around 0.02. Given the C value, the model size as well as the
modelling performance are obviously functions of ε. With
C = 40, Figure 7 illustrates the relationship between the
model size and ε value, while Figure 8 shows the relationship
between the modelling performance and model size.
In particular, with C = 40 and ε = 0.023, the ε-SVM
algorithm constructed a model consisting of 75 Support
Vectors (SVs). The performance of this SVM model is
compared with those of the other four methods in Table 1,
where it is clear that the models produced by all the five
methods had similarly good generalisation capabilities. The
LS-SESVM method is seen to be capable of producing
a sparser model in comparison to the ε-SVM method.

Figure 2 Influence of the regularisation parameter C to the performance of the LS-SVM and LS-ESVM for the engine data
set: (a) MSE values over the training and test sets and (b) ratio of the test MSE over the training MSE. The kernel
variance is σ 2 = 1.69
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Table 1 Summary of the experimental results for the engine data set

Algorithm LS-SVM LS-ESVM LS-SESVM LS-GSESVM ε-SVM

kernel type Gaussian Gaussian Gaussian Generalised Gaussian Gaussian

C value 104 104 5 × 108 5 × 108 40

ε value NA NA NA NA 0.023

Kernel variance 1.69 1.69 1.69 NA 1.69

Sparse No No Yes Yes Yes

Model size 208 208 22 12 75

Training MSE 4.23 × 10−4 4.79 × 10−4 4.71 × 10−4 5.00 × 10−4 4.73 × 10−4

Test MSE 4.85 × 10−4 5.05 × 10−4 5.04 × 10−4 5.08 × 10−4 4.95 × 10−4

Training time 2 sec 6 sec 6 sec 6 sec 8 min 33 sec

This confirms our previous observations that the OLS
algorithm and the SVM method both have the same excellent
generalisation capability but the former is able to produce
sparser models than the latter (Chen et al., 2003, 2004). The
proposed generalised sparse modelling method is seen to be
able to construct a much sparser model than the standard
OLS algorithm. The model prediction ŷi and prediction
error êi = yi − ŷi for the 12-term generalised Gaussian
kernel model constructed by the LS-GSESVM method are
illustrated in Figure 9. The performance of the other four
models, not shown, are similar to those shown in Figure 9.
The generalised kernel modelling approach based on the
LS-GSESVM has a clear advantage of producing the
sparsest model.

Figure 3 Modelling performance as function of the selected
model size for the engine data set using the
LS-SESVM. The kernel variance is σ 2 = 1.69 and
the regularisation parameter C = 5 × 108

The computational complexity of each algorithm was
investigated by measuring the training time that is required for
the algorithm to construct a model. The modelling experiment
was performed on a low-cost PC with the operating system
Windows2000 and the simulation was run using MATLAB
6.1 with Optimisation Tool Boxes. The CPU time was read
as the programme executive time recorded by the Windows
task manager. The run time measured did not include the
tuning time for finding the learning parameters of ε and/or
C. With the training conditions as set in Table 1, the training

times for all the five algorithms are compared in the same
table. It is seen that for this example of a small-size training
set (208 points) and a small input dimension (m = 3) the
proposed LS-GSESVM method compared favourably with
the standard SVM method. The LS-GSESVM was about 80
times faster than the ε-SVM under the given computational
platform.

Figure 4 Modelling performance as function of the selected
model size for the engine data set using the
LS-GSESVM. The regularisation parameter
is C = 5 × 108

Figure 5 Influence of the regularisation parameter C to the
performance of the ε-SVM for the engine data set,
given ε = 0.02 and σ 2 = 1.69
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Figure 6 Influence of the ε value to the performance of the
ε-SVM for the engine data set, given C = 40 and
σ 2 = 1.69

Figure 7 Relationship between the model size and ε value for
the engine data set using the ε-SVM. The regularisation
parameter is C = 40 and kernel variance σ 2 = 1.69

Figure 8 Relationship between the modelling performance and
model size for the engine data set using the ε-SVM.
The regularisation parameter is C = 40 and and kernel
variance σ 2 = 1.69

Example 2. This is a popular regression benchmark data set,
Boston Housing, available at the UCI repository (Murphy
and Aha; 1992). The data set comprises 506 data points with
14 variables. We performed the task of predicting the median

house value from the remaining 13 attributes. We randomly
selected 456 data points from the data set for training and used
the remaining 50 data points to form the test set. Average
results were given over 100 repetitions. The three sparse
construction methods, the LS-SESVM, the LS-GSESVM
and the ε-SVM, were compared. The learning parameters,
σ 2, ε and C for the SVM algorithm, σ 2 and C for the
LS-SESVM algorithm andC for the LS-GSESVM algorithm,
were determining empirically through cross validation.

