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Abstract— In this paper we propose a novel Space Division
Multiplexing (SDM) detection method. The proposed technique
constitutes a list search method and may be regarded as an
advanced extension of the Sphere Decoder (SD). Our method
may be employed in the so-called over-loaded scenario, where
the number of transmit antenna elements exceeds that of the
receive antenna elements. Furthermore, it is suitable for high-
throughput, non-constant modulus modulation schemes, such
as 16 and 64-QAM. We introduce a series of optimization
rules which facilitate a substantial reduction in computational
complexity. More specifically, we demonstrate that the method
proposed, which we refer to as the Soft-output OPtimized HIEr-
archy (SOPHIE)-aided SDM detector exhibits the near-optimum
performance of Log-MAP SDM detector in all considered scenar-
ios. The associated computational complexity, which we control
using two complexity-control parameters, is substantially lower
than that imposed by all previously proposed methods.

Index Terms— Bell Labs layered space-time (BLAST), fading
channels, maximum likelihood (ML) detection, smart antennas,
sphere decoding, turbo codes, wireless communications.

I. INTRODUCTION

THE relevant information-theoretical analysis predicts [1]
that substantial capacity gains are achievable in wireless

communication systems employing a Multiple Input Multiple
Output (MIMO) architecture using multiple antennas. Ad-
ditionally, the employment of a MIMO architecture allows
for the efficient exploitation of the spatial diversity available
in a wireless MIMO environment, thus improving both the
system’s transmission integrity, as well as capacity.

The most potent space-time detection method found in
the literature is constituted by the Sphere Decoder (SD)
[2], which is capable of achieving the optimum performance
of the Maximum Likelihood (ML) detector at a relatively
low computational complexity. The SD was first proposed
for employment in the context of space-time processing in
[3]. The complex-valued version of the sphere decoder was
proposed by Hochwald and ten Brink in [4]. The subject was
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further investigated by Damen et al. in [5]. Subsequently, an
improved version of the Complex Sphere Decoder (CSD) was
advocated by Pham et al. in [6].

Furthermore, CSD-aided detection was considered by Cui
and Tellambura et al. in the context of a joint channel
estimation and data detection scheme considered in [7], while
a revised version of the CSD method, namely the so-called
Multistage Sphere Decoding (MSD) was introduced in [8].
The generalized version of the sphere decoder, which is
suitable for employment in rank-deficient MIMO systems
supporting more transmitters than the number of receive
antennas was introduced by Damen et al. in [9] and further
refined by Cui and Tellambura in [10]. Additional variant of
the sphere decoder algorithm with improved search radius was
contributed by Zhao and Giannakis in [11].

Against this background, in this paper we propose a novel
SDM detection method, which we refer to as the Soft-output
OPtimized HIErarchy (SOPHIE) Spatial Division Multiplex-
ing (SDM) detector. The proposed method may be regarded
as an advanced extension of the SD methods portrayed in [6]
and [10].

More specifically, our method can be employed in the
above-mentioned rank-deficient and hence overloaded sce-
nario, where the number of transmit antenna elements exceeds
that of the receive antenna elements. Furthermore our scheme
is suitable for high-throughput modulation schemes such as
16- and 64-QAM. We introduce a list of optimization rules,
which facilitate the achievement of the near optimum BER
performance of a Log-MAP detector at a relatively low com-
putational complexity. The trade-off between the achievable
BER performance and the associated computational complex-
ity is controlled using two parameters. The proposed detection
method exhibits two major advantages over all previously
proposed techniques:

1) The bit-related soft information, which facilitates the
achievement of near-optimum Log-MAP performance,
is attained at the expense of a modest complexity
increase over that of hard-decision ML detection.

2) Our method exhibits a particularly low polynomial com-
plexity in both the low- and high-SNR regions.

In the critical range of SNR values, which corresponds
to the “waterfall” region of the BER versus SNR curve, the
detection complexity versus the number of transmit antennas
remains exponential. Nevertheless, we demonstrate that the
complexity can be dramatically reduced at the cost of a minor
BER degradation.
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The rest of this paper is structured as follows. The OHRSA-
aided SDM detection methods considered are outlined in
Section II. Specifically, in Section II-A we derive the OHRSA-
aided ML SDM detector, which benefits from the optimal
performance of the ML SDM detector [12], while exhibiting a
relatively low computational complexity. To elaborate a little
further, in Section II-B we derive a bit-wise OHRSA-aided ML
SDM detector, which allows us to apply the OHRSA method
of Section II in high-throughput modulation schemes, such as
M -QAM [12].

