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Clustering-Based Symmetric Radial Basis
Function Beamforming

S. Chen, K. Labib, and L. Hanzo

Abstract—We propose a clustering-based symmetric radial
basis function (SRBF) detector for multiple-antenna assisted
beamforming systems. By exploiting the inherent symmetry of
the underlying optimal Bayesian detection solution, this SRBF
detector is capable of realizing the optimal Bayesian performance
by clustering noisy observation data using an enhanced -means
clustering algorithm. The proposed adaptive solution provides a
signal-to-noise ratio gain in excess of 8 dB against the theoretical
linear minimum bit error rate benchmark, when supporting five
users with the aid of three receive antennas.

Index Terms—Beamforming, clustering, multiple-antenna
system, radial basis function network, symmetry.

I. INTRODUCTION

ADAPTIVE beamforming is capable of separating user
signals transmitted on the same carrier frequency, and

thus provides a practical means of supporting multiusers in a
space division multiple access scenario [1]–[7]. Classically,
this is achieved by a linear beamformer based on the minimum
mean square error (L-MMSE) solution [1], [5], [6], [8]. The
optimal solution for the linear beamforming has been shown
to be the minimum bit error rate (L-MBER) design [9] which
outperforms the L-MMSE one and is capable of operating in
hostile rank-deficient scenarios. However, digital communica-
tion signal detection can be viewed as a classification problem
[10]–[13], where the receiver detector simply classifies the
received multidimensional channel-impaired signal into the
most-likely transmitted symbol constellation point or class.
This achieves significantly better performance over the linear
detection approach at the cost of an increase in detection
complexity. We apply this nonlinear detection approach to
multiple-antenna assisted beamforming systems and derive
the optimal Bayesian nonlinear detection solution. However,
directly realizing this optimal Bayesian detector requires the
knowledge of the overall system channel matrix, which is very
difficult if not impossible to identify, since the receiver does
not have access to the interfering users’ transmitted data.

We circumvent this difficulty by proposing an adaptive ra-
dial basis function (RBF) based solution. We highlight an in-
herent symmetry property of the underlying optimal Bayesian
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nonlinear detection solution, and this naturally leads to the pro-
posal of a novel symmetric RBF (SRBF) based detector to re-
alize the true optimal nonlinear detection solution. A simple and
effective adaptive algorithm is proposed based on the enhanced

-means clustering algorithm [14], [15], which is capable of
finding the optimal RBF center positions by clustering noisy ob-
servation data. This adaptive clustering algorithm is very simple
and it is computationally no more complex than the stochastic
adaptive algorithm for realising the L-MBER solution, known
as the least bit error rate algorithm [9]. The advantage of the pro-
posed SRBF detector is demonstrated in challenging detection
scenarios, where the number of users supported is almost twice
the number of antenna array elements. The proposed adaptive
solution is shown to provide a signal-to-noise ratio (SNR) gain
in excess of 8 dB against the theoretical linear minimum bit error
rate benchmark, when supporting five users with the aid of three
receive antennas. It is also demonstrated that the performance of
the SRBF detector is robust to the choices of the RBF variance
value and the detector’s size.

II. MULTIPLE ANTENNA ASSISTED BEAMFORMING

The system supports users, where each user transmits
on the same carrier frequency. Without the loss of gener-
ality, source 1 is assumed to be the desired user and the rest
of the sources are the interfering users. For such a system,
user separation can be achieved in the spatial or angular
domain [6], [7], and the receiver is equipped with a linear
antenna array consisting of uniformly spaced elements.
Further assume that the channel is non-dispersive. Then the
symbol-rate sampled complex-valued received signal vector

can be expressed as

(1)

where is the nondispersive channel coefficient of
user , is the steering vector of source ,

is the th transmitted symbol
vector associated with the users, the -channel noise
vector is Gaussian with

, and denotes the identity
matrix. The user data symbol takes values from a binary
phase shift keying (BPSK) symbol set, i.e. . The
desired user’s SNR is given by , where

is the BPSK symbol energy, and the desired signal
to interferer ratio is defined by , for

.
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Traditionally, a linear beamforming receiver,
, is adopted to detect the desired user’s signal [1], [5]

with the associated detector’s decision given by

(2)

where denotes the complex-valued linear
beamformer’s weight vector and the real part. Classically,
the L-MMSE solution for the weight vector of the linear beam-
former is regarded as the optimal design [1], [5], [6], [8]. The
optimal weight vector designed for the linear beamformer in fact
is known to be the L-MBER solution [9], which directly min-
imises the bit error rate (BER) of the linear beamformer and is
capable of operating in rank-deficient scenarios. The L-MBER
beamformer has a larger user capacity and is significantly more
robust to the near-far effects, in comparison with the L-MMSE
design [9].

