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TABLE II
AVERAGE TEST ERRORS ERROR RATE (IN PERCENT) WITH " = 1e � 6

and Euclidean distances is inconclusive from our experiments, and we
then decided to only report the results by Euclidean distance. It should
also be pointed out that better classification accuracy can be achieved
if we search all the optimal parameters in RSVM using the cross-vali-
dation strategy.

V. CONCLUSION

In this paper, a multidimensional maximum margin feature extrac-
tion approach for constructing a completely orthogonal basis and thus
conducting efficient dimensionality reduction, called RSVM, is pre-
sented. Theoretical analysis shows that the SVM objective function is
decreasing along the recursive components. In contrast to PCA, we use
supervised information (labels) to conduct dimensionality reduction.
Compared with LDA and regular SVM, the proposed method has no
singularity problems and can further improve the accuracy. The gen-
eral multilevel margin direction idea in this letter can be easily ex-
tended to SVM regression and several weighted SVM cases [17], [18]
helping us to achieve more accurate results. Our future work will focus
on using the recursive and multidimensional maximum margin idea to
solve multiclassifications, especially face recognition problems. it may
be that a new representing and recognizing approach for face patterns
can be expected.
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A Forward-Constrained Regression Algorithm for
Sparse Kernel Density Estimation

Xia Hong, Sheng Chen, and Chris J. Harris

Abstract—Using the classical Parzen window (PW) estimate as the target
function, the sparse kernel density estimator is constructed in a forward-
constrained regression (FCR) manner. The proposed algorithm selects sig-
nificant kernels one at a time, while the leave-one-out (LOO) test score is
minimized subject to a simple positivity constraint in each forward stage.
The model parameter estimation in each forward stage is simply the solu-
tion of jackknife parameter estimator for a single parameter, subject to the
same positivity constraint check. For each selected kernels, the associated
kernel width is updated via the Gauss–Newton method with the model pa-
rameter estimate fixed. The proposed approach is simple to implement and
the associated computational cost is very low. Numerical examples are em-
ployed to demonstrate the efficacy of the proposed approach.

Index Terms—Cross validation, jackknife parameter estimator, Parzen
window (PW), probability density function (pdf), sparse modeling.

I. INTRODUCTION

The estimation of the probability density function (pdf) from
observed data samples is a fundamental problem in many machine
learning and pattern recognition applications [1]–[3]. The Parzen
window (PW) estimate is a simple yet remarkably accurate nonpara-
metric density estimation technique [2]–[4]. A general and powerful
approach to the problem of pdf estimation is the finite mixture model
[5]. The finite mixture model includes the PW estimate as a special
case in that equal weights are adopted in the PW, with the number of
mixtures equal to the number of training data samples. A disadvantage
associated with the PW estimate is its high computational cost of the
point density estimate for a future data sample in the cases whereby
the training data set is very large. Clearly, by taking a much smaller
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number of mixture components, the finite mixture model can be re-
garded as a condensed representation of data [5]. Note that the mixing
weights in the finite mixture model need to be determined through
parametric optimization, unlike just adopting equal weights in the PW.
Much of the work in the fitting of a finite mixture model is based on
a fixed number of mixtures and the expectation–maximization (EM)
algorithms [5]. The disadvantages are as follows: 1) the predetermined
model size may not be suitable to the data and 2) the convergence
speed of EM is generally slow. Hence, it is desirable to develop new
methods of fitting a finite mixture model with the capability to infer a
minimal number of mixtures from the data efficiently.

Motivated by this, there is a considerable interest in the research into
the sparse pdf estimate. The support vector machine (SVM) density es-
timation technique has been proposed in [6] and [7], in which the den-
sity estimation problem is formulated as a supervised learning mode
while the mean absolute deviation between the empirical cumulative
distribution function and that from the model is minimized. The opti-
mization method in SVM is to solve a constrained quadratic optimiza-
tion problem. This yields to the sparsity inducing property, i.e., at op-
timality, many kernels weights are driven to zeros. The desirable prop-
erty of sparsity inducing also happens in the interesting approach of
reduced set density estimator (RSDE) [8]. The RSDE is different from
the SVM in that it is based on the minimization of integrated squared
error (ISE) between the estimator and the true density. Two efficient op-
timization algorithms were introduced for RSDE that has a complexity
of O(N2) per iteration, where N is the number of data samples, com-
pared to a standard quadratic optimization solver at O(N3).

