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Parallel Interference Cancellation Based Turbo
Space-Time Equalization in the SDMA Uplink

Andreas Wolfgang, Sheng Chen, Lajos Hanzo

Abstract— A novel Parallel Interference Cancellation (PIC)
based turbo Space Time Equalizer (STE) structure designed
for multiple antenna assisted uplink receivers is introduced. The
proposed receiver structure allows the employment of non-linear
type of detectors such as the Bayesian Decision Feedback (DF)
assisted turbo STE or the Maximum Aposteriori (MAP) STE,
while operating at a moderate computational cost. Receivers
based on the proposed structure outperform the linear turbo
detector benchmarker based on the Minimum Mean-Squared
Error (MMSE) criterion, even if the latter aims for jointly
detecting all transmitters’ signals. Additionally the PIC based
receiver is capable of equalizing non-linear binary pre-coded
channels. The performance difference between the presented
algorithms is discussed using Extrinsic Information Transfer-
function (EXIT) charts.

Index Terms— PIC, EXIT chart, precoding, Bayesian, STE.

I. INTRODUCTION

TURBO equalization, which was first introduced in [1],
has been the subject of intensive research efforts and

many of the different algorithms originally developed for
single-user equalization [2] [3] have been extended to multi-
user models either in the form of turbo Multi-User Detec-
tors (MUDs) designed for Code Division Multiple Access
(CDMA) systems [4], for Multiple-Input Multiple-Output
(MIMO) receivers [5] or for Space Division Multiple Access
(SDMA) systems [6]. The extension from single-user to ei-
ther multi-user equalization or to multiple transmit-antenna
equalization imposes an increased computational complexity.
Therefore the joint detection of signals arriving from mul-
tiple transmitters has mostly been considered in the context
of moderate-complexity linear detection techniques, such as
for example Minimum Mean Squared Error (MMSE) filter-
ing. Employing joint Maximum Likelihood (ML) rather than
MMSE detection as for example proposed in [5], where a
Maximum Aposteriori (MAP) STE was introduced, renders
the receiver excessively complex, since its complexity in-
creases exponentially both with the number of transmitters
that have to be detected as well as with the Channel Impulse
Response (CIR) length. A range of different methods have
been developed for reducing the complexity of the ML de-
tector, such as for example sphere decoding [7] or channel
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shortening [8]. However, these techniques have mostly been
applied in systems, where the number of receive antennas is
equal or higher than the number of transmit antennas and they
have been designed for channels having a linearly separable
output, rather than for channels, which may have been exposed
also to non-linear power amplifier impairments [9].

In contrast to joint detection, a different set of STE tech-
niques, which are also reminiscent of the linear turbo detectors
designed for detecting the signals arriving from multiple trans-
mitters, is constituted by the family of so-called Interference
Cancellation (IC) based schemes [4]. These IC schemes may
be implemented either in a Successive (SIC) or a Parallel (PIC)
fashion [10] [11]. In this paper we use the latter version.

Against this background, the novelty of this contribution
is that the PIC based turbo receiver proposed in this paper
decomposes the detection into two components, namely the
linear, low complexity cancellation of the Multiple Access
Interference (MAI) and the proposed iterative non-linear or
classification based removal of the channel-induced Inter Sym-
bol Interference (ISI). The proposed combination of PIC and
non-linear channel equalization is capable of outperforming
the MMSE based joint detection of all transmit antennas’
signals in the system, at the cost of a moderate complexity
increase, as it will be shown in this contribution. A further
advantage of the advocated structure is that it is capable
of detecting signals, which have been distorted for example
by power-efficient class AB amplifiers imposing non-linear
distortions [9]. Furthermore, non-linear channels are also
encountered for example, if binary precoding [12] is employed
for efficiently spreading the extrinsic information across the
transmitted sequence, which can be exploited by the receiver
in terms of a substantial iteration gain.

The remainder of the paper is organized as follows. In
Section II we will present our system model, which is used in
Section III to briefly introduce three different joint detection
strategies, namely the MMSE, the Decision Feedback (DF)
assisted Bayesian and the MAP STE. In Section IV we will
further develop our system model for the sake of deriving a
PIC based non-linear detector, while we investigate the achiev-
able performance of the different schemes in Section V using
Extrinsic Information Transfer-function (EXIT) charts [13] as
well as Bit Error Rate (BER) simulations. In Section VI we
offer our conclusions.

