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Adaptive Minimum Symbol Error Rate Beamforming Assisted Detection
for Quadrature Amplitude Modulation

S. Chen, A. Livingstone, H.-Q. Du, and L. Hanzo

Abstract— We consider beamforming assisted detection for
multiple antenna aided multiuser systems that employ the
bandwidth efficient quadrature amplitude modulation scheme. A
minimum symbol error rate (MSER) design is proposed for the
beamforming assisted receiver, and it is shown that this MSER
design provides significant performance enhancement, in terms
of achievable symbol error rate, over the standard minimum
mean square error (MMSE) design. A sample-by-sample adaptive
algorithm, referred to as the least symbol error rate, is derived
for adaptive implementation of the MSER beamforming solution.
The proposed adaptive MSER scheme is evaluated in simulation
using Rayleigh fading channels, in comparison with the adaptive
MMSE benchmarker.

Index Terms— Adaptive beamforming, quadrature amplitude
modulation, minimum symbol error rate, minimum mean square
error.

I. INTRODUCTION

THE ever-increasing demand for mobile communication
capacity has motivated the development of antenna array

assisted spatial processing techniques [1]–[10] in order to
further improve the achievable spectral efficiency. A particular
technique that has shown real promise in achieving substantial
capacity enhancements is the use of adaptive beamforming
with antenna arrays. Adaptive beamforming is capable of
separating signals transmitted on the same carrier frequency,
and thus provides a practical means of supporting multiusers
in a space division multiple access scenario. Classically,
the beamforming process is carried out by minimising the
mean square error (MSE) between the desired output and
the actual array output, and adaptive implementation of this
minimum MSE (MMSE) design can be achieved using the
well-known least mean square (LMS) algorithm [11],[12].
For a communication system, however, it is the bit error
rate (BER) or symbol error rate (SER) that really matters.
Recently, adaptive beamforming based on directly minimising
the system’s BER has been proposed for binary phase shift
keying (BPSK) modulation [13]-[18] and quadrature phase
shift keying (QPSK) modulation [19],[20]. For the sake of im-
proving the achievable bandwidth efficiency, high-throughput
quadrature amplitude modulation (QAM) schemes [21] have
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become popular in numerous wireless network standards. The
novelty of this work is that we propose the adaptive minimum
SER (MSER) beamforming detection scheme for the multiple
antenna assisted multiuser system with QAM signalling.

MSER equalisation has been investigated for the single-
antenna single-user system with the pulse-amplitude modu-
lation (PAM) scheme [22] and with the QAM scheme [23].
Our proposed adaptive MSER design is very different from
the method proposed in [23]. Firstly, the work of [23] did
not explicitly derive the SER expression as the function of
the equaliser’s weight vector. Secondly, and more critically,
the adaptive scheme proposed in [23] was not very efficient
because adaptation does not take place at the boundary points
of the symbol constellation. For the 16-QAM scheme, for
example, it means that adaptation does not take place for half
of the symbol constellation points and thus half of the training
sequence will be wasted. Our adaptive MSER algorithm,
referred to as the least symbol error rate (LSER) here, does
not suffer from this problem and the scheme has its root
in stochastic adaptive approximation of the Parzen window
density estimation [24]-[26]. In this sense, our proposed
adaptive MSER technique is an extension of the previous
method for the PAM equalisation [22] to the interference-
limited multiuser communication system employing the QAM
scheme. However, the extension from the PAM modulation to
the QAM modulation is nontrivial, as will be clearly shown in
this work. We also concentrate on investigating the achievable
SER performance of the proposed adaptive LSER scheme in
Rayleigh fading channels.

The system considered in this study employs L receive
antennas to support S users, each having a single transmit
antenna. The classic MMSE beamforming design using an
antenna array of L elements can create a maximum for the
desired user and place L − 1 nulls in the directions of the
interfering users, provided that they are sufficiently separable
in the angular domain. Thus, the system can support up to
S = L users. If the number of users S is larger than the
number of array elements L, the system is referred to as being
rank-deficient, since the system’s transfer matrix becomes non-
invertable. By contrast, the MSER beamforming design is not
restricted by this definition of rank deficiency, which is linked
to the minimisation of the mean square error. Thus, the MSER
design offers a larger system user capacity than the traditional
MMSE design. We will show that the MSER beamforming is
more intelligent and it outperforms the MMSE beamforming
significantly, particularly in the rank-deficient senario.