Alternatively, a novel regression-based probability density estima-
tion method has been introduced [9], in which the empirical cumulative
distribution function was constructed in the same manner as in SVM
density estimation approach [6], as the desired response. By extending
an efficient supervised model construction method, the forward regres-
sion approach [10], the orthogonal forward regression (OFR) combined
with a leave-one-out (LOO) test score and local regularization has been
introduced [11], [12]. The regression-based idea of [9] and the ap-
proach in [11] and [12] have been extended to yield a new OFR-based
sparse density estimation algorithm [13], which is capable of automati-
cally constructing very sparse kernel density estimate with comparable
performance to that Parzen window estimate. Alternatively, a simple
and viable alternative approach has been proposed to use the kernels
directly as regressors and the target response as Parzen window esti-
mate [14]. In practice, for the implementation of any of the aforemen-
tioned approaches and the proposed approach to the massive data sets
(e.g., N > 106) with personal computers, the hybrid methods are rec-
ommended which combine the probability density estimation methods
with the use of other data reduction approaches [15].

This letter introduces a new algorithm for sparse kernel density
estimator using the classical PW as the target function and the kernels
as regressors. The proposed sparse kernel density estimator construc-
tion using forward-constrained regression algorithm (FCR-SDC) is
based on the FCR [16] in which mixing weights are estimated through
a set of parameters, each of which relates to the model at the current
regression stage and a new candidate term. In each forward stage,
the model term selection is based on the criterion of a minimal LOO
test score, subject to a simple positivity constraint. A one parameter
jackknife parameter estimator is utilized in each regression step, sub-
ject to the same positivity constraint check. For each selected kernels,
the associated kernel width is updated via the Gauss–Newton method
[17] with the model parameter estimate fixed. The proposed algorithm
has the advantage of maximal computationally efficiency due to the
following: 1) the parameter estimation is reduced to the solution of
the minimal possible number of one parameter, 2) the kernel width
updating using the Gauss–Newton method involves also the minimal

possible number of one parameter, that is the width of the selected
kernel, and 3) the positivity constraint on the mixing weights can be
easily accommodated.

II. KERNEL DENSITY ESTIMATOR

Given a finite data set consisting of N data samples, D =
fx1; . . . ;xj ; . . .xNg, where the feature vector variable xj 2 <m
follows an unknown pdf p(x), the problem under study is to find a
sparse approximation of p(x) based on D.

A general kernel-based density estimate of p(x) is given by

p̂(x;g; ���) =

N

j=1

gjK(x;xj ; �j)

subject to gj � 0; j = 1; . . . ; N; g
T
1 = 1: (1)

where g = [g1; g2; . . . ; gN ]T . gj ’s are the kernels weights.
��� = [�1; . . . ; �N ]T is kernel width vector. 1 is a vector with an
appropriate dimension and all elements as ones. K(x;xj ; �j) is a
chosen kernel function with kernel width �j . In this letter

K(x;xj ; �j) =
1

(2��2j )
m=2

exp �kx� xjk2
2�2j

(2)

is used. Let the well-known PW estimator be denoted by
p̂(x;gPar; �Par), where gPar = [gPar1 ; . . . ; gParN ]T and gParj = 1=N ,
8j. The log-likelihood for g can be formed using observed data D as
logL as

1

N

N

i=1

log p̂(xi;g; ���) =
1

N

N

i=1

log

N

j=1

gjK(xi;xj ; �j) : (3)