II. SYSTEM MODEL

The system considered consists of K number of mobile sta-
tions (MSs) each employing an NTx-element transmit antenna
array and a Base Station (BS) receiver, which has NRx number
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of Antenna Elements (AEs). The MSs’ transmitters illustrated
in Figure 1 encode the source bits employing a convolutional
encoder and interleave the resultant coded bits with the aid
of a random interleaver. The encoded and interleaved bits
are then mapped to the NTx different transmit antennas and
modulated. The mapped symbols are transmitted to the BS
over a frequency selective fading channel having a symbol-
spaced CIR.

Given the transmitted symbol s
(k)
ı (n), which is associated

with the kth MS’s transmit AE ı, the output signal of the jth

AE of the BS receiver at time instant n can be written as1

xj(n) =
K∑

k=1

NTx∑
ı=1

L−1∑
l=0

h
(k)
jı,ls

(k)
ı (n − l) + ηj(n), (1)

where h
(k)
jı,l is the complex-valued channel gain of the lth

multi-path component of the channel between the kth MS’s
AE ı and the jth BS receiver AE. Furthermore, L is the
number of symbol-spaced multi-path components and ηj(n) is
the complex-valued Additive White Gaussian Noise (AWGN)
having a variance of E

[|ηj(n)|2] = 2σ2
n.

Assuming that all MSs transmit at an identical power, the
resultant Eb

N0
value for source k and code-rate R is given as

Eb

N0
=

1
R

∑NRx
j=1

∑L−1
l=0 E

[
|h(k)

jı,l|2
]

2σ2
nNRx log2(M)

, (2)

where M is the number of modulation levels used. In the case
of finite length STEs such as the MMSE or the Bayesian STE,
each of the BS receiver’s AEs in Equation (1) is followed by
a tapped delay line of length M , which is also referred to as
the feed-forward section of the STE. In vectorial notation, the
delayed versions of the channel’s output can then be expressed
by the super-vector2 x(n) =

[
x(n)T , . . . , x(n − M + 1)T

]T
,

where x(n) is a column vector hosting the NRx number of
AE output signals xj(n) given in Equation (1).3

Under the assumption of perfectly synchronized transmitters
the relation between the signal transmitted by the MSs’ AEs
and the channel’s output for channel tap l is described by
a (NRx × KNTx)-dimensional matrix Hl, where the (j, (k −
1)NTx+ı)th element of the matrix is given by h

(k)
jı,l. The super-

matrix H representing the total system can then be obtained
by concatenating the (NRx×KNTx)-dimensional matrices Hl,
yielding:

H =

⎛
⎜⎝

H0 · · · HL−1 0 · · · 0
. . .

. . .
0 · · · 0 H0 · · · HL−1

⎞
⎟⎠ .

1Note, that the indices ı and j are associated with the transmit and receive
AE respectively, whereas the indices i and j are used as running indices
defined in the context where they occur.

2All vectors and matrices are printed in italic bold fonts, super-vectors and
super-matrices are printed in bold letters.

3For the MAP STE we may write x(n) = x(n), since no tapped delay
line is used.
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Fig. 1. Transmitter structure.
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Fig. 2. Joint turbo STE receiver.

The channel output vector x(n) can now be expressed as

x(n) = H
[
s(n)T , . . . , s(n − M − L + 2)T

]T
+
[
η(n)T , . . . , η(n − M + 1)T

]T
= Hs(n) + η(n)
= x(n) + η(n), (3)

where the column vector

s(n) =
[
s
(1)
1 (n) . . . , s

(1)
NTx

(n), . . . , s(K)
1 (n) . . . , s

(K)
NTx

(n)
]T

contains the symbols transmitted by the K MSs’ AEs and
η(n) = [η1(n), . . . , ηNRx(n)]T . For the derivation of the
algorithms presented in this paper it is not relevant whether
the interference experienced by a signal is caused by an AE of
the same user or by the signals transmitted of other users. In
order to keep the notation simple we therefore introduce the
index q = (k − 1)NTx + ı, which ranges from 1 to Q, where
Q = KNTx is total number of AEs in the system. We can
now rewrite the signal vector containing all sq(n) as s(n) =[
s1(n) . . . , sNTx(n), . . . , s(K−1)NTx+1(n), . . . , sKNTx(n)

]T
.

