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methodology proposed in this brief can be applied to a wide range of
other neural network architectures.
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Symmetric Complex-Valued RBF Receiver for
Multiple-Antenna-Aided Wireless Systems

Shenq Chen, Lajos Hanzo, and S. Tan

Abstract—A nonlinear beamforming assisted detector is proposed
for multiple-antenna-aided wireless systems employing complex-valued
quadrature phase shift-keying modulation. By exploiting the inherent sym-
metry of the optimal Bayesian detection solution, a novel complex-valued
symmetric radial basis function (SRBF)-network-based detector is devel-
oped, which is capable of approaching the optimal Bayesian performance
using channel-impaired training data. In the uplink case, adaptive non-
linear beamforming can be efficiently implemented by estimating the
system’s channel matrix based on the least squares channel estimate.
Adaptive implementation of nonlinear beamforming in the downlink case
by contrast is much more challenging, and we adopt a cluster-variation
enhanced clustering algorithm to directly identify the SRBF center vectors
required for realizing the optimal Bayesian detector. A simulation example
is included to demonstrate the achievable performance improvement by
the proposed adaptive nonlinear beamforming solution over the theoretical
linear minimum bit error rate beamforming benchmark.

Index Terms—Beamforming, complex-valued radial basis function
(RBF) network, multiple-antenna wireless system, symmetry, unsuper-
vised clustering.

I. INTRODUCTION

The ever-increasing demand for an improved throughput in wire-
less communication has motivated the development of adaptive an-
tenna-array-assisted spatial processing techniques [1]–[12] in order to
further improve the achievable spectral efficiency. A specific technique
that has shown real promise in achieving substantial capacity enhance-
ments is constituted by adaptive beamforming. The concept of beam-
forming is traditionally defined as a linear spatial filtering. Upon appro-
priately combining the signals received by the antenna array linearly,
adaptive beamforming is capable of separating user signals transmitted
on the same carrier frequency, provided that the signal sources are
sufficiently separated in the angular domain. The name beamforming
comes from the classical interpretation of the beampattern of the linear
spatial filter. The beampattern is basically the discrete Fourier trans-
form (DFT) of the linear spatial filter’s weights. The classical beam-
forming design, which has its root in other applications, such as radar
and sonar, aims to ensure this DFT has a maximum response at the
desired signal’s direction and try to minimize its response at the inter-
fering signals’ directions. In order to create a maximum beam for the
desired user and place nulls in the directions of the interfering users,
it is necessary that the number of users supported is no more than the
number of receive antenna elements. If this condition is not met, the
system is referred to as rank-deficient or overloaded, and the classical
beamforming will fail. Moreover, the classical beamforming is “zero
forcing,” which is well known to suffer from a serious noise enhance-
ment problem. A better design for the linear beamformer is the min-
imum mean square error (L-MMSE) solution [1], [5], [7], [13], which
trades off rejecting interference from amplifying noise. The optimal so-
lution for the linear beamforming has been shown to be the minimum
bit error rate (L-MBER) design [14], [15]. The L-MBER beamforming
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outperforms the L-MMSE one, particularly in hostile rank-deficient
scenarios.

It is well known that digital communication signal detection, in
general, can be viewed as a classification problem [16]–[25], where
the receiver detector simply classifies the received multidimensional
channel-impaired signal into the most likely transmitted symbol con-
stellation point or class. For the multiple-antenna-aided beamforming
receiver, if one is willing to extend the beamforming process to non-
linear, substantial performance enhancement can be achieved over the
linear beamforming at the cost of an increased complexity. The idea
of nonlinear beamforming has recently been developed for wireless
systems with the real-valued binary phase shift-keying modulation
[26], [27], where a symmetric radial basis function (SRBF) network is
proposed to adaptively implement the optimal nonlinear beamforming
solution. This study extends nonlinear beamforming to wireless sys-
tems that employ the complex-valued quadrature phase-shift keying
(QPSK) modulation scheme. For QPSK systems, the optimal Bayesian
detection solution can be expressed as a complex-valued radial basis
function (RBF) network [28], [29]. We further exploit the inherent
symmetry of the optimal nonlinear beamforming solution and propose
a novel complex-valued SRBF network for adaptively implementing
the Bayesian beamforming solution. It is worth pointing out that our
proposed nonlinear spatial filtering approach can be interpreted as a
generalized beamforming. Instead of using the classical beampattern,
which has a rather limited application, it is natural to interpret or to
visualize the a posterior probability as the generalized “beampattern”
of this nonlinear spatial filter. Thus, the optimal design is to maximize
the a posterior probability for the desired user, which also implies to
minimize the a posterior probabilities for the interfering users.