Note that by the law of large numbers, the log-likelihood of (3) tends
to

<

p(x) log p̂(x;g; ���)dx (4)

as N ! 1 with probability one. Equation (4) is simply the neg-
ative cross entropy or divergence between the true density p(x) and
the estimate p̂(x;g; ���). It can be shown that for a given kernel width
�j = �Par, 8j, the PW estimator gParj = 1=N , 8j, can be obtained as
an optimal estimator via the maximization of (3), respective to g sub-
ject to the constraints gj � 0, j = 1; . . . ; N , and gT1 = 1. Note that
the choice of �Par is crucial in density estimation using PW [1]. Based
on the principle of minimizing the mean integrated square error (MISE)
[1], �Par can be found so as to minimize the least squares cross-vali-
dation criterion M(�) given by [1]

1

N2

N

i;j=1

K(xi;xj ;
p
2�)� 2

N(N � 1)

N

i;j=1;j 6=i

K(xi;xj ; �)

� 1

N2

N

i;j=1

K�(xi;xj ; �) +
2

N(2��2)m=2
(5)

where K�(xi;xj ; �) = K(xi;xj ;
p
2�)� 2K(xi;xj ; �). The com-

putational cost of finding �Par is O(N2); this is scaled by the number
of grid searches set by the user.

With the PW estimator, the associated computational cost for evalu-
ating the probability density estimate for a future sample scales directly
with the sample sizeN . Therefore, it is desirable to devise a sparse rep-
resentation of p̂(x;g; ���), in which the terms are composed of a small
subset of data samples.
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Clearly, any good sparse kernel density estimator p̂(x;g; ���) should
be devised as close as possible to the unknown true density p(x). Be-
cause the PW estimators have the property of optimality, it was sug-
gested [14] that it is possible to use the PW estimator as the target of
the proposed sparse kernel density estimator. Specifically, we can write
a regression equation linking p̂(x; g; ���) and p̂(x;gPar; �Par) as

p̂(x;gPar; �Par) =

N

j=1

gjK(x;xj ; �j) + "(x) (6)

where "(x) is the modeling error at x between the sparse kernel density
estimator p̂(x;g; ���) and the PW density estimator p̂(x; gPar; �Par),
that is initially constructed based on D. The aims are to obtain gj via
minimizing some modeling error criterion, e.g., E["2(x)], and simul-
taneously, to achieve a sparse representation of p̂(x;g; ���) [with most
elements in g being zeros in (6)] subject to the constraints gj � 0,
j = 1; . . . ; N , and gT1 = 1.

III. SPARSE KERNEL DENSITY ESTIMATOR CONSTRUCTION

USING FCR ALGORITHM

Starting from an empty model, the proposed algorithm constructs
the model forwardly as in [9], [13], and [14]. However, the construc-
tion of the proposed sparse kernel density estimator is based on the idea
of the mixtures of experts network (MEN) [18] and forward-constraint
regression [16], hence it is very different from [9], [13], and [14], be-
cause no orthogonalization is incurred. In the proposed algorithm, the
kernel functions K(x;xj ; �j) with nonzero gj ’s are included into the
model in a forward manner. The final sparse kernel density estimators
are based on the kernels formed from Ds = [x01; . . . ;x

0

s], a subset of
s data samples selected from D. That is, if x6 is selected to form the
first kernel, this is denoted as x01. Let a superscript k denote the kth
forward step. At the kth forward step, the intermediate kernel density
estimator p̂(k)(x; g(k); ���) is denoted by ŷ(k)(x) as

ŷ
(k)(x) =

k

j=1

g
(k)
j K(x;x0j ; �j) (7)

where g(k)j , j = 1; . . . ; k, are the kernels weights at the kth forward

step. g(k)j � 0 and k

j=1 g
(k)
j = 1. For notational simplicity, kernel

width of the kernel being selected at jth step is still denoted by �j .

A. FCR Algorithm for Sparse Kernel Density Estimation

1) Initialization: The algorithm initially constructs a PW estimator,
in which �Par is found via minimizing M(�) given by (5) from a grid
search of � values. The kernels in the PW estimator are used as the
candidate kernels in (1), i.e., the kernel widths �j are initialized as
�
(0)
j = �(0) = �Par, 8j.  > 1 is set by the user empirically.