III. JOINT DETECTION

The joint turbo detection scheme used is depicted in
Figure 2. In the context of turbo detection the informa-
tion generated by the different receiver components is ex-
changed between them in the form of Log Likelihood
Ratios (LLRs), which are defined as L(sq(n)|x(n)) =
log
(

P (sq(n)=+1|x(n))
P (sq(n)=−1|x(n))

)
. In our further discussions the time

index n is neglected for notational simplicity and we define
Lq = Lq,n = L(sq(n)|x(n)). Considering now the joint
detection of all Q AEs’ signals, the detector first performs soft
detection of the received signal vector x(n) and returns the
aposteriori LLR of the interleaved channel coded bits Lapo,e

q ,
as seen in Figure 2, where the superscript e represents the
STE. The apriori LLR Lapr,e

q generated from the extrinsic LLR
Lex,d

q by the interleaver Π of Figure 2 is then removed from the
aposteriori LLR, resulting in the extrinsic information Lex,e

q ,
which is passed through the deinterleavers denoted by Π−1

in Figure 2 to the channel decoders. The channel decoders
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carry out a soft decision using the deinterleaved extrinsic
information provided by the STE as apriori information Lapr,d

q ,
where the superscript d denotes the channel decoder. After
convolutional decoding the decoders calculate the aposteriori
LLR Lapo,d

q of the coded symbols and subtract the apriori LLR
Lapr,d

q in order to obtain the extrinsic information Lex,d
q , as

seen in Figure 2. The extrinsic information of all decoders is
interleaved again and used by the STE as apriori information
Lapr,e

q for the next iteration. In the first iteration the STE
assumes identical apriori probabilities for all bits of all users,
yielding Lapr,e

q = 0 for all transmitters. For a more detailed
description of turbo-equalization the interested readers are
referred to [2] [14].

A. MMSE Joint Detection

Linear MMSE criterion based joint turbo detection has been
introduced in [4] and has been applied to SDMA systems
in [6]. The proposed detector successively removes all MAI
and ISI based on the extrinsic information obtained from the
channel decoders. The MMSE based detector has the draw-
back that the first iteration might be of relatively poor quality
and therefore a sufficiently strong channel code has to be used
for the sake of avoiding error-propagation amongst different
users. The employment of a decision feedback structure as
a solution to the problem of having a poor first-iteration
performance was shown to be counter-productive [3] due to the
sensitivity of the MMSE receiver to error propagation induced
by the feedback structure in the context of single user turbo
equalization. Hence, in this paper we will use the MMSE-
based SDMA turbo-STE proposed in [6] as our reference
receiver and refrain from using a DFE structure.

B. Bayesian Decision Feedback Aided Joint Detection

In contrast to MMSE-based turbo detectors, Bayesian STEs
have been shown to be robust against error propagation [15]
and thus are expected to perform well in decision feedback
aided turbo detection. In this section we therefore first intro-
duce a decision feedback structure, which will be employed
by the Bayesian turbo STE. In addition to the feed-forward
section of length M , the DF-STE is then characterized by the
decision delay Δ and the decision feedback order N . Note that
the oldest symbol vector, which still influences the detected
symbol s̃q(n − Δ) is s(n − M − L + 2). Furthermore, the
oldest feedback symbol vector is s(n−Δ−N). Without loss
of generality we therefore choose N = M +L−2−Δ for the
derivation of the proposed DF-STE. In order to describe the
feedback structure, we first decompose the system matrix H
into two sub-matrices H = [H1 H2], where H1 hosts the first
Q(Δ + 1) columns of H, while H2 represents the last QN
columns of H. The channel’s output, which is identical to the
input of the STE’s feed-forward filter can then be written as

x(n) = H1s1(n) + H2s2(n) + η(n), (4)

where s1(n) =
[
s(n)T . . . s(n − Δ)T

]T
represents the sym-

bols in the feed-forward shift register, while s2(n) =[
s(n − Δ − 1)T . . . s(n − Δ − N)T

]T
denotes the symbols in

the feedback register. Under the assumption that the detected
feedback vector is correct, Equation (4) can be re-written as

r(n) = x(n) − H2s̃2(n) = H1s1(n) + η(n), (5)

where r(n) is the reduced-size observation space created by
removing the channel output states based on the already
decided bits, as a benefit of using decision feedback [2].
For the remainder of this subsection let us now assume that
the transmitted signals sq(n) are Binary Phase Shift Keying
(BPSK) modulated. For a given feedback vector the possible
noise-free channel output states in the new observation space
r(n) may then assume Ns = 2Q(Δ+1) different values,
depending on the transmitted symbol vector s(i), 1 ≤ i ≤ Ns,
yielding r(i) = H1s