In Section II-C our discourse evolves further by deducing
the OHRSA-aided Log-MAP SDM detector, which allows for
an efficient evaluation of the soft-bit information and therefore
results in highly efficient turbo decoding1. Unfortunately, how-
ever, in comparison to the OHRSA-aided ML SDM detector
of Section II-B, the OHRSA-aided Log-MAP SDM detector
of Section II-C exhibits a substantially higher complexity.
Consequently, in Section II-D we derive an approximate
Log-MAP method, namely the SOPHIE SDM detector. The
SOPHIE SDM detector combines the advantages of both
the OHRSA-aided ML and OHRSA-aided Log-MAP SDM
detectors of Sections II-B and II-C, respectively. Specifically,
it exhibits a similar performance to that of the optimal Log-
MAP detector, while imposing a relatively modest complexity.
The computational complexity as well as the achievable per-
formance of the SOPHIE SDM detector of Section II-D are
quantified in Section III-B. Finally, our conclusions are offered
in Section IV.

II. OPTIMIZED HIERARCHY REDUCED SEARCH

ALGORITHM (OHRSA) SDM DETECTION

A. OHRSA-Aided ML Detection

We commence our discourse by deriving an OHRSA-
aided ML SDM detection method for a constant-modulus
modulation scheme, such as M -PSK, where the transmitted
symbols s satisfy the condition of |s|2 = 1, ∀s ∈ M, and
M denotes the set of M complex-valued constellation points.
In the next section, we will then demonstrate that the method
derived is equally applicable for high-throughput multi-level
modulation schemes, such as M -QAM.

Our system model is given by

y = Hs + w, (1)

where y, s and w are the received signal, transmitted signal
and Gaussian noise vectors, respectively, while H is (nr×mt)-
dimensional MIMO channel matrix. As outlined in [12] , the
ML SDM detector provides an mt-antenna-based estimated
signal vector candidate ŝ, which maximizes the objective
function defined as the conditional a posteriori probability
function P {š|y,H} over the set Mmt of legitimate solutions.
More explicitly, we have

ŝ = arg max
š∈Mmt

P {š|y,H} , (2)

1Part of the material discussed in Sections II and II-C will also appear
in [13], where we discuss the benefits of the soft-input-soft-output iterative
MIMO detection.

where Mmt is the set of all possible mt-dimensional can-
didate symbol vectors of the mt-antenna-based transmitted
signal vector s. More specifically, we have

Mmt =
{
š = (š1, · · · , šmt)

T; ši ∈ M}
. (3)

Furthermore, it was shown in [12] that we have

P {š|y,H} = A exp
[
− 1
σ2

w

‖y − Hš‖2

]
, (4)

where A is a constant, which is independent of any of the
values {ši}i=1,··· ,mt , while σ2

w denotes the Gaussian noise
variance. Thus, it may be shown [12] that the probabil-
ity maximization problem of Equation (2) is equivalent to
the corresponding Euclidean distance minimization problem.
Specifically, we have

ŝ = arg min
š∈Mmt

‖y − Hš‖2, (5)

where the probability-based objective function of Equation (2)
is substituted by the objective function determined by the
Euclidean distance between the received signal vector y and
the corresponding product of the channel matrix H with the
a priori candidate of the transmitted signal vector š ∈ Mmt .

Consequently, our detection method relies on the observa-
tion, which was first considered in [10] and may be summa-
rized in the following lemma.

Lemma 1: The ML solution of Equation (2) of a noisy
linear problem described by Equation (1), where s satisfies
|s|2 = 1, is given by

ŝ = arg min
š∈Mmt

{‖U(š − x̂)‖2
}
, (6)

where U is an upper-triangular matrix having positive real-
valued elements on the main diagonal and satisfying

UHU = (HHH + σ2
wI), (7)

while

x̂ = (HHH + σ2
wI)−1HHy (8)

is the unconstrained MMSE estimate of the transmitted signal
vector s, which was derived in [12] .

Note: Observe that Lemma 1 imposes no constraints
on the dimensions, or rank of the matrix H of the linear
system described by Equation (1). This property is particularly
important, since it enables us to apply our proposed detection
technique to the scenario of over-loaded systems, where the
number of transmit antenna elements exceeds that of the
receive antenna elements.

Proof of Lemma 1: It is evident that in contrast to the
matrix HHH, the matrix (HHH + σ2

wI) of Equation (6) is
always Hermitian and positively definite, regardless of the
rank of the channel matrix H associated with the particular
MIMO channel realization encountered. Consequently, it may
be represented as the product of an upper-triangular matrix
U and its Hermitian adjoint matrix UH using for example the
Cholesky factorization method [14].
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Let U be the matrix generated by the Cholesky decompo-
sition of the Hermitian positive definite matrix (HHH + σ2

wI)
of Equation (7). More specifically, we have

UHU = (HHH + σ2
wI), (9)

where U is an upper-triangular matrix having positive real-
valued elements on its main diagonal.