2) Determination of the First Kernel: The sparse kernel density
estimator p̂(x;g; ���) in (7) can be regarded as an MEN system with
the kernel functions K(x;x0j ; �

(0)) as the experts [16]. The MEN
system is initialized by determining the first expert as the first kernel
K(x;x01; �

(0)), so that

ŷ
(1)(x) = K(x;x01; �

(0)) (8)

and g(1)1 = 1. From (6) and (7)

p̂(x;gPar; �Par) = K(x;x01; �
(0)) + "(x): (9)

FromN kernelsK(x;xj ; �
(0)), j = 1; . . .N , one is to be determined

as K(x;x01; �
(0)). This is simply done by searching for the term that

produces the smallest value of mean squares modeling errors over D,
i.e.,

j1=argmin

N

i=1

[p̂(xi;g
Par
; �

Par)�K(xi;xj ; �
(0))]2; 8j

(10)

and xj is then set as x01. The mean squares modeling errors can be
further reduced by adjusting �1 using the Gauss–Newton’s method
which is modified to enable the constraint that �1 is greater than a
small threshold value set by the user, e.g., 0.01 is used here. We ini-
tialize l = 0, applying the following Gauss–Newton’s method for a
predetermined number of L iterations (e.g., L = 5 � 10)

�
(l)
1 = max �

(l�1)
1 + � �

num1

den1
; 0:01 (11)

in which

num1 =

N

i=1

"(xi)�
@

@�
K(xi;x

0

1; �)j
�=�

den1 =

N

i=1

@

@�
K(xi;x

0

1; �)j
�=�

2

(12)

with

@

@�
K(xi;x

0

1; �) = K(xi;x
0

1; �)
kxi � x

0

1k
2

�3
�
m

�
: (13)

� > 0 is a small step size. Note that "(xi) is computed from (9),
in which �0 is repeatedly replaced by �(l�1)

1 in iteration step l. Set
�1 = �

(L)
1 .

3) Determination of Subsequent Kernels: For the subsequent ker-
nels, these are initially based on using LOO test score and the jackknife
parameter estimator, followed by applying the Newton’s algorithm to
tune the width, also for L iterations. Consider the model term selection
for forward step k � 2. It can be shown that [16]

ŷ
(k)(x) = �k�1ŷ

(k�1)(x) + (1� �k�1)K(x;x0k; �
(0)) (14)

with 0 � �k�1 � 1, 8k. The right-hand side of (14) is a convex com-
bination of two terms, the current MEN system ŷ(k�1)(x) and the kth
kernelK(x;x0k; �

(0)) to be included into the model at the kth forward
step. Initially, the proposed algorithm resolves two problems simul-
taneously: 1) which kernel is to be selected as K(x;x0k; �

(0)) from
(N �k+1) candidate kernels and 2) what type of parameter estimator
is adopted for �k�1. The proposed algorithm incorporates the two as-
pects based on the LOO test score for model term selection and the
jackknife parameter estimator, subject to a simple convex constraint of
0 � �k�1 � 1. It is shown that the LOO test score for kernel selection
is very easy to compute due to the fact that only one unknown param-
eter �k�1 is involved in the FCR procedure.

From (6), (7), and (14), we have

p̂(x;gPar; �Par)

= �k�1ŷ
(k�1)(x) + (1� �k�1)K(x;x0k; �

(0)) + "(x): (15)

With N data samples, we define p̂
Par = [p̂(x1; g

Par; �Par);
. . . ; p̂(xN ; gPar; �Par)]T , ŷ(k�1)=[ŷ(k�1)(x1); . . . ; ŷ

(k�1)(xN )]T ;
   = [K(x1;x

0

k; �
(0)); . . . ; K(xN ;x

0

k; �
(0))]T , and """ = ["(x1);

. . . ; "(xN)]T . Then, (15) can be rewritten in the vector form as

p̂
Par = �k�1ŷ

(k�1) + (1� �k�1)   + """ (16)
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or

t = �k�1w + """ (17)

with t = [t1; . . . ; tN ]T = p̂
Par �    and w = [w1; . . . ; wN ]T =

ŷ
(k�1) �    .
We minimize the loss function J = """T""" with respect to �k�1 to

yield the least squares solution

�
LS
k�1 =

w
T
t

wTw
=
bk�1

ak�1
(18)

where bk�1 = w
T
t and ak�1 = w

T
w.