(i)
1 . The set of all possible desired output

states in the translated decision space r(n) can be partitioned
into two subsets, namely into R±

q , depending on the binary
value of the transmitted BPSK symbol sq(n − Δ), which is
associated with the kth user’s ıth transmit AE, i.e from AE
q = (k − 1)NTx + ı, as

R±
q =

{
r(i,±)

q = H1s
(i)
1 if s(i)

q (n − Δ) = ±1
}

, (6)

where s
(i)
q is the element of s(i)

1 , which corresponds to sq(n−
Δ). Based on the space translation formulated in Equation (5),
the aposteriori LLRs associated with the qth AE in the system
at the output of the joint Bayesian DF-STE may be written as

Lapo,e
q = log

(
P (sq(n − Δ) = +1|r(n))
P (sq(n − Δ) = −1|r(n))

)

= log

⎛
⎜⎜⎜⎜⎜⎜⎝

∑
r
(i,+)
q ∈R+

q

p(i,+)e−
||r(n)−r

(i,+)
q ||2

2σ2

∑
r
(i,−)
q ∈R−

q

p(i,−)e−
||r(n)−r

(i,−)
q ||2

2σ2

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where rq,±
i ∈ Rq,±, p(i,+) and p(i,−) are the a-priori prob-

abilities of r(i,+)
q and r(i,−)

q , respectively. Assuming that the
symbols in the sequence s(i) = [(s(i)

1 )T sT
2 ]T are statistically

independent of each other, the apriori probability of the
channel state r(i) can be obtained from the apriori bit LLRs
as follows:

P (r(i)) = P (s(i)(n))

=
Q∏

q=1

M+L−2∏
j=0

eL
apr,e
q,n−j

/2

1 + eL
apr,e
q,n−j

es(i)
q (n−j)Lapr,e

q,n−j
/2,

where Lapr,e
q,n−j is the apriori information of the bit associated

with the qth AE at time instant (n − j) and s
(i)
q (n − j)

is associated with the symbols in the sequence s(i) defined
in the context of Equation (6). Depending on the sign of
s
(i)
q (n − Δ), P (r(i)) corresponds to p(i,+) or p(i,−). The

extension of the Bayesian DF-STE to higher order Quadrature
Amplitude Modulation (QAM) can be achieved following the
procedure outlined in [2]. Despite the lower computational
cost of the Bayesian DF-STE compared to the STE using no
feedback [4], the complexity imposed remains relatively high.
Hence the algorithm presented in this section is only used as
a benchmarker.
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C. MAP STE

Both the MMSE and the Bayesian STE are finite length
filters, i.e. they only use a finite observation of the received
signal for the detection of each symbol. The optimum STE
however invokes all the possible transmitted symbol sequences
in order to make a MAP decision upon the transmitted symbol
sequence. The MAP STE may be implemented using the Bahl-
Cocke-Jelinek-Raviv (BCJR) algorithm [16], where the trellis
states of the algorithm are jointly determined by the CIRs of
the Q different AEs in the system.

The major advantage of the MAP-STE over the MMSE and
Bayesian STE is that it can be readily combined with binary
pre-coding at the transmitter side. It has been shown in [17]
that the inner code of a turbo system, which is constituted
by the wireless channel in our case, should be recursive in
order to achieve large interleaving gains. The wireless channel
described by Equation (1) is however a non-recursive structure.
In [12] a simple binary transmit pre-coding scheme has been
proposed, which renders the channel recursive without relying
on the knowledge of the CIR. If binary pre-coding is used
in conjunction with the transmitter structure considered, the
pre-coder having the generator polynomial G(z) is inserted
directly after the S/P converter in Figure 1. Under the
assumption, that the pre-coder polynomial is shorter than the
length of the CIR, the states of the MAP-STE trellis employed
at the BS remain unchanged and only the transitions between
the states have to be modified accordingly. It has been shown
in [18] using a simple example that pre-coded MAP-STEs are
capable of operating within 1 dB of the channel capacity.