However, the true optimal multiple antenna aided beam-
forming detector is nonlinear. This is because the optimal
detection rule for the generic communication signal detection
problem is the maximum a posteriori (MAP) detection [10],
which is inherently nonlinear. We now derive this optimal
nonlinear solution for beamforming detector. Let us denote the

legitimate sequences of as , ,
and the first element of , related to the desired user, as .
The noiseless channel output takes values from the finite
signal set , which can
be divided into two subsets conditioned on the value of as

(3)

where the size of and is . We
will assume that all the transmitted data sequences ,

, have the same a priori probability. In this case, the optimal
MAP detection becomes the maximum likelihood (ML) detec-
tion [10]. Let the conditional probabilities of receiving
given be . Ac-
cording to Bayes decision theory [16], the optimal detection
strategy is

,
.

(4)

If we introduce the real-valued Bayesian decision variable

(5)

the optimal detection rule (4) is equivalent to
. From the signal model (1), the decision variable

(5) can be expressed as

(6)

where denotes the a priori probability of . Since all the
are equiprobable, . We now highlight
a symmetric property of this optimal Bayesian detector.

Proposition 1: The two subsets and are
distributed symmetrically, namely, for any signal state

Fig. 1. Geometric structure of the three-element linear array having �=2
spacing, where � is the wavelength and � denotes the angle of arrival of a user.

TABLE I
LOCATIONS OF USERS IN TERMS OF ANGLE OF ARRIVAL (AOA) FOR THE

THREE-ELEMENT ANTENNA ARRAY SYSTEM SUPPORTING FIVE USERS

there exists a signal state sat-
isfying .

Proof: Let . Then
.

Given this symmetry, the optimal Bayesian detector (6) can
be characterised as

(7)

where . The Bayesian detector has odd symmetry,
as . Although we assume a linear
array beamforming structure with BPSK modulation, the ap-
proach is actually more general, and it is equally applicable to
the narrowband multiple-input multiple-output (MIMO) system
modelled by , where the th el-
ement of the channel matrix represents the non-dispersive
channel connecting the th transmit antenna to the th receive
antenna. Extension to high-order quadrature amplitute modu-
lation (QAM) schemes is also possible. For example, for the
4-QAM modulation, the noiseless signal state set can be di-
vided into the four subsets and the Bayesian decision involves
the computation of the four conditional probabilities.

The Bayesian detector requires the channel state set . If
the system matrix is known, this state set can be computed.
However, the receiver only has access to , not ,
during training. Thus identifying is an extremely challenging
problem, and it is more realistic for an adaptive scheme to rely
only on the noisy observations and the corresponding
reference user’s data . We proceed to derive such an
adaptive nonlinear detector.

III. SYMMETRIC RADIAL BASIS FUNCTION DETECTOR

The proposed SRBF detector takes the form

(8)
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Fig. 2. Desired-user’s bit error rate performance for the three-element antenna
array supporting five users at the angular positions of Table I. The clustering-
based SRBF detector has N = 16 symmetric RBF nodes.

where is a real-valued nonlinear mapping realized by
the SRBF network, is the th real-valued RBF weight,
denotes the response of the th RBF node, and is the number
of RBF nodes used. We propose to adopt the following sym-
metric RBF node

(9)

where is the th complex-valued RBF center, the th real-
valued RBF variance, and the classic RBF function. In this
study, we adopt the Gaussian RBF function

(10)

The SRBF network (8) with the node structure (9) has an inher-
ently odd symmetry. A standard RBF model with the RBF node
defined by , by contrast, cannot guarantee
odd symmetry, particularly when the RBF centers are generated
from noisy training data.