The kth step of the MEN system involves the selection of
K(x; x0k; �

(0)). Note that by using each of the (N � k + 1) can-
didate kernels to form    , in turn, (18) is repeatedly calculated. For
some candidate kernels, the solution may not satisfy the constraints
0 � �LSk�1 � 1. These kernels will then not be considered to be
appropriate.

For all model terms which satisfy the constraints 0 � �LSk�1 � 1, the
following proposed model term selection algorithm is applied, which
combines the LOO cross validation with the jackknife parameter esti-
mator for �k�1 [given by (21)], subject to 0 � �k�1 � 1.

The LOO cross validation involves the removal of each xj , in turn,
from the estimation data setD, j = 1; . . . ; N . The removed data point
is used as a test point for the model constructed using the modified data
set. It is easy to verify that the least squares solution using (D nxj ), is
given by

�
(�j)
k�1 =

bk�1 � wjtj

ak�1 � w2
j

; j = 1; . . . ; N (19)

and the mean squares of LOO errors "(�j)(xj) are given by

Jk = Ef["(�j)(xj)]
2g =

1

N

N

j=1

tj � �
(�j)
k�1wj

2

: (20)

It is known that the jackknife parameter estimator is able to improve
the accuracy of parameter estimation [19], [20]. The jackknife param-
eter estimator for �k�1 given by

�k�1 = �
LS
k�1 �

N � 1

N

N

j=1

�
(�j)
k�1 (21)

is employed for parameter estimation. Although, in general, the jack-
knife parameter estimator is regarded as computationally intensive, the
additional computation is minimal in the proposed algorithm. This is
because, in the FCR procedure, only a minimal number of one param-
eter �(�j)k�1 , j = 1; . . . ; N , is involved for each candidate term. In ad-
dition, most of the calculation in parameter estimation can be regarded
as the byproducts of the previous LOO cross-validation procedure.

For all model terms which satisfy the constraints 0 � �LSk�1 � 1,
(19)–(21) are repeatedly calculated. Among all solutions satisfying the
constraints 0 � �k�1 � 1, the data point that produces the smallest
Jk is selected as x0k and then used to form kernel K(x;x0k; �

(0)).
Next, we adjust the width for K(x;x0k; �

(0)) using the
Gauss–Newton’s method [17]. We initialize the iteration step l = 0,
applying the following iteration for L steps:

�
(l)
k = max �

(l�1)
k +

�

1� �k�1
�

numk

denk
; 0:01 : (22)

numk and denk are computed using (12) and (13), but with num1 and
den1 replaced by numk and denk . x01 is also replaced by x0k in both
(12) and (13). Also note that "(xi) is repeatedly computed from (14),

in which �0 needs to be replaced by �(l�1)
k in each iteration. We set

�k = �
(L)
k .

The previous procedure iterates for a finite number of forward steps,
with k increasing by one each step until the final model of size s (s�
N ) achieves a satisfactory modeling performance. In this letter, we ter-
minate the procedure when the accuracy of the sparse kernel density
estimator p̂(x;g; ���) is sufficiently close to that of the PW density esti-
mator p̂(x;gPar; �Par).

4) Calculating Mixing Weights: The parameter g(s)j is readily com-
puted by applying the recursion given by [16]

g
(s)
j =�s�1g

(s�1)
j ; j = 1; . . . ; s� 1

g
(s)
s =1� �s�1 (23)

with g(1)1 = 1.

IV. COMPARATIVE STUDY AND ILLUSTRATIVE EXAMPLES

A. Comparison With Other Approaches

The other four methods used for comparison are as follows: 1) the
PW estimate, 2) the sparse density construction (SDC) algorithm [13],
3) the sparse kernel density construction (SKD) algorithm [14], and
4) the reduced set density estimator with multiplicative nonnegative
quadratic programming (RSDE-MNQP) [8], [21]. Before proceeding
to the numerical examples, we discuss the similarities and differences
among these approaches and highlight the computational advantages
of the proposed approach.