IV. INTERFERENCE CANCELLATION BASED DETECTION

In contrast to the joint detection strategy discussed in the
previous section, another attractive design option to consider
is the interference cancellation based turbo detection scheme
illustrated in Figure 3. The philosophy of this scheme is based
on the principle that with the aid of prefiltering, which is
indicated as R

− 1
2

q in Figure 3 all the Q − 1 interfering uplink
signals are considered to contribute additional white noise. The
Single transmit Antenna element STE scheme represented by
the acronym SA-STE in Figure 3 is then designed by ignoring
the effects of MAI. This has the advantage that in contrast to
the joint STE scheme of Figure 2, the complexity of the system
no longer increases exponentially with the number of transmit
AEs in the system, while still enabling us to use non-linear
STE equalizers. The turbo STE section of the receiver seen in
Figure 3 is identical to that in Figure 2, where the STE acts
as a single-user STE or more precisely as a single transmit
AE STE.

In order to describe the system mathematically, Equation (3)
is rewritten as the sum of all AEs’ transmitted signals, yielding

x(n) =
Q∑
q

Hqsq(n) + η(n)

=
Q∑
q

xq(n) + η(n), (7)

where the (j, l)th element of the (NRx × L)-dimensional
matrix Hq is given as h

(k)
jı,l with q = (k − 1)NTx + ı. In

the proposed PIC scheme we now define the channel output
generated by the qth AE as

xq(n) = xq(n) +
Q∑

i�=q

xi(n) + η(n). (8)

This yields a channel output after the PIC stage of Figure 3
at iteration j, which can be written as

x̃(j)
q (n) = xq(n) −

Q∑
i�=q

His̃
(j−1)
i (n), (9)

where we have s̃(j−1)
i (n) = [s̃(j−1)

i (n) . . . s̃
(j−1)
i (n − L +

1)]T with s̃
(j−1)
i (n) = tanh(Lapo,d

i (n)/2) [3] being the vector
containing the soft symbols associated with transmitter i after
the (j−1)st PIC iteration if the signals are BPSK modulated.
In general the MAI may not be considered as Gaussian white
noise because only a small fraction of the users may fall within
the high-gain lobe of the antenna. Hence the covariance matrix
of the noiseless interference experienced by the qth transmit
AE’s signal after the (j − 1)th iteration is given as

R(j)
MAI,q(n) = E

⎛
⎝ Q∑

i�=q

x(j)
i (n)x(j)

i (n)H

⎞
⎠

=
Q∑

i�=q

HiΛ
(j−1)
i (n)HH

i , (10)

where E(·) is the expection operator and Λi(n) is a diagonal

matrix with diag
(
Λ(j−1)

i (n)
)

= [1 − |s̃(j−1)
i (n)|2, . . . , 1 −

|s̃(j−1)
i (n − L + 1)|2]. For MAI contributions which may

not be considered as white noise, the matrix R(j)
MAI,q(n) will

have non-zero off-diagonal elements. Taking into account the
additional effects of the channel-induced white noise, the
covariance matrix of the noise-contaminated MAI associated
with the qth transmit AE may be written as

R(j)
q (n) = R(j)

MAI,q(n) + 2σ2
nINRx , (11)

where INRx is the (NRx × NRx)-dimensional identity matrix.
The whitening of the signal after the soft PIC stage of
Figure 3 can now be expressed as a matrix multiplication of
the received signal vector x̃(j)

q with Rq(n)−
1
2 , which can be

calculated using for example eigenvalue decomposition. Fol-
lowing whitening, the resultant covariance matrix of the MAI
plus noise term is equal to the identity matrix, which implies
that the signal vector after whitening may be considered to be
contaminated by white noise having unity variance.

The single-transmit AE STE indicated in Figure 3 as SA-
STE now has to be designed for detection in the whitened
signal space following the approach outlined in Section III.
For the Bayesian STE outlined in Section III-B for example,
we now define the set of legitimate output states as

R±
q (n) =

{
r(i,±)

q = H̃1,q(n)s(i)
1 if sq(n − Δ) = ±1

}
,

where H̃1,q is constructed using the whitened channel matrices
H̃q(n) = Rq(n)−

1
2 Hq(n) following the principle used in

Equation (3). Similarly, the single transmit AE MAP-STE
discussed in Section III-C now has to be designed for the
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Fig. 3. PIC based turbo STE.