II. SYSTEM MODEL

The system supports S users, and each user employs a
single transmit antenna to transmit an M -QAM signal on the

1536-1276/08$25.00 c© 2008 IEEE



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 4, APRIL 2008 1141

same carrier frequency of ω = 2πf . For such a system, user
separation can be achieved in the spatial or angular domain
[8],[10] and the receiver is equipped with a linear antenna
array consisting of L uniformly spaced elements. Assume that
the channel is narrow-band which does not induce intersymbol
interference. Then the symbol-rate received signal samples can
be expressed as

xl(k) =
S∑

i=1

Aibi(k)ejωtl(θi) + nl(k) = x̄l(k) + nl(k), (1)

for 1 ≤ l ≤ L, where tl(θi) is the relative time delay at array
element l for source i with θi being the direction of arrival for
source i, nl(k) is a complex-valued Gaussian white noise with
E[|nl(k)|2] = 2σ2

n, Ai is the narrow-band channel coefficient
for user i, and bi(k) is the kth symbol of user i which takes
the value from the M -QAM symbol set

B �
= {bl,q = ul + juq, 1 ≤ l, q ≤

√
M} (2)

with the real-part symbol �[bl,q] = ul = 2l−√
M −1 and the

imaginary-part symbol �[bl,q] = uq = 2q−√
M −1. Assume

that source 1 is the desired user and the rest of the sources are
interfering users. The desired-user signal to noise ratio (SNR)
is given by SNR= |A1|2σ2

b/2σ2
n and the desired signal to

interferer i ratio (SIR) is SIRi = A2
1/A

2
i , for 2 ≤ i ≤ S, where

σ2
b denotes the M -QAM symbol energy. The received signal

vector x(k) = [x1(k) x2(k) · · ·xL(k)]T can be expressed as

x(k) = Pb(k) + n(k) = x̄(k) + n(k), (3)

where n(k) = [n1(k) n2(k) · · ·nL(k)]T , the system matrix
P = [A1s1 A2s2 · · ·ASsS ] with the steering vector for
source i given by si = [ejωt1(θi) ejωt2(θi) · · · ejωtL(θi)]T ,
and the transmitted QAM symbol vector b(k)
= [b1(k) b2(k) · · · bS(k)]T .

A beamformer is employed, whose soft output is given by

y(k) = wHx(k) = wH(x̄(k) + n(k)) = ȳ(k) + e(k) (4)

where w = [w1 w2 · · ·wL]T is the beamformer weight
vector and e(k) is Gaussian distributed with zero mean and
E[|e(k)|2] = 2σ2

nwHw. Define the combined system impulse
response as wHP = wH [p1 p2 · · ·pS ] = [c1 c2 · · · cS ]. The
beamformer’s output can alternatively be expressed as

y(k) = c1b1(k) +
S∑

i=2

cibi(k) + e(k) (5)

where the first term in the righthand side of equation is
the desired user signal and the second term is the residual
multiuser interference. Note that, in any detection scheme,
the main tap c1 must be known, that is the desired user’s
channel and associated steering vector, namely p1 = A1s1,
must be known at the receiver. If this fact is overlooked, the
decision will be biased [27]. Provided that c1 = cR1 + jcI1

satisfies cR1 > 0 and cI1 = 0, the symbol decision b̂1(k) =
b̂R1(k) + jb̂I1(k) can be made as

b̂R1(k) =

⎧⎪⎪⎨
⎪⎪⎩

u1, if yR(k) ≤ cR1(u1 + 1)
ul, if cR1(ul − 1) < yR(k) ≤ cR1(ul + 1)

for 2 ≤ l ≤ √
M − 1

u√
M , if yR(k) > cR1(u√

M − 1)
(6)

Fig. 1. Decision thresholds associated with point c1bl,q assuming cR1 > 0
and cI1 = 0, and illustrations of symmetric distribution of Yl,q around c1bl,q .

b̂I1(k) =

⎧⎪⎪⎨
⎪⎪⎩

u1, if yI(k) ≤ cR1(u1 + 1)
uq, if cR1(uq − 1) < yI(k) ≤ cR1(uq + 1)

for 2 ≤ q ≤ √
M − 1

u√
M , if yI(k) > cR1(u√

M − 1)
(7)

where y(k) = yR(k) + jyI(k) and b̂1(k) is the estimate
for b1(k) = bR1(k) + jbI1(k). Fig. 1 depicts the decision
thresholds associated with the decision b̂1(k) = bl,q . In
general, c1 = wHp1 is complex-valued and the rotating
operation

wnew =
cold
1∣∣cold
1

∣∣wold (8)

can be used to make c1 real and positive. This rotation is a
linear operation and it does not change the system’s SER.