1) The sparse kernel density estimator involves the determination of
the model structure of (1) where most elements in g are zeros.
Either this can be achieved by solving constrained quadratic opti-
mization problem which initially work on the full model [6]–[8],
or alternatively, significant model terms are selected one at a time
forwardly [9], [13], [14] and the proposed approach and these
methods initially work on an empty model.

2) For all algorithms including PW, there are preparation stages for
setting up regression matrices, which involve cross validation for
optimal width determination. The computation costs are at a sim-
ilar level. For illustration, the real recorded running times of eval-
uating (5) using Matlab 6.5 with a Pentium-4 CPU 1.70 GHz, 384
MB are 19 and 32 s for Examples 1 and 2, respectively, in the pro-
posed approach, where the number of grid searches was set as 10.
The remaining part of the computational cost of different ap-
proaches except the PW is outlined in Table I. In Table I, the total
computational cost is estimated via CostA � CostB + CostC .
The real-time estimate is given by the mean of the running times,
recorded using the same machine for performing the number of
operations indicated in the previous column, based on vector
operations of length N . For the quadratic-optimization-based ap-
proaches [6]–[8], the main computational cost is from quadratic
programming. The RSDE-MNQP, one of the simplest approaches
based on quadratic programming, is used for illustration. The
computation cost per iteration in RSDE-MNQP is small at
O(N2). This cost needs to be multiplied by the number of itera-
tions � that is required in order to achieve convergence, which is
set by the user.
For the proposed approach and the OFR-based approaches, e.g.,
[13] and [14], the main computation costs are from the associated
forward regression algorithms. For the OFR-based approaches,
e.g., [13] and [14], the cost is approximated by a single term as
the upper bound (in the case of excluding the cost of constraint
check as used in [13]) to simplify the formula. The total number
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TABLE I
COMPARISON OF THE MAIN COMPUTATIONAL COST BETWEEN DIFFERENT APPROACHES

of candidate terms used for evaluation is at s(N � s=2), where s
is the number of kernels in the determined subset, and this is then
multiplied by the maximum number of multiplications required
per candidate term. CostC is derived similarly from the multiples
(ten times) ofCostA (withN replaced by s) and that of the RSDE-
MNQP (with N replaced by the final model size nI ).
For the proposed approach, there are three components in CostA
that of the first regression step, the kth regression step (k > 1),
and the Gauss–Newton’s method. For the kth regression step (k >
1), count the total number of candidate terms used for evaluation
at (s�1)(N�(s�1)=2), and this is then multiplied by the mean
of the number of multiplications (np) required per candidate term
[np is eithermax(np) for candidate term with �LSk�1 satisfying the
constraint, or min(np), otherwise, both at O(N)].

3) A key difference between SDC [13] with both the proposed al-
gorithm and SKD [14] is the difference in forming the regression
models. In SDC, the regressors are x

�1

K(u;xj ; �)du, (which
could be generated using erf:m in Matlab). However, in both SDC
and the proposed algorithm, the regressors are simply the kernels
K(x;xj ; �), of which the evaluation is much faster. The mean
running time for exp:m is around 15% of that for erf:m in Matlab.
The target functions in the associated regression models are also
different. In the SDC, the empirical distribution function (given
by [13, eq. (8)]) is constructed following the idea of [6], whereas
in SKD and the proposed algorithm, the PW estimate is used. The
running time for evaluating these two target functions are similar,
if the width in PW estimate is given. If the computation cost re-
quired for the optimization of the width in PW estimate is taken
into account, e.g., using a grid search via (5), it is reasonable to
consider that the computational cost of forming the regression
models in the three algorithms is comparable.