This contribution is organized as follows. In Section II, we present
the QPSK beamforming signal model. Based on the system model
of Section II, the optimal nonlinear beamforming solution is derived
in Section III, where the inherent symmetric structure of the optimal
Bayesian detection solution is discussed, while in Section IV, the novel
complex-valued SRBF beamformer is presented and adaptive solutions
are discussed for both uplink and downlink. For the uplink scenario,
adaptive nonlinear beamforming can be realized effectively by esti-
mating the system channel matrix using the least squares channel es-
timate (LSCE). For the downlink scenario, adaptive nonlinear beam-
forming is proposed by adopting an enhanced �-means clustering al-
gorithm [26], [30]. The achievable performance of this nonlinear beam-
forming approach is demonstrated in Section V, using a simulation
example, where the two adaptive solutions are also investigated. In
Section VI, we offer our conclusions.

II. MULTIPLE-ANTENNA-ASSISTED BEAMFORMING RECEIVER

Consider a coherent wireless communication system that supports
� users, where each user transmits on the same angular carrier fre-
quency of � with a single transmit antenna. The receiver is equipped
with a linear antenna array consisting of � uniformly spaced elements,
in order to achieve user separation in the angular domain [7], [9]. As-
sume furthermore that the channel is nondispersive and hence it does
not induce intersymbol interference. Then, the symbol-rate complex-
valued received signal samples can be expressed as [1], [5]

����� �

�

���

�������	
��� �� � � 
���� � ������ � 
���� (1)

for � � � � �, where ���
�� is the relative time delay at array element
� for source �, with 
� being the direction of arrival for source �, 
����
is the complex-valued Gaussian white noise with ���
�����

�� � 	��
�,

������ denotes the noise-free part of the received signal, �� is the com-
plex-valued nondispersive channel coefficient of user �, and ����� is the

�th symbol of user �, which takes values from the QPSK symbol set,
i.e.,

����� � ���� � �� � �� ���� � �� � ��

���� � ��� �� ��	� � ��� � � (2)

Let source � be the desired user and the rest of the sources be the inter-
fering users. The average signal-to-noise ratio (SNR) of the system is
given by

SNR �
�

�

�
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����
� ��
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�

(3)

where ��
	 is the QPSK symbol energy, and the desired signal-to-inter-

ferer � ratio (SIR) is defined by SIR�
� � ����
������

�, for � �� �. The
received signal vector ���� � ������ ����� � � � ������


 can be ex-
pressed as
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���� 
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�����

 , the system’s channel matrix

� is given by

� � ����� ���� � � ����� � (5)

with the steering vector of source � given by

�� � 	��� �� � 	��� �� � � � � 	��� �� �



(6)

and���� � ������ ����� � � � ������
 is the transmitted QPSK symbol
vector.

Although a structure of uniformly spaced linear antenna array is as-
sumed for beamforming, the results can be extended to other antenna
array structures. In fact, the discussion is applicable to the generic
multiple-input–multiple-output (MIMO) communication system [7],
[9], where the ��� ��th element of the system matrix � represents the
channel coefficient connecting the �th transmit antenna to the �th re-
ceive antenna. An implicit assumption for the signal model (4) is that
all the users are symbol-synchronized. For the downlink scenario, syn-
chronous transmission of the users is guaranteed. By contrast, in an up-
link scenario, the different users are no longer automatically synchro-
nized. However, the quasi-synchronous operation of the system may be
achieved with the aid of adaptive timing advance control as in the global
system of mobile (GSM) [31]. The GSM system has a timing-advance
control accuracy of 0.25-bit duration. Since synchronous systems per-
form better than their asynchronous counterparts, the new generation
systems, such as those proposed by the third generation partnership re-
search consortium (3GPP) also consider the employment of timing-ad-
vance control.