III. MINIMUM SYMBOL ERROR RATE BEAMFORMING

The traditional design for the beamformer (4) is the MMSE
solution, which can be implemented adaptively using the
classical LMS algorithm [11],[12]. The MMSE beamform-
ing design is computationally attractive, because it admits
the closed-form solution given the second order statistics of
the underlying system. However, since the SER is the true
performance indicator, it is desired to consider the optimal
MSER Beamforming solution. Denote the Nb = MS number
of legitimate sequences of b(k) as bi, 1 ≤ i ≤ Nb. The noise-
free part of the received signal x̄(k) only takes values from

the finite signal set defined by X �
= {x̄i = Pbi, 1 ≤ i ≤ Nb}.

The set X can be partitioned into M subsets, depending

on the value of b1(k) as Xl,q
�
= {x̄i ∈ X : b1(k) =

bl,q}, 1 ≤ l, q ≤ √
M . Similarly the noise-free part of the

beamformer’s output ȳ(k) only takes values from the scalar

set Y �
= {ȳi = wH x̄i, 1 ≤ i ≤ Nb}, and Y can be divided

into the M subsets conditioned on b1(k)

Yl,q
�
= {ȳi ∈ Y : b1(k) = bl,q}, 1 ≤ l, q ≤

√
M. (9)

The following two lemmas summarise the essential properties
of the signal subsets Yl,q , 1 ≤ l, q ≤ √

M , which are useful
in the derivation of the SER expression for the beamformer
(4).
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Lemma 1: The subsets Yl,q , 1 ≤ l, q ≤ √
M , satisfy the

shifting properties

Yl+1,q = Yl,q + 2c1, 1 ≤ l ≤
√

M − 1, (10)

Yl,q+1 = Yl,q + j2c1, 1 ≤ q ≤
√

M − 1, (11)

Yl+1,q+1 = Yl,q + (2 + j2)c1, 1 ≤ l, q ≤
√

M − 1. (12)
Proof: Any point ȳ

(l+1,q)
i ∈ Yl+1,q can be expressed as

ȳ
(l+1,q)
i = wHPb(l+1,q)

i = wHP
(
b(l,q)

i + [2 0 · · · 0]T
)

= ȳ
(l,q)
i + 2c1

where ȳ
(l,q)
i ∈ Yl,q . This proves the shifting property (10).

Proofs for the other two equations are similar.
Lemma 2: The points of Yl,q are distributed symmetrically

around the symbol point c1bl,q . This symmetric distribution
is with respect to the two horizontal decision boundaries and
the two vertical decision boundaries that separate Yl,q from
the other subsets.
Lemma 2 is a direct consequence of symmetric distribution of
the symbol constellation (2). This symmetric property is also
illustrated in Fig. 1.

For the beamformer with weight vector w, denote

PE(w) = Prob{b̂1(k) �= b1(k)}, (13)

PER
(w) = Prob{b̂R1(k) �= bR1(k)}, (14)

PEI
(w) = Prob{b̂I1(k) �= bI1(k)}. (15)

PE(w) is the total SER, while PER
(w) and PEI

(w) are the
real-part and imaginary-part SERs, respectively. It is then easy
to see that the SER is given by

PE(w) = PER
(w) + PEI

(w) − PER
(w)PEI

(w). (16)

From the beamforming model (4) and the signal model (3), the
conditional probability density function (PDF) of y(k) given
b1(k) = bl,q is a Gaussian mixture (hence a non-Gaussian
PDF) defined by

p(y|bl,q) =
1

Nsb2πσ2
nwHw

Nsb∑
i=1

e
− |y−ȳ

(l,q)
i

|2

2σ2
nwHw , (17)

where Nsb = Nb/M is the size of Yl,q , ȳ
(l,q)
i = ȳ

(l,q)
Ri

+
jȳ

(l,q)
Ii

∈ Yl,q , and y = yR +jyI . Noting that c1 is real-valued
and positive and taking into account the symmetric distribution
of Yl,q (lemma 2), for 2 ≤ l ≤ √