Upon expanding the objective function of Equation (6) and
subsequently invoking Equation (7) we obtain

J(š) = ‖U(š − x̂)‖2

= (š − x̂)HUHU(š − x̂)

= (š − x̂)H(HHH + σ2
wI)(š − x̂)

= šH(HHH + σ2
wI)š − x̂H(HHH + σ2

wI)š

− šH(HHH + σ2
wI)x̂ + x̂H(HHH + σ2

wI)x̂. (10)

Furthermore, substituting Equation (8) into (10) yields

J(š) = šHHHHš − yHHš − šHHHy

+ σ2
w šHš + yHH(HHH + σ2

wI)−1HHy

= ‖y −Hš‖2 + σ2
w šHš + yH(H(HHH + σ2

wI)−1HH − I)y
� �� �

ψ

.

(11)

Observe that in the case of a system employing a constant-
modulus modulation scheme, such as M -PSK, where we
have šHš = 1, ψ of Equation (11) constitutes a real-valued
scalar and its value does not depend on the argument š of
the minimization problem formulated in Equation (6). Con-
sequently, the minimization of the objective function J(š) of
Equation (11) can be reduced to the minimization of the term
‖y − Hš‖2, which renders it equivalent to the minimization
problem of Equation (5). This completes the proof.

Using Lemma 1, in particular the fact that the matrix U
is an upper-triangular matrix, the objective function J(š) of
Equation (11) may be reformulated as follows

J(š) = ‖U(š− x̂)‖2 = (š − x̂)HUHU(š − x̂)

=
mt∑
i=1

∣∣∣ mt∑
j=i

uij(šj − x̂j)
∣∣∣2 =

mt∑
i=1

φi(ši), (12)

where J(š) and φi(ši) are positive real-valued cost and sub-
cost functions, respectively. Elaborating a little further we have

φi(ši) =
∣∣∣ mt∑

j=i

uij(šj − x̂j)
∣∣∣2

=
∣∣∣uii(ši − x̂i) +

mt∑
j=i+1

uij(šj − x̂j)

︸ ︷︷ ︸
ai

∣∣∣2. (13)

Note that the term ai is a complex-valued scalar, which is
independent of the specific symbol value ši of the ith element
of the a priori candidate signal vector š.

Furthermore, let Ji(ši) be a Cumulative Sub-Cost (CSC)
function recursively defined as

Jmt(šmt) = φmt(šmt) = |umtmt(šmt − x̂mt)|2 (14a)

Ji(ši) = Ji+1(ši+1) + φi(ši), i = mt−1, · · · , 1,
(14b)

where we define the candidate subvector as ši = [ši, · · · , šmt ].
Clearly, Ji(ši) exhibits the following properties

J(š) = J1(š1) > J2(š2) > · · · > Jmt(šmt) > 0 (15a)

Ji(ši) = Ji({šj}, j = i, · · · ,mt) (15b)

for all possible realizations of x̂ ∈ Cmt and š ∈ Mmt , where
the space Cmt contains all possible unconstrained MMSE
estimates x̂ of the transmitted signal vector s.

Equations (15a) and (15b) enable us to employ a highly ef-
ficient reduced search algorithm, which decreases the number
of objective function evaluations of the minimization problem
outlined in Equation (6) to a small fraction of the set Mmt .
This reduced-complexity search algorithm is outlined in the
next section.

1) Search Strategy: Firstly, we commence the recursive
search process with the evaluation of the CSC function value
Jmt(šmt) of Equation (14a). Secondly, at each recursive step
i of the search algorithm proposed we stipulate a series of
hypotheses concerning the value of the M -ary transmitted
symbol si associated with the ith transmit antenna element
and subsequently calculate the conditioned sub-cost function
Ji(ši) of Equation (14b), where ši = (ši, · · · , šmt)T denotes
the subvector of the mt-antenna-based candidate vector š
comprising only the indices higher than or equal to i. Fur-
thermore, for each tentatively assumed value of ši we execute
a successive recursive search step i− 1, which is conditioned
on the hypotheses made in all preceding recursive steps j =
i, · · · ,mt. As substantiated by Equations (13) and (14b), the
value of the CSC function Ji(ši) is dependent only on the
values of the elements {šj}j=i,··· ,mt of the a priori candidate
signal vector š, which are hypothesized from step j = mt up
to the present step i of our recursive process. At each arrival at
the step i = 1 of the recursive process, a complete candidate
vector š is hypothesized and the corresponding value of the
cost function J(š) formulated in Equation (12) is evaluated.

Observe that the recursive hierarchical search procedure
described above may be employed to perform an exhaustive
search through all possible values of the transmitted signal
vector š and the resultant search process is guaranteed to
arrive at the ML solution šML, which minimizes the value of
the cost function J(š) of Equation (12). Fortunately however,
as opposed to other ML search schemes, the search process
described above can be readily optimized, resulting in a
dramatic reduction of the associated computational complex-
ity. Specifically, the potential optimization complexity gain
originates from the fact that most of the hierarchical search
branches can be discarded at an early stage of the recursive
search process. The corresponding optimization rules proposed
may be outlined as follows.