Traditionally, a linear beamformer is adopted to detect the desired
user’s signal [1], [5]. The linear beamformer for user � is defined by
�
����� � ����� ����, where ���� � ���
� ��
� � � ���
��


 is the complex-
valued �th linear beamformer’s weight vector. The decision regarding
the transmitted symbol ����� is given by 
����� � ��
���
������ with

��
���� �

���� � �� � �� �� � � and �� � �

���� � �� � �� �� � � and �� � �

���� � ��� �� �� � � and �� � �
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(7)

where �� � ���� and �� � 	��� denote the real and imaginary parts
of �, respectively. The optimal weight vector designed for the linear
beamformer is known to be the L-MBER solution [14], [15], which di-
rectly minimizes the BER of the linear beamformer. However, we will
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show that the true optimal solution for the beamforming-aided detector
is nonlinear.

III. OPTIMAL BAYESIAN BEAMFORMING SOLUTION

Denote the �� � �� legitimate combinations of ���� as �� , � �
� � ��. The noiseless channel output ����� takes values from the
vector state set

����� � � ���� � ���� � � � � ���� (8)

The signal state set � can be divided into the four subsets conditioned
on the value of ����� as follows:

� ��� ������
� � � � � � � � ��� � ����� � ����� (9)

for � � � � �, where the size of � ��� is ��� � ����. Denote
the conditional probabilities of receiving ���� given ����� � ���� as
���������� � ������������ � �����. According to Bayes’ decision
theory [32], the optimal detection strategy is

������ � ��� � (10)

where
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� �	
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����������� (11)

If we introduce the following complex-valued Bayesian decision vari-
able [29]:

	������

�

���

���� � ���������� (12)

the optimal Bayesian detection rule (10) and (11) is equivalent to
������ � �����	�������.

The conditional probability ���������� can be expressed as
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where ��
���
� � � ���, and 
� is proportional to the a priori probability

of �����
� . Since all the ��

���
� are equiprobable, all the coefficients 
� �

�������
�
�
��

�. It can be seen from (13) that the optimal Bayesian
decision variable (12) takes the structure of a complex-valued RBF
network [28] with a Gaussian RBF function. The state subsets � ���,
� � � � �, are distributed symmetrically with respect to each other
as summarized in the following lemma.

Lemma: The four subsets � ���, � � � � �, satisfy

� ��� � � � � � ��� (14)

� �
� � � � � � ��� (15)

� ��� � � � � � ���� (16)

Proof: Consider any ��
���
� � ��

���
� � � ���, where the �th element

of ����� is ���� � �� � �. Noting � � ���� � ����

� � ������ � � � � ����� � � ���� (17)

Fig. 1. Angular locations of the four QPSK users with respect to the three-
element linear antenna array having � spacing, where is the wavelength.

This proves the relationship (14). The proofs of the other two relation-
ships are similar. Given this symmetry, the optimal Bayesian solution
(12) can alternatively be expressed as
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� ����
 � ����	�
�
��� � 	�


� ��
�
 � ����	�
��� � 	�


� ����
 � ����	�
�
�
�� � 	�
 (18)

where ��
���
� � � ��� and 
 � � is any positive constant.

IV. SYMMETRIC RADIAL BASIS FUNCTION NETWORK

Consider the problem of realizing the optimal beamforming solution
using a generic RBF network. The symmetry of the Bayesian solution
(18) should be explicitly exploited, and we propose to use the following
SRBF network for the detection of user � data:

	�������

�

�

���

����� ������� ��� �
�
�� � ����� ������� ���� �

�
��

� ��
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�
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(19)

with the decision ������ � �����	��������, where �� is the number
of RBF centers, �� are the complex-valued RBF center vectors, ����

�

for � � � � � are complex-valued RBF weights, ��� are the RBF
variances, and ��	� is the real-valued RBF. In this study, we adopt the
Gaussian function of the form

���� ��� �
�� � ������ � 	�
 � (20)

Since the number of users is usually known, the number of RBF cen-
ters can be set to �� � ���. To further exploit the structure of the
optimal Bayesian solution (18), the complex-valued RBF weights are
set to �

���
� � 
����, � � � � �, where 
 � � is a constant. Obvi-

ously, specific value of 
 does not affect detection performance. This is
simply because multiplying 	������ or 	������� by a positive number
does not alter its BER performance. Furthermore, all the RBF variances
can be set to ��� � ����, where ���� is an estimate of the noise variance.
Thus, adaptation of the SRBF network (19) becomes the task of finding
appropriately the RBF center vectors �� .