M − 1, the conditional error
probability of b̂R1(k) �= ul given bR1(k) = ul can be shown
to be

PER,l(w) =
2

Nsb

Nsb∑
i=1

Q(g(l,q)
Ri

(w)), (18)

where

Q(u) =
1√
2π

∫ ∞

u

e−
z2
2 dz, (19)

and

g
(l,q)
Ri

(w) =
ȳ
(l,q)
Ri

− cR1 (ul − 1)

σn

√
wHw

. (20)

Further taking into account the shifting property (lemma 1),
it can be shown that

PER
(w) = γ

1
Nsb

Nsb∑
i=1

Q(g(l,q)
Ri

(w)), (21)

where γ = 2
√

M−2√
M

. It is seen that PER
can be evaluated

using (real part of) any single subset Yl,q . Similarly, PEI
can

be evaluated using (imaginary part of) any single subset Yl,q

as

PEI
(w) = γ

1
Nsb

Nsb∑
i=1

Q(g(l,q)
Ii

(w)) (22)

with

g
(l,q)
Ii

(w) =
ȳ
(l,q)
Ii

− cR1 (uq − 1)

σn

√
wHw

. (23)

Note that the SER is invariant to a positive scaling of w.
The MSER solution wMSER is defined as the weight vector

that minimises the upper bound of the SER given by

PEB
(w) = PER

(w) + PEI
(w), (24)

that is,
wMSER = arg min

w
PEB

(w). (25)

The solution obtained by minimising the upper bound (24)
is practically equivalent to that of minimising PE(w), since
the bound PE(w) < PEB

(w) is very tight, that is, PEB
(w) is

very close to the true SER PE(w). Unlike the MMSE solution,
the MSER solution does not admits a closed-form solution.
However, the gradients of PER

(w) and PEI
(w) with respect

to w can be shown to be respectively

∇PER
(w) =

γ

2Nsb

√
2πσn

√
wHw

Nsb∑
i=1

e
−
(

ȳ
(l,q)
Ri

−cR1
(ul−1)

)2
2σ2

nwHw

×
(

ȳ
(l,q)
Ri

− cR1(ul − 1)
wHw

w − x̄(l,q)
i + (ul − 1)p1

)
, (26)

∇PEI
(w) =

γ

2Nsb

√
2πσn

√
wHw

Nsb∑
i=1

e
−
(

ȳ
(l,q)
Ii

−cR1
(uq−1)

)2
2σ2

nwHw

×
(

ȳ
(l,q)
Ii

− cR1(uq − 1)
wHw

w + jx̄(l,q)
i + (uq − 1)p1

)
, (27)

where x̄(l,q)
i ∈ Xl,q . With the gradient ∇PEB

(w) =
∇PER

(w) + ∇PEI
(w), the optimisation problem (25) can

be solved iteratively using a gradient algorithm, such as the
simplified conjugate gradient algorithm [17]. The rotating
operation (8) should be applied after each iteration, to ensure
a real and positive c1.

It is worth emphasising that there exist infinitely many
global MSER solutions which forms an infinite half line
in the beamforming weight space, just as in the minimum
BER (MBER) beamforming for BPSK and QPSK systems
[17],[20]. This fact actually helps in numerical optimisation,
as any point in this line is a global MSER solution. In our
experience, we have not come across a case in which the
optimisation algorithm converges to some local minima of the
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Fig. 2. True SER and its upper bound comparison of the two beamforming
designs for the 16-QAM stationary-channel system employing three-element
antenna array to support four users with SIRi = 0 dB, 2 ≤ i ≤ 4.

SER surface. Of course, if we normalise the weight vector
to a unit length, then there exists only a single global MSER
solution, just as in the BPSK case [28],[29].