Rule 1: We reorder the system model of Equation (1)
as suggested in [15]. Specifically, we apply the best-first
detection strategy outlined in [2], [5], [12], which implies
that the transmitted signal vector components are detected in
the decreasing order of the associated channel quality. As it
was advocated in [12], the quality of the channel associated
with the ith element of the transmitted signal vector s is
determined by the norm of the ith column of the channel
matrix H. Consequently, for the sake of applying the best-
first detection strategy, the columns of the channel matrix H
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are sorted in the increasing order of their norm. Thus, the
resultant, column-reordered channel matrix H complies with
the following criterion

‖(H)1‖2 ≤ ‖(H)2‖2 ≤ · · · ≤ ‖(H)mt‖2, (16)

where (H)i denotes the ith column of the channel matrix H.
Note that the elements of the transmitted signal vector s are
reordered correspondingly, but their original order has to be
reinstated in the final stage of the detection process.

Rule 2: We employ the Schnorr-Euchner search strat-
egy [16]. More specifically, at each recursive detection
index i = mt, · · · , 1, the potential candidate values
{cm}m=1,··· ,M ∈ M of the transmitted signal component si

are considered in the increasing order of the corresponding
value of the sub-cost function φi(ši) = φi(cm, ši+1) of
Equation (13), where we have

φi(c1, ši+1) < · · · < φi(cm, ši+1) < · · · < φi(cM , ši+1),

and according to Equation (13)

φi(cm, ši+1) = |uii(cm − x̂i) + ai|2

= uii|cm − x̂i +
ai

u2
ii

|2. (17)

Consequently, the more likely candidates cm of the ith el-
ement of the transmitted signal vector s are examined first.
Observe that the sorting criterion of Equation (17) may also
be interpreted as a biased Euclidean distance of the candidate
constellation point cm from the unconstrained MMSE estimate
x̂i of the transmitted signal component si.

Rule 3: We define a cut-off value of the cost function
Jmin = min{J(š)} as the minimum value of the total cost
function obtained up to the present point of the search process.
Consequently, at each arrival at step i = 1 of the recursive
search process, the cut-off value of the cost function is updated
as follows

Jmin = min{Jmin, J(š)}. (18)

Rule 4: Finally, at each recursive detection step i, only
the high probability search branches corresponding to the
highly likely symbol candidates cm resulting in low values
of the CSC function obeying Ji(cm) < Jmin are pursued.
Furthermore, as follows from the sorting criterion of the
optimization Rule 2, as soon as the inequality Ji(cm) > Jmin

is encountered, the search loop at the ith detection step is
discontinued.

Given the cost-functions of Equation (12) and the appro-
priately ordered matrix H of Equation (1), the proposed
algorithm may be viewed as a specific manifestation of a
tree search algorithm [17]. Another example of a tree search
algorithm commonly employed in the design of communi-
cation systems constitutes the well-known Viterbi algorithm
[18], [19]. More specifically, the sub-cost function values of
Equation (13) may be regarded as being analogous to the the
branch metrics, while the CSC values of Equation (14) as
accumulated path metrics. It should be noted however, that
the OHRSA-ML algorithm described here and the classic tree-
search-based Viterbi algorithm exhibit substantial differences.
Specifically, the Viterbi algorithm assumes that the branch

TABLE I

EXAMPLES OF QUANTIZATION VECTORS

Modulation scheme qT

BPSK [1]
QPSK 1√

2
[1, j]

16QAM 1√
10

[1, 1j, 2, 2j]

64QAM 1√
42

[1, 1j, 2, 2j, 4, 4j]

metric is a function of the system states constituting one par-
ticular state transition, which is equivalent to the assumption
of having a diagonal matrix U in Equation (7). Evidently, this
requirement cannot be satisfied by our generic MIMO system.
Consequently, the tree-search-based Viterbi algorithm cannot
be applied to the search problem described above.

B. Bitwise OHRSA ML Detection

In this section we generalize the result obtained in Sec-
tion II-A to the case of systems employing high-throughput
modulation schemes, namely M -QAM, where each modulated
symbol belongs to a discrete phasor constellation M =
{cm}m=1,··· ,M . It is evident that each phasor point cm of
an M -QAM constellation map may be represented as the
inner product of a unique bit-based vector dm = {dml =
−1, 1}l=1,··· ,b and the corresponding quantisation vector q.
Specifically, we have

cm = qTdm. (19)

Some examples of the quantization vectors corresponding to
the modulation schemes of QPSK, 16-QAM and 64-QAM are
portrayed in Table I.