whitened signal space. The noise level considered by the SA-
STE incorporated in the PIC scheme is now not 2σ2

n, but
simply unity, since the whitening filter has scaled the signal
space accordingly. The operation of the PIC based turbo STE
of Figure 3 may be summarized as follows. During the first
iteration all interfering signals are considered to contribute
additional noise, which is passed through a whitening filter
to the SA-STE. The extrinsic information obtained by the
equalizer is passed through a deinterleaver to the channel
decoder, which uses it as apriori information. The extrinsic
information of each channel decoder is passed back to the
associated SA-STE of the same receiver chain and the resultant
aposteriori information is passed back to the IC stage. The IC
uses the aposteriori, rather than the extrinsic information of the
channel decoders, since we assume the information obtained
by the different users’ receiver chains to be independent of
each other. The IC stage removes the remodulated and re-
encoded soft information of the interfering transmitters and
re-calculates the whitening filter matrices using Equations (10)
and (11), taking into account the detected and removed MAI
obtained in the previous iteration. The STE now uses the
extrinsic information of the channel decoder. A new iteration
of the PIC scheme is always based on two new inputs
to the SA-STE, namely the input signal contaminated by
less interference than in the previous iteration, and secondly,
the extrinsic information provided by the channel decoder
obtained in the previous iteration.

In order to comment on the associated implementational
complexity related to the number of Add-Compare-Select
(ACS) type trellis based operations used in systolic-arrays
we simply quantify the number of trellis states. For BPSK
modulated signals the full joint MAP detector is associated
with 2Q(L−1), while the MAP STE employed by the PIC-
aided detector has 2L−1 states, which result in 1 048 576 and
4 states in the case of Q = 10 and L = 3 for the example
used in Section V, plus the complexity of the linear PIC as
estimated in [11].

A. Binary Pre-coding and PIC

In contrast to the non-precoded system, the outer channel
decoder of a PIC based receiver employing binary pre-coding

does not directly return the symbols needed for interference
cancellation in Equation (9). The MAP equalizer returns the
non-precoded codeword LLRs Lapo,d

q (n), which are used by
the channel decoder for producing the corresponding LLR
values for the non-precoded codeword bits. The PIC however
needs a soft estimate of the precoded data Lapo,prec,d

q (n) bits,
since the received channel outputs to be decontaminated are
also precoded. For a pre-coder characterized by the polynomial
G(z) = 1 + z−1 these LLR values can be obtained as [19]

Lapo,prec,d
q (n) = log

(
1 + eL

apo,d
q (n)eL

apo,prec,d
q (n−1)

eL
apo,d
q (n) + eL

apo,prec,d
q (n−1)

)
(12)

where Lapo,prec,d
q (0) = Lapo,d

q (0). It can be observed that
the LLR values rapidly tend to zero, as the time index n
increases, suggesting that no interference cancellation would
be possible. To circumvent this problem, we generate the apri-
ori LLRs Lapr,prec,d

q (n) using the joint MMSE STE without
the assistance of apriori information, of Section III-A, which
may be achieved at a low computational complexity. The non-
precoded LLR values are then converted to precoded LLRs
by adding these LLRs to the values seen in Equation (12) as
follows:

Lapo,prec,d
q (n) = Lapr,prec,d

q (n) +

log

(
1 + eL

apo,d
q (n)eL

apo,prec,d
q (n−1)

eL
apo,d
q (n) + eL

apo,prec,d
q (n−1)

)

which can now be used by the PIC described by Equation (9).

V. PERFORMANCE ANALYSIS

In this section the achievable performance and the character-
istic behavior of the algorithms discussed in Section III-A-III-
C as well as Section IV is discussed under the assumption of
a fading process, which was uncorrelated both in time and in
space and a CIR matrix known to the receiver. The differences
between the four above-mentioned joint STEs, namely the
MMSE, the Bayesian, the MAP and the precoded MAP STE
are illustrated using a system, which supports K = 2 users,
each employing NTx = 2 transmit AEs and a BS receiver
array of NRx = 2 AEs. The CIR of each transmitter was
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Fig. 4. BER versus Eb/N0 performance after 6 turbo iterations for different
joint and PIC assisted turbo STEs. The considered system was characterized
by K = 2 MSs, each using NTx = 2 transmit AEs and a BS employing
NRx = 2 receive AEs. The feed-forward order of the MMSE and the DF
Bayesian STE was chosen to be M = 2 and the channel was assumed to be
an equal-power two-tap channel. BPSK modulated signals were considered.

assumed to be an equal-power two-tap channel. The interleaver
length was chosen to be 24 000 bits and the channel code
considered was a Recursive Systematic Convolutional (RSC)
punctured 2/3-rate code.