4) Despite the fact that both the SDC and the SKD use LOO test
score and local regularization for model term selection [11], [12],
there are differences between the SDC and the SKD. In the SDC,
the nonnegative constraint condition is checked for each candi-
date terms to ensure that the constraint is satisfied during the OFR
procedure. Clearly, the nonnegative constraint condition check in-
curs additional computation cost. In SKD, the OFR procedure is
applied without checking the nonnegative constraints, so that only
a subset model is found, with its coefficients unconstrained. Fol-
lowing this, a final MNQP step is applied, which is modified from
[8]. This extra step recalculates the weighting coefficients so as
to ensure that the nonnegative constraint is satisfied. This extra
MNQP is fast due to the fact that it is based on a very small subset
of the kernels.

5) A key difference between the proposed algorithm and that of [9],
[13], and [14] is that no orthogonalization is involved. Note that

TABLE II
PERFORMANCE OF KERNEL DENSITY ESTIMATES FOR EXAMPLES 1 AND 2.

in the proposed FCR-SDC approach, the regression model is in
the same form as the SKD [14], but is different from that of the
SDC [13]. For both [13] and [14], there are additional stages, i.e.,
of determining the regularization parameters in the SDC and SKD
and the MNQP step for SKD. These extra stages bring the benefits
of the superb sparsity and the excellent model generalization of the
final models at some additional small computational cost CostC .

6) A unique feature of the proposed algorithm is that each kernel
has its individually tuned width. Note that in Table I, the costs for
kernel width determination are not taken into account in all other
approaches. This means that the advantage of the computational
efficiency of the proposed approach is more significant.

B. Illustrative Examples

In the following examples, a data set of N points was randomly
drawn from a given distribution described in the following (N = 500
in Example 1 and N = 600 in Example 2). This was used to construct
the pdf p̂(x;g; �) using the proposed FCR-SDC approach. For each
example, the experiment was repeated for 100 different random runs.
For each random run, a separate test data set of Ntest = 10000 points
was used for evaluation according to

L1 =
1

Ntest

N

k=1

jp(xk)� p̂(xk;g; �)j: (24)

The results of the proposed method in comparison with other ap-
proaches are shown in Table II(a) and (b), where the results of the
SDC and SKD are quoted from [13] and [14]. The number of iterations
for SKDE-MNQP was set as 3000. The number of iterations for
Gauss–Newton algorithm was set as L = 5.
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Example 1: The density to be estimated for this 2-D example was
given by the mixture of two densities of a Gaussian and a Laplacian, as
defined by

p(x) =
1

4�
exp �

(x1 � 2)2

2
exp �

(x2 � 2)2

2

+
0:35

8
exp(�0:7jx1 + 2j) exp(�0:5jx2 + 2j): (25)

Example 2: The density to be estimated for this 6-D example was
defined by

p(x)=
1

3

3

i=1

1

(2�)3 det(���i)
exp �

1

2
(x� ���

i
)T����1i (x����

i
)

(26)
with

���
1
= [1:0; 1:0; 1:0; 1:0; 1:0; 1:0]T

���
2
= [�1:0;�1:0;�1:0;�1:0;�1:0;�1:0]T

���
3
= [0; 0; 0; 0; 0; 0]T

���1 =diagf1:0; 2:0; 1:0; 2:0; 1:0; 2:0g

���2 =diagf2:0;1:0; 2:0; 1:0; 2:0; 1:0g

���3 =diagf2:0;1:0; 2:0; 1:0; 2:0; 1:0g:

From the results in Table II(a) and (b), it is shown that the proposed
FCR-SDC has comparable accuracy to that of PW, with an average
number of required kernels lower that 6% of the data samples, for both
examples. This means that the computational cost of the point density
estimate for a future data sample is around 6% of that of PW.

V. CONCLUSION

A simple and efficient algorithm has been introduced for the con-
struction of a sparse kernel model representation, based on a new FCR
algorithm and using the well-known PW estimate as the desired func-
tion. The algorithm integrates several important concepts including
LOO test score model term selection, the jackknife parameter estima-
tion, and the Gauss–Newton algorithm to tune the kernel width. Nu-
merical examples in comparison with different approaches are utilized
to demonstrate that the models from the proposed algorithm are able to
model the pdf with comparable accuracy, but with a much sparser rep-
resentation than PW. It can be concluded that the proposed algorithm
offers a viable alternative for sparse pdf estimation.
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