In our previous study for the MBER beamforming [17],[20]
we have demonstrated that the MBER solution offers greater
user capacity and is significantly more robust to the near-
far effects, in comparison with the MMSE benchmark. These
desired properties are equally valid in the present MSER
solution. Here we demonstrate that the true SER (16) and
its upper bound (24) are practically indistinguishable. The
beamforming system used is a 16-QAM stationary-channel
system employing three-element antenna array to support
four users, and all the interfering users and the desired user
have an equal power. The true SER PE(w) and its upper
bound PEB

(w) are plotted in Fig. 2 for both the MMSE
and MSER solutions, where it can be seen that PE(w) and
PEB

(w) are indistinguishable. This is unsurprising since the
term PER

(w)PEI
(w) is negligible in comparison with the

domainant part PER
(w) + PEI

(w).

IV. ADAPTIVE MSER BEAMFORMING

In practice, the system matrix P is unknown (except its
first column). Therefore adaptive implementation is required
to realise the MSER beamforming. To adaptively implement
the MMSE solution, the unknown second-order statistics can
be estimated based on a block of training data. Furthermore,
by considering a single-sample “estimate” of the MSE, the
stochastic adaptive algorithm known as the LMS is derived.
A similar adaptive implementation strategy can be adopted for
adaptive MSER beamforming. The PDF p(y) of y(k) can be
estimated using the Parzen window estimate [24]-[26] based
on a block of training data. This leads to an estimated SER for
the beamformer. Minimising this estimated SER based on a
gradient optimisation yields an approximated MSER solution.
To derive a sample-by-sample adaptive algorithm, consider a

Fig. 3. Locations of the user sources with respect to the three-element linear
array with λ/2 element spacing, λ being the wavelength, where θ < 65◦.

single-sample “estimate” of p(y)

p̃(y, k) =
1

2πρ2
n

e
− |y−y(k)|2

2ρ2
n (28)

and the corresponding one-sample SER “estimate”
P̃EB

(w, k). Using the instantaneous stochastic gradient
of ∇P̃EB

(w, k) = ∇P̃ER
(w, k) + ∇P̃EI

(w, k) with

∇P̃ER
(w, k) =

γ

2
√

2πρn

e
− (yR(k)−ĉR1

(k)(bR1
(k)−1))2

2ρ2
n

× (−x(k) + (bR1(k) − 1)p̂1) (29)

and

∇P̃EI
(w, k) =

γ

2
√

2πρn

e
− (yI (k)−ĉR1

(k)(bI1
(k)−1))2

2ρ2
n

× (jx(k) + (bI1(k) − 1)p̂1) (30)

gives rise to the stochastic gradient adaptive LSER algorithm

w(k + 1) = w(k) + μ
(
−∇P̃EB

(w(k), k)
)

, (31)

ĉ1(k + 1) = wH(k + 1)p̂1, (32)

w(k + 1) =
ĉ1(k + 1)
|ĉ1(k + 1)|w(k + 1), (33)

where p̂1 is an estimated p1, and (32) and (33) implement
the weight rotation operation. The step size μ and the kernel
width ρn are the two algorithmic parameters that should be
set appropriately in order to ensure an adequate performance
in terms of convergence rate and steady-state SER misadjust-
ment.

Theoretical proof for convergence of this LSER algorithm
is very difficult if not impossible and is beyond the scope of
this correspondence. We point out that this LSER algorithm
belongs to the general stochastic gradient-based adaptive al-
gorithm investigated in [30]. Therefore, the results of local
convergence analysis presented in [30] is applicable here. Our
previous investigations [22] have suggested that the LSER
algorithm behaves well, has a reasonable convergence speed,
and is consistently outperforms the LMS algorithm in terms
of the achievable SER. Influence of the two algorithmic
parameters of the LSER algorithm, namely μ and ρn, to
the SER performance will be investigated in the following
simulation. As emphasised in Section II, the column of the
system matrix associated with the desired user, namely p1,
must be known in receiver. Usually, the steering vector s1
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Fig. 4. Comparison of SER performance for the two normalised Doppler
frequencies f̄D = 10−4 and 10−3 with the minimum spatial separation
θ = 27◦. The LMS algorithm has a step size μ = 0.0002, while the LSER
algorithm has a step size μ = 0.00005 and a kernel width ρn = 4σn.

Fig. 5. Influence of the adaptive algorithm’s parameters to the SER
performance, given θ = 27◦, f̄D = 10−4 and average SNR= 15 dB.

associated with the desired user is known at receiver. The
desired user’s channel, A1, can always be estimated accurately
during training. Thus, in the following simulation study, we
assume a perfect p1 at receiver.