Figure 9 The model prediction (a) and prediction error (b) of the
12-term generalised Gaussian kernel model
constructed by the LS-GSESVM for the engine data set

Specifically, given one particular set of the data partition, we
searched the appropriate values of σ 2, ε and C for the ε-SVM
so as to minimise the test MSE. The obtained σ 2, ε and C

were then used in the other 99 repetitions. It was found by
this cross validation process that σ 2 = 2025, ε = 2 and
C = 750 were appropriate for the ε-SVM. Figure 10 depicts
the MSE versus ε plot obtained by the SVM algorithm, given
σ 2 = 2025 and C = 750. The results of Figure 10 confirm
that, with σ 2 = 2025 and C = 750, the appropriate value for
ε was 2. By setting σ 2 = 2025 and ε = 2, the influence of
C on the modelling performance was shown in Figure 11,
where it can be seen that the appropriate value for C in
this case was 750. Similarly, given C = 750 and ε = 2,
Figure 12 shows the MSE versus σ 2 plot. It can be seen that
the appropriate value for the kernel variance was σ 2 = 2025.
Since the extensive search for the single common Gaussian
kernel variance had been performed for the SVM method and
the appropriate value found was σ 2 = 2025, we also chose
to use this value for the LS-SESVM method. The search
for an appropriate value of the regularisation parameter C

for the LS-SESVM was then carried out and the Figure 13
depicts the modelling performance as a function of C using
the LS-SESVM in one run, given σ 2 = 2025. It can be seen
from Figure 13 that a very large value of C = 1120 could
be used for the LS-SESVM. A similar search process was
performed for the LS-GSESVM and it was found that the
value of C = 1120 was also adequate for the LS-GSESVM.

Table 2 compares the mean modelling performance as well
as the mean model sizes averaged over 100 runs together
with their associated standard deviations, obtained by the
three sparse modelling methods. It can be seen that the
ε-SVM algorithm achieved a slightly better generalisation
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Figure 10 Influence of the ε value to the performance of the
ε-SVM for the Boston Housing data set, given
σ 2 = 2025 and C = 750, in one run

Figure 11 Influence of the regularisation parameter C to the
performance of the ε-SVM for the Boston Housing
data set, given σ 2 = 2025 and ε = 2, in one run

performance than the LS-SESVM method for this example
and it also appeared to be more robust than the latter as
shown by their associated estimation standard deviations.
However, the LS-SESVM method arrived at a much sparser
model than the SVM method. The proposed LS-GSESVM
approach is seen not only to produce the sparsest model
but also to have the best model generalisation performance.
The average model size obtained by the LS-GSESVM
method is less than 4% of the SVM model size and its test

Figure 12 Influence of the kernel variance σ 2 to the performance
of the ε-SVM for the Boston Housing data set, given
C = 750 and ε = 2, in one run

Figure 13 Influence of the regularisation parameter C to the
performance of the LS-SESVM for the Boston
Housing data set, given σ 2 = 2025, in one run

MSE is less than 72% of the test MSE achieved by the SVM
method. We also compared the computational complexity of
the three construction algorithms by recording the training
times required in typical one-run using the three methods.
That is, the CPU times given in Table 2 were corresponding
to the training time for the LS-SESVM to obtain a model of
143 terms, the training time for the LS-GSESVM to derive
a model of 10 terms and the training time for the ε-SVM
to result in a model of 244 terms. It can be seen that for

Table 2 Summary of the experimental results for the Boston Housing data set

algorithm LS-SESVM LS-GSESVM ε-SVM

Kernel type Gaussian Generalised Gaussian Gaussian

Regularisation C 1120 1120 750

ε value NA NA 2

Kernel variance 2025 NA 2025

Model size (mean±std) 142.5 ± 52.4 9.5 ± 1.7 243.2 ± 5.3

Training MSE (mean±std) 14.3628 ± 2.8242 13.0098 ± 3.1448 6.7986 ± 0.4444

Test MSE (mean±std) 24.8421 ± 11.3903 16.6487 ± 7.0692 23.1750 ± 9.0459

Typical training time 1 min 35 sec 1 min 56 sec 2 hr 13 min 20 sec
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this benchmark example of a modest-size training set (456
points) and a relatively large input dimension (m = 13) our
novel LS-GSESVM algorithm was about 70 times faster than
the standard SVM method under the specific computational
environment.

5 Conclusion

The contributions of this paper are threefold. Firstly, we have
considered an alternative LS-SVM formulation, referred to
as the LS-ESVM, which does not assume the reproducing
kernel Hilbert space and can be applied to non-Mercer
kernels. Secondly, a sparse kernel model construction
algorithm, called the LS-SESVM, has been proposed.
In this approach a parsimonious representation is selected
using the standard OLS forward selection procedure and
the corresponding model weights are then computed using the
LS-ESVM formulation. In our modelling experiments, the
LS-SESVM method has been shown to have a similarly good
generalisation capability as the standard SVM algorithm but
it is able to produce sparser model representations than the
SVM method. Thirdly, which is a major contribution of our
work, the generalised kernel modelling has been derived
where each kernel regressor has its tunable centre vector and
diagonal covariance matrix. An orthogonal forward selection
procedure has been proposed to incrementally construct a
sparse generalised kernel model representation. At each
model construction stage, a kernel regressor is optimised
using a guided random search optimisation algorithm. Again
the corresponding model weights are then calculated using
the LS-ESVM formulation. Our modelling experimental
results have clearly demonstrated the advantage of this
proposed novel modelling technique to produce very sparse
models that generalise well. The proposed LS-GSESVM
approach has also been shown to be much faster in
constructing a model than the standard SVM approach for
the two real-data sets.
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