Furthermore, we define a (bmt × mt)-dimensional quan-
tization matrix Q = I ⊗ q, where I is an (mt × mt)-
dimensional identity matrix and q is the aforementioned
quantization vector, while ⊗ denotes the matrix direct product
[20]. Consequently the M -QAM-modulated signal vector s
may be represented as

s = Qt, (21)

where t = [tT1, · · · , tTmt
]T is a column supervector comprising

the bit-based vectors ti associated with each transmitted signal
vector component si. Substituting Equation (21) into the
system model of Equation (1) yields

y = HQt + w. (22)

Moreover, since t is a real-valued vector, we can elaborate a
bit further and deduce a real-valued system model as follows

ỹ =
[ R{y}

I{y}
]

=
[ R{HQ}

I{HQ}
]
t +

[ R{w}
I{w}

]
= H̃t + w̃,

(23)

where H̃ is a real-valued (2nr × bmt)-dimensional bitwise
channel matrix. Observe in Equation (22) that the requirement
of having constant-modulus symbols is satisfied by the mod-
ified system model of Equation (22), since we have |ti|2 = 1
and thus the method described in Section II-A is applicable for
the evaluation of the bitwise ML estimate t̂ of Equation (22).
The resultant Bitwise OHRSA-aided ML SDM detector is
summarized in Algorithm 1.
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Algorithm 1 Bit-Wise OHRSA-aided ML SDM Detector

H̃ =
[ R{HQ}

I{HQ}
]

(20a)

Sort{H̃}, such that ‖(H̃)1‖2 ≤ · · · ≤ ‖(H̃)r‖2 (20b)

G = (H̃HH̃ + σ2
wI) (20c)

U = CholeskyDecomposition(G) (20d)

x̂ = G−1H̃Hỹ (20e)

Calculate Jr (20f)

Unsort{t̂} (20g)

function Calculate Ji (20h)

ai =
mt∑

j=i+1

uij(ťj − x̂j) (20i)

Sort{d}, such that φi(d1) < φi(d2), (20j)

where φi(d) = |uii(d− x̂i) + ai|2 (20k)

for m = 1, 2 do (20l)

ťi = dm (20m)

Ji = Ji+1 + φi(ťi) (20n)

if Ji < Jmin then (20o)

if i > 0 then Calculate Ji−1 (20p)

else

Jmin = J0 (20q)

t̂ = ť (20r)

end if

end if

end for

end function

C. OHRSA-Aided Log-MAP Detection

Subsequently, the derivation of an expression for the eval-
uation of the soft-bit information associated with the bit
estimates of the bitwise ML detector of Section II-B is given
in [12]. More specifically, the soft-bit value associated with
the ith bit of estimated signal vector t̂ is determined by the
log-likelihood ratio (LLR) function defined in [21] as

Li = log

∑
ť∈M1;r

i
P

{
ỹ|ť, H̃

}
∑

ť∈M−1;r
i

P
{
ỹ|ť, H̃

} , (24)

where we define the constrained subset Md;r
i of the transmit-

ted bitwise signal candidates ť as follows

Md;r
i =

{
ť = (ť1, · · · , ťr)T; ťj ∈ {−1, 1} for j �= i, ťi = d

}
.

(25)

The direct calculation of the accumulate a posteriori con-
ditional probabilities in the nominator and denominator of
Equation (24) may have an excessive complexity in practice.

Fortunately, as advocated in [12], the expression in Equa-
tion (24) can be closely approximated as follows

Li ≈ log
P

{
ỹ|t̂1

i , H̃
}

P
{
ỹ|t̂−1

i , H̃
} , (26)

where we define the constrained ML estimate

t̂d
i = arg max

ť∈Md;r
i

P
{
ỹ|ť, H̃

}
, d = −1, 1. (27)

As suggested by the nature of Equation (26), the detection
process employing the objective function determined by Equa-
tions (26) and (27) is usually referred to as the Logarithmic
Maximum A Posteriori (Log-MAP) probability detector.

A practical version of the Log-MAP detector may be
derived as follows. Substituting Equation (4) into (26) yields

Li ≈ 1
σ2

w

[
‖ỹ − H̃t̂−1

i ‖2 − ‖ỹ − H̃t̂1
i ‖2

]
, (28)

where we have

t̂d
i = arg min

ť∈Md;r
i

‖ỹ − H̃ť‖2, d = −1, 1, (29)

and again, Md;r
i denotes the specific subset of the entire set

Mr of bitwise signal vector candidates, which comprises the
bit value d = {−1, 1} at the ith bit position.

Furthermore, substituting the bitwise objective function of
Equation (11) into (28) yields

Li ≈ 1
σ2

w

[
J(t̂−1

i ) − J(t̂1
i )

]
, (30)

where t̂d
i and the corresponding cost function value J(t̂d

i )
may be obtained by applying the constrained OHRSA-aided
ML detection method of Algorithm 1.