V. SIMULATION STUDY

The system consisted of four sources and a three-element
antenna array. Fig. 3 shows the locations of the desired source
and the interfering sources graphically, where the angular
separation between the desired user and the interfering user
4 was θ < 65◦. Note that the performance of a beamforming
receiver depends on the minimum angular separation between
the desired user and the interfering users (in this case θ),
and whether or not the desired user is at the broadside of
the antenna array is not too critical. We first performed
an extensive investigation for the stationary case, where the

Fig. 6. Influence of the adaptive algorithm’s parameters to the SER
performance, given θ = 27◦, f̄D = 10−4 and average SNR= 30 dB.

simulated channel conditions Ai, 1 ≤ i ≤ 4, were constant.
Space limitation precludes the inclusion of these stationary
results. Rather, we concentrated on presenting the fading
simulation results.

The modulation scheme was 64-QAM. Fading channels
were simulated, where magnitudes of Ai for 1 ≤ i ≤ 4 were
Rayleigh processes with the normalised Doppler frequence f̄D

and each channel Ai had the root mean power of
√

0.5 +
j
√

0.5. Thus the average SIRi = 0 dB for 2 ≤ i ≤ 4.
Continuously fluctuating fading was used, which provided a
different fading magnitude and phase for each transmitted
symbol. The transmission frame structure consisted of 50
training symbols followed by 450 data symbols. Decision-
directed adaptation was employed during data transmission, in
which the adaptive beamforming detector’s decision b̂1(k) was
used to substitute for b1(k). The SER of an adaptive beam-
forming detector was calculated using the 450 data symbols
of the frame based on Monte Carlo simulation averaging over
at least 2 × 105 frames, depending on the value of f̄D. Two
initialisations were used for the LSER algorithm, where the
initial weight vector w(0) was initialised to either the MMSE
solution (corresponding to the initial channel conditions) or
[0.1+ j0.0 0.1+ j0.0 0.1+ j0.0]T , and the performance were
observed to be very similar for these two initialisations.

Given the minimum angular separation θ = 27◦, Fig. 4
compares the SER of the adaptive LSER beamformer with
that of the LMS-based one, for the two normalised Doppler
frequencies f̄D = 10−4 and 10−3. It can be seen from Fig. 4
that the SER performance of the LSER beamformer degraded
only slightly when the fading rate increased from f̄D = 10−4

to 10−3. This demonstrates that the LSER algorithm has an
excellent tracking ability, capable of operating in fast fading
conditions. We next investigated the influence of the adaptive
algorithm’s parameters. Given f̄D = 10−4, Fig. 5 show the
influence of the adaptive algorithm’s parameters, μ for the
LMS, and μ and ρn for the LSER, on the SER performance
for a low average SNR value of 15 dB (Note this was 64-
QAM system), while Fig. 6 depicts the results for a high
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Fig. 7. Comparison of average SER performance for the normalised Doppler
frequency f̄D = 10−3 with the minimum spatial separation θ uniformly
distributed in [20◦, 50◦]. The LMS algorithm has a step size μ = 0.0002,
while the LSER algorithm has a step size μ = 0.00005 and a kernel width
ρn = 4σn.

average SNR value of 30 dB. These results also explain how
we came to use μ = 0.0002 for the LMS and μ = 0.00005
and ρn = 4σn for the LSER in the simulation. Lastly, given
f̄D = 10−3, we varied the minimum angular separation θ
uniformly in [20◦, 50◦] and averaged the SER performance.
The results are plotted in Fig. 7.

VI. CONCLUSIONS

An adaptive MSER beamforming technique has been pro-
posed for multiple antenna aided multiuser communication
systems with QAM signalling. It has been demonstrated
that the MSER beamforming design can provide significant
performance enhancement, in terms of the system SER, over
the standard MMSE design. An adaptive implementation of
the MSER beamforming solution has been realised using the
stochastic gradient adaptive algorithm known as the LSER
technique. The fading simulation results presented in this
study clearly show that the adaptive LSER beamforming is
capable of operating successfully in fast fading conditions and
it consistently outperforms the adaptive LMS beamforming
benchmark.
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