The BER versus Eb/N0 performance recorded after six
turbo iterations illustrated in Figure 4 shows that the MMSE
based STE exhibits a poorer performance than the MAP and
the DF Bayesian STE. Note that even though the DF Bayesian
detector relies on hard decision feedback, this does not degrade
its performance which is similar to that of the MAP STE.
The precoded MAP STE employing a precoder polynomial of
(1 + z−1) is the only STE, which achieves an infinitesimally
low BER. When comparing the performance of the joint
detectors to that of the PIC aided detectors, it can be observed
in Figure 4 that both the MAP PIC and the DF Bayesian PIC
detector approach the performance of the joint detectors and
clearly outperform the joint MMSE detector.

The reason why the PIC based detector is capable of outper-
forming the joint MMSE detector can be found by considering
the EXIT charts of the different STEs. The direct application
of conventional EXIT chart analysis to the proposed PIC
based detector is not straightforward, since the detector not
only makes use of the extrinsic information provided by the
RSC decoders, but also exploits their aposteriori information
in order to improve the received signal quality. Nonetheless,
it is feasible to generate EXIT charts, which assist us in
understanding the convergence behavior of the receiver.4

The performance of the PIC based detector is evaluated us-
ing the same system as used for generating Figure 4. Observe
in the EXIT chart of Figure 5 recorded at Eb/N0 = 6 dB
that the MAP PIC detector approaches the same performance
as the joint detectors, although it commences its iterations
from a lower initial mutual information than the corresponding

4This is because the EXIT charts of PIC based detectors are significantly
more complex than those of the joint turbo detectors discussed in Section III.
In fact, they would impose a similar complexity to that of full BER
simulations.
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Fig. 5. EXIT chart recorded at Eb/N0 = 6 dB for different STEs when
considering a system characterized by K = 2 MSs, each using NTx = 2
transmit AEs and a BS employing NRx = 2 receive AEs. The channel was
assumed to be an equal-power two-tap channel and BPSK modulated signals
were considered.

joint detectors. The benefit of the PIC becomes clear, when
comparing the MAP-PIC and the joint MMSE EXIT charac-
teristics, where it can be observed in Figure 5 that both start at
approximately the same initial mutual information, but the PIC
based detector converges relatively fast even for a low initial
input mutual information. This is due to the fact that even
when the RSC channel decoders do not provide sufficiently
reliable information for the STE, the soft information provided
by the other STEs results in a rapid performance improvement.

Furthermore, the decoder trajectory recorded for the iter-
ative MAP PIC receiver characterized in Figure 5 sightly
deviates from the performance expected on the basis of the
transfer functions generated. This is due to the fact that when
generating the EXIT charts with the aid of the proposed
method, we assume that the extrinsic LLRs Lex,e

q of the STE
associated with different transmit AEs are independent of each
other. However, this assumption has limited validity, because
the transmit AEs’ LLRs become dependent on each other
via Equation (9). During the first iterations, when the RSC
decoders provide little extrinsic information, the information
provided by the other STEs is particularly dominant and hence
the mismatch between the predicted and true performance is
more substantial. As the quality of the extrinsic information
of the RSC decoders improves, their extrinsic information
becomes the more dominant component of the aposteriori
information. This means that we are beginning to feed back
truly independent information and hence the theoretical as well
as the true performance match. For the first iteration there is
always a perfect match between the recorded trace and the
transfer function.

In order to investigate the performance of the precoded PIC
aided STE let us now consider a system characterized by K =
3, 4 and 5 MSs, each using NTx = 2 transmit AEs and a BS
employing NRx = 3 receive AEs. The feed-forward order of
the PIC based DF Bayesian STE was chosen to be M = 3
and the channel was assumed to be an equal-power three-tap
channel. BPSK modulated signals were considered and the
interleaver had a length of 32 000 bits while, the channel
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Fig. 6. BER versus Eb/N0 performance after 10 turbo iterations for a
precoded PIC based STE as well as for a PIC aided MAP and a DF Bayesian
STE. The considered system was characterized by K = 3, 4 and 5 MSs,
each using NTx = 2 transmit AEs and a BS employing NRx = 3 receive
AEs. The feed-forward order of the PIC based DF Bayesian STE was chosen
to be M = 3 and the channel was assumed to be an equal-power three-tap
channel. BPSK modulated signals were considered.

code employed was a 1/2-rate RSC code characterized by
the octal generator polynomials of [6 5]. Note that for this
system joint detection using the DF Bayesian or the MAP
STE would be computationally demanding, since the number
of states considered by the detectors is 22·5·2 = 1 048 576,
whereas the corresponding PIC aided detectors only consider
22 = 4 states in each detection branch.