Consequently, the evaluation of the bitwise Log-MAP es-
timates of the transmitted bitwise signal vector t involves
repetitive evaluation of 2r constrained ML estimates t̂b

i along
with the associated 2r values of the objective function J(t̂b

i ).

D. Soft-Output OHRSA-Aided Approximate Log-MAP Detec-
tion

Let us define the (r × 2)-dimensional Bitwise Minimum
Cost (BMC) function matrix Ĵ having elements as follows

Ĵid = J(t̂d
i ), i = 1, · · · , r, d = −1, 1, (31)

where t̂d
i is defined by Equation (29). Using the BMC matrix

of Equation (31), Equation (30) may also be expressed in a
vectorial form as

L =
1
σ2

w

[
(Ĵ)1 − (Ĵ)2

]
, (32)

where, as before, (Ĵ)b denotes the dth column of the matrix
Ĵ having elements defined by Equation (31).

Consequently, in order to evaluate the bit-related soft in-
formation we have to populate the BMC matrix Ĵ of Equa-
tion (31) with the corresponding values of the cost function of
Equation (31). Observe, that the evaluation of the ML estimate
t̂ will situate half elements of the cost matrix Ĵ with the
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(c)

Fig. 1. Example of the search trees formed by the modified OHRSA-ML SDM detector of Algorithm 2 using different values of the parameter ρ, namely,
(a) ρ = 1.0, (b) 1.3 and (c) 2.0. We consider a system employing BPSK modulation, mt = nr = 3 transmit and receive antennas and encountering an
average SNR of 10dB. The labels indicate the order of evaluation, as well as the corresponding value Ji(ši) of the CSC function of Equation (14), as seen
in the brackets.

corresponding minimum value of the cost function associated
with the ML estimate, such that we have

Jib = J(t̂), i = 1, · · · , r, b = t̂i. (33)

Subsequently, let us introduce the following adjustments to
Algorithm 1. Firstly, we introduce an additional parameter
ρ, which we refer to as the search radius factor. More
specifically, the parameter ρ allows us to control the rate of
convergence for the tree search process of Algorithm 1 and
affects the cut-off value of a CSC function, which limits the
passage of the recursive search process through low-likelihood
search branches having a CSC function value Ji(ťi) in excess
of ρJmin, as opposed to Jmin. Thus, the following rule replaces
Rule 4 of Section II-A.1.

Rule 4a: At each recursive detection level i, only the
high-probability search branches corresponding to the highly
likely symbol candidates dm resulting in low values of
the CSC function obeying Ji(dm) < ρJmin are pursued.
Furthermore, as follows from the sorting criterion of the
optimization Rule 2, as soon as the inequality Ji(dm) > ρJmin

is satisfied, the search loop at the ith recursive detection level
is discontinued.

Secondly, we introduce an additional rule, which facilitates
the evaluation of the elements of the BMC matrix Ĵ of
Equation (31). Explicitly, we postulate Rule 5.

Rule 5: At each arrival at the bottom of the search tree,
which corresponds to search level 1, the resultant value of the
branch cost function J(ť) is utilized to populate the elements
of the BMC matrix Ĵ, which correspond to the bitwise signal
components ťi comprising the obtained signal candidate ť.
Namely, we have

Ĵid = min{Ĵid, J(ť)}, i = 1, · · · , r, d = ťi. (34)

Subsequently, we suggest that the evaluation of the BMC
matrix Ĵ, which is performed in the process of the ML
search of Algorithm 1 extended by Rule 4a and using Rule
5 will allow us to provide reliable soft-bit information, while
imposing a relatively low computational complexity. The main
rationale of this assumption will be outlined in our quantitative
complexity and performance analysis portrayed in Section III-
B.

As we will further demonstrate in Section III-B, the resul-
tant approximate Log-MAP SDM detector exhibits a particu-
larly low complexity at high SNR values. On the other hand,

at low SNR values the associated complexity substantially
increases. Consequently, in order to control the computational
complexity at low SNR values, we introduce an additional
complexity-control parameter, namely the search resolution
parameter γ. Our aim is to avoid the computationally de-
manding and yet inefficient detection of the specific signal
components, which have their signal energy well below the
noise floor. More specifically, we modify Equation (20p) of
Algorithm 1 according to Rule 6.

Rule 6: The branching of the tree search described by
Algorithm 1 is truncated, if the SNR associated with the
corresponding signal component is lower than the value of
the search resolution parameter γ. In other words, the search
along a given branch is truncated if we have ‖H̃i‖2

σ2
w

< γ.
Upon applying Rules 4, 5 and 6 in the context of the

OHRSA-ML method of Algorithm 1, we arrive at an ap-
proximate OHRSA-Log-MAP SDM detector, which avoids
the repetitive search required by the OHRSA-Log-MAP SDM
detector of Section II-C.