It is obvious that we can set all the RBF weights
and all the RBF variances , where is an estimated

. Furthermore, if we use the set of signal states as the
RBF centers of this SRBF detector, then it realizes exactly the
optimal Bayesian performance. As mentioned previously, how-
ever, we can only obtain the RBF centers based on the noisy ob-
servations , possibly with the aid of the reference user’s
data . We propose to modify the enhanced -means clus-
tering algorithm [14], [15] to perform this task, which is sum-
marized as follows. During training, the following clustering al-
gorithm is used to update the RBF centers

(11)

where

(12)

and is the step size. The membership function is de-
fined as

(13)
where is the variation of the th cluster. In order to estimate
the associated variation , the following updating rule is used:

(14)
where is a constant slightly less than 1.0, e.g. .
The initial variations , , are set to the same small positive
number.

The enhanced -means clustering algorithm is guaranteed to
converge to the optimal center configuration if the learning rate

is self-adjusting based on an entropy formula or it is fixed
to a positive constant that is not to large [14]. Note that the op-
timal center configuration in our case is the signal state set .
During data transmission, the detector’s decision can be
used to substitute in (12). The estimated noise variance

is used as the RBF variance. The performance of the SRBF
detector is not overly sensitive to the value of the RBF variance
used, and it is known that there exists a large range of the RBF
variance values which enable the SRBF detector to achieve the
optimal Bayesian performance. This will also be demonstrated
in the simulation study. This robustness to the value of the RBF
variance is a consequence of the Bayesian detector’s robustness
to the noise variance used. It has been shown [13] that the
performance of the Bayesian detectors using and to
substitute the noise variance is indistinguishable from that
of the exact Bayesian solution. The true SRBF model size
is generally unknown. The influence of the SRBF model size to
its performance will be investigated in the simulation study.

IV. SIMULATION STUDY

The simulated beamforming system consisted of three-ele-
ment linear antenna array and supported users. Fig. 1
shows the array geometric structure and Table I lists the loca-
tions of the five users with respect to the antenna array. The
simulated narrowband channels were , ,
and the desired user and all the interfering users had an equal
signal power. Therefore, for . The BER
performance of the two benchmarks, the L-MBER beamformer
and the Bayesian detector, are shown in Fig. 2. The size of the
Bayesian detector is . Therefore we chose a 16-center
SRBF detector with the RBF variance set to . The first
data points were used as the initial centers . The conver-
gence of the proposed clustering algorithm was assessed based
on the following Euclidean distance metric:

(15)

The initial clustering variations were set to 0.01 and the
adaptive gain for updating the clustering variations was set to

. Fig. 3 depicts the learning curves of the clustering
algorithm averaged over five runs for three different values of
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Fig. 3. Learning curve of the clustering-based SRBF detector averaged over
5 runs for the three-element antenna array supporting five users at the angular
positions of Table I, where SNR = 5 dB and the SRBF detector hasN = 16

symmetric RBF nodes.

Fig. 4. Influence of the RBF variance to the bit error rate performance of the
SRBF detector for the three-element antenna array supporting five users at the
angular positions of Table I, where SNR = 5 dB and the SRBF detector has
N = 16 symmetric RBF nodes.

the step size , given . The BER of the clus-
tering-based SRBF detector is also plotted in Fig. 2, in com-
parison with the optimal Bayesian detector and the theoretical
L-MBER detector. We also studied the influence of the RBF
variance. For the same conditions in Fig. 3, it was observed that
the SRBF detector approached the Bayesian performance given
the RBF variance in the range of to , as can be ob-
served in Fig. 4. This confirms that the performance of the SRBF
detector is robust to the value of its RBF variance. The influence
of the SRBF model size to the detector’s performance was next
investigated. Given , the BER performance of the
clustering-based SRBF detector with different number of RBF
nodes after convergence are depicted in Fig. 5.

V. CONCLUSIONS

A SRBF network has been proposed for nonlinear detection,
which substantially outperforms previous solutions found in
the literature in the challenging scenario of supporting almost
twice as many users, as the number of antenna elements in
multiple-antenna aided beamforming systems. An adaptive
algorithm based on the enhanced -means clustering algo-

Fig. 5. Influence of the SRBF model size to its bit error rate performance for
the three-element antenna array supporting five users at the angular positions of
Table I, where SNR = 5 dB.

rithm has been derived for training the SRBF detector. It has
been shown that this adaptive SRBF detector is capable of
approaching the optimal Bayesian detection performance by
clustering noisy observations. The proposed adaptive solution
provides an SNR gain in excess of 8 dB against the powerful
linear minimum bit error rate benchmark, when supporting five
users with the aid of three receive antennas.
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