The BER versus Eb/N0 performance for the system con-
sidered is shown in Figure 6, where it can be seen that both
the MAP and the DF Bayesian PIC based STE exhibit a
similar BER performance. An increased number of users only
degrades the performance of the PIC based STE for low values
of Eb/N0, while at higher values of Eb/N0 the performance
associated with 3, 4 and 5 MSs is similar. When considering
the precoded MAP PIC detector using the precoder polynomial
of (1 + z−1) it can be seen from Figure 6 that especially
for K = 3 and 4 MSs the precoding significantly improves
the performance compared to the non-precoded system. For
K = 5 this performance advantage becomes less pronounced.

The BER versus Eb/N0 performance of a 4QAM system
is illustrated in Figure 7. The system was characterized by
K = 1, 2 and 3 MSs, each using NTx = 2 transmit AEs and a
BS employing NRx = 4 receive AEs. The feed-forward order
of the joint MMSE STE was chosen to be M = 3 and the
channel was assumed to be an equal-power three-tap channel
while the interleaver had a length of 64 000 bits. The RSC
code considered was again characterized by the octal generator
polynomial of [6 5], while the precoded PIC aided MAP STE
employed a precoder polynomial of (1 + z−2). Similarly to
Figure 6, it can be seen from Figure 7 that the advantage of the
precoded PIC based STE over the joint MMSE iterative STE
is larger for a lower number of transmitters, but it remains
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Fig. 7. BER versus Eb/N0 performance after 10 turbo iterations for a
precoded PIC based turbo STE as well as an iterative joint MMSE STE. The
considered system was characterized by K = 1, 2 and 3 MSs, each using
NTx = 2 transmit AEs and a BS employing NRx = 4 receive AEs. The
feed-forward order of the joint MMSE STE was chosen to be M = 3 and the
channel was assumed to be an equal-power three-tap channel. 4QAM signals
were considered.
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Fig. 8. EXIT chart recorded at Eb/N0 = 2 dB for a precoded PIC based
STE supporting K = 3 MSs, each using NTx = 2 transmit AEs and a BS
employing NRx = 4 receive AEs. The channel was assumed to be an equal
power three-tap channel and 4QAM signals were considered.

substantial.
This effect can be explained when considering the EXIT

chart of the precoded PIC detector shown in Figure 8, which
was recorded at Eb/N0 = 2 dB for the same system parame-
ters as used for generating Figure 7, while considering K = 3
MSs. It can be observed that the precoded PIC aided STE
reaches the point (1,1) in the EXIT chart, corresponding to
an infinitesimally low BER. In contrast to the non-precoded
EXIT functions of Figure 5, the precoded STE will always
reach this point, regardless of the SNR. However, as the user
load increases, the EXIT function of the associated detector
generally becomes steeper. This implies that once the iterative
detector has overcome the initial convergence threshold caused
by the MAI, which is generally achieved at a relatively high
Eb/N0, its EXIT function terminates close to the point (1, 1)
and thus attains low BERs. In the extreme case of a very
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high MAI the employment of a precoder might then even be
a disadvantage, since it causes a further SNR degradation in
addition to the MAI.

The EXIT-chart trace of the precoded MAP detector exhibits
the same mismatch, as already observed in Figure 5 owing to
the fact that the LLR values provided by the PIC detector
are not sufficiently independent, which is also a consequence
of using the approximate LLR value conversion proposed in
Section IV-A.

VI. CONCLUSIONS

In this paper we derived a novel DF assisted Bayesian
detector for SDMA uplink systems and presented a general
PIC structure, which may be conveniently combined with
any STE algorithm. The convergence behaviour of the PIC
structure has been highlighted using EXIT chart analysis and
the potential performance improvements achieved by precoded
systems have been quantified. In our future work we will
consider joint iterative channel estimation and turbo detection
in the context of the proposed receiver structure in conjunction
with asynchronous uplink transmissions.
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