The search tree diagram generated by applying the approxi-
mate OHRSA-Log-MAP SDM detector described above in the
scenario of using BPSK and employing mt = nr = 3 transmit
and receive antennas as well as assuming ρ = 1.0, 1.3 and
ρ = 2.0 are depicted in Figs. 1 (a), (b) and (c), respectively.
Observe that the higher the value of ρ, the slower the con-
vergence of the search process is. The suitable value of the
search radius factor ρ may be found empirically and its exact
value within a sensible range has in fact little effect on the
attainable performance and the associated complexity of the
proposed algorithm. The impact of the choice of the particular
value of the parameter ρ on both the BER performance and
computational complexity is further analysed in Section III-B.

The resultant OHRSA-aided approximate Log-MAP SDM
detector, which we refer to as the Soft-output OPtimized HIEr-
archy (SOPHIE) SDM detector is summarized in Algorithm 2.

III. QUANTITATIVE ANALYSIS

A. SDM-OFDM System Model

In order to illustrate a practical application example of the
detection method proposed, let us consider an SDM-OFDM
wireless communication system employing mt transmit and
nr receive antennas and operating over a wideband multi-path
Rayleigh channel [12].
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Algorithm 2 SOPHIE Approximate Log-MAP SDM Detector

H̃ =
[ R{HQ}

I{HQ}
]

(35a)

Sort{H̃}, such that ‖(H̃)1‖2 ≤ · · · ≤ ‖(H̃)r‖2 (35b)

G = (H̃HH̃ + σ2
wI) (35c)

U = CholeskyDecomposition(G) (35d)

x̂ = G−1H̃Hỹ (35e)

Calculate Jr (35f)

L =
1
σ2

w

[
(Ĵ)0 − (Ĵ)1

]
(35g)

Unsort{Li}i=1,··· ,r (35h)

function Calculate Ji (35i)

ai =
mt∑

j=i+1

uij(ťj − x̂j) (35j)

Sort{d}, such that φi(d1) < φi(d2), (35k)

where φi(d) = |uii(d− x̂i) + ai|2 (35l)

for m = 1, 2 do (35m)

ťi = dm (35n)

Ji = Ji+1 + φi(ťi) (35o)

if Ji < ρJmin then (35p)

if i > 0 and
‖(H̃)i‖2

σ2
w

> γ then (35q)

Calculate Ji−1 (35r)

else

Jmin = min(Ji, Jmin) (35s)

for j = 1, · · · , r (35t)

Ĵjťj
= min{Ĵjťj

, J(ť)}, j = 1, · · · , r (35u)

end for (35v)

end if

end if

end for

end function

The orthogonal multi-carrier structure of our SDM-OFDM
transceiver allows us to characterise the broadband frequency-
selective channel considered as an OFDM subcarrier-related
vector of flat-fading Channel Transfer Function (CTF) coeffi-
cients. For each OFDM symbol n and subcarrier k the MIMO
channel is characterized by a (nr × mt)-dimensional matrix
H[n, k] of the CTF coefficients associated with the different
propagation links, such that the element Hij [n, k] of the CTF
matrix H[n, k] corresponds to the propagation link connecting
the jth transmit and ith receive antennas [12].

Consequently, our simulations were performed in the base-
band frequency domain. We assume having a total bandwidth
of 800kHz. The OFDM system utilises 128 orthogonal sub-
carriers. For forward error correction (FEC) we use 1

2 -rate

turbo coding [19] employing two constraint-length K = 3
Recursive Systematic Convolutional (RSC) component codes
[22]. The octally represented RCS generator polynomials of
(7,5) were used. The transmitted information bits are inter-
leaved over 8 subsequent OFDM symbols. Furthermore, we
employ the eight-path urban non-line-of-sight Bug Rayleigh-
fading channel model characterised in [23]. We assumed a
block-fading channel, having an OFDM-symbol-normalized
Doppler frequency of 0.1. Finally, throughout this section
we stipulate the assumption of perfect channel knowledge,
where the knowledge of the frequency-domain subcarrier-
related coefficients H [n, k] is deemed to be available in the
receiver.

B. Complexity and Performance Analysis

The direct calculation of the complexity associated with
the SOPHIE of Algorithm 2 is somewhat challenging, since
the complexity is a random variable, which is a function of
several parameters, such as the numbers mt and nr of the
transmit and receive antennas, the average SNR encountered
as well as the values of the complexity-control parameters ρ
and γ in Algorithm 2. Therefore, we statistically characterize
the corresponding complexity using computer simulations.

Fig. 2 characterises the achievable performance as well
as the associated computational complexity exhibited by the
4× 4 16QAM-SDM-OFDM system employing the SOPHIE
SDM detector of Algorithm 2. More specifically, we analyse
the associated performance versus complexity trade-offs of
using various values of the search radius factor and search
resolution parameters ρ and γ, respectively. In Fig. 2(a) we can
observe how the achievable BER performance (top) and the
corresponding computational complexity depend on the value
of the parameter γ. Using the results depicted in Fig. 2(a) we
may conclude that the optimum choice of the search resolution
parameter γ lies in the range of 0.5 − 0.8, where we have
a minor BER versus SNR performance degradation of less
than 0.5 dB, while achieving up to two orders of magnitude
complexity reduction at low SNR values, when compared to
the full-complexity SOPHIE algorithm assuming γ = 0.

On the other hand, Fig. 2(b) portrays both the achievable
BER performance and the associated complexity of the 4 ×
4 16QAM-SDM-OFDM system for different values of the
search radius factor parameter ρ. We may conclude that the
optimum trade-off between the attainable BER performance
and the associated complexity is achieved, when the value
of the search radius factor parameter ρ lies in the range of
1.3 − 1.5, where the BER performance degradation imposed
does not exceed 0.5 dB, while the associated computational
complexity is reduced by more than an order of magnitude,
when compared to large values of ρ, such as for instance ρ =
2.0.

Furthermore, Fig. 4(a) demonstrates both the BER per-
formance (top) and the associated computational complexity
exhibited by the (8×8) 4, 16 and 64QAM SDM-OFDM sys-
tems employing the SOPHIE SDM detector of Algorithm 2
and assuming ρ = 1.3, γ = 0.8.

Fig. 4(b) characterises the 16QAM-SDM-OFDM system
employing the SOPHIE SDM detector of Algorithm 2 and
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Fig. 2. Bit Error Rate (top) and the associated computational complexity per detected bit (botom) exhibited by the 4× 4 16QAM-SDM-OFDM system
employing the SOPHIE SDM detector of Algorithm 2 and assuming different values of the search resolution and search radius parameters (a) γ and (b) ρ,
respectively. The abscissa represents the average Eb/N0 recorded at the receive antenna elements.

having a constant number of nr = 4 receive antenna elements
in terms of its ability to detect the multiplexed signals ar-
riving from various numbers of transmit antenna elements.
Specifically, we aim for exploring the performance of the
SOPHIE SDM detector in the overloaded system scenario,
where the number of transmit antenna elements exceeds that
of the receiver elements and thus we have mt > nr.

Indeed, the BER curves portrayed in Fig. 4 (top) confirm the
near-Log-MAP performance of the SOPHIE SDM detector of
Algorithm 2 in both systems employing high-throughput mod-
ulation schemes as well as in the rank-deficient overloaded
system scenario.

Finally, Fig. 3 characterizes the computational complexity
imposed by the SOPHIE SDM detector of Algorithm 2 as
a function of the number mt = nr of transmit and receive
antennas. More specifically, we consider three ranges of SNR
values: low SNRs, the critical SNR, which corresponds to
the “waterfall” region of the BER versus SNR curve, as well
as high SNRs, which corresponds to the error-free detection
region. In Fig. 3 we may observe that the computational com-
plexity imposed by the SOPHIE detector increases according
to a polynomial law as a function of the number of transmit
antennas for both high and low SNRs.
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Fig. 3. Computational Complexity, imposed by the MIMO-OFDM system
employing the SOPHIE SDM detector of Algorithm 2 and assuming ρ = 1.3,
γ = 0.8. The complexity is quantified in terms of total number of real
additions and multiplications as a function of the number mt = nr of transmit
and receive antennas.

IV. CONCLUSION

In this paper we proposed a so-called SOPHIE SDM detec-
tion method, which may be regarded as an advanced extension
of the CSD method. We have shown that the SOPHIE SDM
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detector proposed closely approaches the optimum perfor-
mance of the Log-MAP detector while imposing a dramat-
ically lower computational complexity. Our method is read-
ily applicable to OFDM systems employing high-throughput
modulation schemes, such as M -QAM. Additionally, the SO-
PHIE detector may be employed in the over-loaded scenario,
where the number of transmit antenna elements exceeds that
of the receive antenna elements, while the associated compu-
tational complexity increases only moderately even in heavily
overloaded scenarios and is almost independent of the number
of receive antennas. The method proposed maintains the near-
optimal performance of the Log-MAP SDM detector even in
the heavily over-loaded scenarios.
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Fig. 4. Bit Error Rate (top) and the associated computational complexity per detected bit (botom) exhibited by the SDM-OFDM system employing the
SOPHIE SDM detector of Algorithm 2 and assuming ρ = 1.3, γ = 0.8. (a) 8× 8 system employing 4, 16 and 64 QAM, and (b) 16QAM system employing
a fixed number of 4 receive antennas, as well as 4, 6 and 8 transmit antennas. The abscissa represents the average Eb/N0 recorded at the receive antenna
elements.
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