Note that the standard complex-valued RBF network [28], [29] in
the form of

	������ �

�

���

��������� ��� �
�
�� (21)
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Fig. 2. BER performance comparison of the optimal nonlinear beamforming with the optimal linear beamforming, for the three-element array system supporting
four QPSK users. In the equal power case, all four users have the same power, while in the near–far case, users 1, 2, and 4 have the same power but user 3 has 6 dB
more power than users 1, 2, and 4. The total signal power, however, is kept the same for both the EP and UEP cases. (a) User 1. (b) User 2. (c) User 3. (d) User 4.

does not guarantee to posses the same symmetry property of the op-
timal Bayesian solution (18), particularly when the RBF centers �� are
obtained directly from the channel-impaired observation data. By con-
trast, the SRBF network (19) is guaranteed to have the same symmetry
property of the optimal Bayesian solution (18).

A. Uplink Detection

In the uplink scenario, the receiver has to detect all the users’ data,
and it has access to the training symbols of all the users. The most ef-
fective way of adaptive implementation of the SRBF network detector
(19) is to estimate the system’s channel matrix � first and then use it
to calculate the state subset � ���, which specifies the optimal Bayesian
solution. Given the training data set ���������������, where � is the
number of training symbols, define the training symbol matrix and the
corresponding observation matrix as�� � ����� ���� � � ������ and
�� � ����� ���� � � ������, respectively. Then, the LSCE for � is
given by

�� � ���
�
� ���

�
�

��

� (22)

An estimated channel noise variance

���
� �

�

��
��� � �����

� (23)

is also produced as a byproduct of the LSCE.
Note that the supervised clustering algorithm of [17], [18], [21]–[25]

can in theory be applied to directly identifying the channel states �	���
in the uplink case. In practice, however, this is too inefficient in com-
parison with our proposed approach of identifying the channel matrix
�. A rule of thumb for a supervised clustering is that each cluster re-
quires at least ten data samples to converge. For the case of four QPSK
users, this requires well over 2000 training symbol vectors ���� to be
transmitted. It is far simpler to estimate the channel matrix as we sug-
gested, which requires less than 100 training symbol vectors.

B. Downlink Detection

In the downlink scenario, the task of receiver is to detect the data of
the single desired user �. During training, the receiver has the training
data of the reference user �, ������ ����������, but the receiver does
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not have access to the interfering users’ data �������, � �� �. Thus, es-
timating the system’s channel matrix� is a challenging task. It is more
feasible using the channel-impaired training data to directly adjust the
SRBF network (19) and hence to approximate the optimal Bayesian
solution. We propose to use the cluster-variation-assisted clustering al-
gorithm [26], [30] to adapt the RBF center vectors. Specifically, during
training, the RBF centers are adjusted according to

����� � ���� � �� � ������������������ ���� � ��� (24)

where

����� �

�� � ����� ����� � ����

�� � ����� ����� � ����

�� � ����� ����� � ����

�� � ����� ����� � ����

(25)

�� is the step size and the membership function ����� is defined as

����� �
�� if ������ ���

� � ������ ���
�, 	� �� 	,

�� otherwise
(26)

with ��� being the variation of the 	th cluster. In order to estimate the
associated variation ���, the following updating rule is used:

��������������������� ������������������� ����� ���� (27)

where�� is a constant slightly less than 1.0. The initial variations ������,
		, are set to the same small number.

Note that this cluster-variation-assisted clustering algorithm is an
unsupervised learning algorithm. Because the underlying symmetric
property is exploited, we only need to find a smaller set of the RBF
centers which are related to the signal subset 
 ���. In order to do so,
the desired user’s symbols ����� are used to modify the noise obser-
vation data ���� according to (25). It is known that this cluster-varia-
tion-enhanced clustering algorithm is capable of obtaining the optimal
cluster partitioning structure and all the cluster variations converge to
the same value [30]. Specifically, in our particular application, the RBF
center vectors ���� converge to the subset of the noise-free signal states
���

���
� � and all the cluster variations ����� converge to the noise variance

	
�
�.

V. SIMULATION STUDY

A three-element antenna array was designed to support four QPSK
users. Fig. 1 shows the angular positions of the four users . The simu-
lated narrowband channels were�� � ��������,� � � � 
, where ���
specified the power of user �. First, we demonstrated the performance
improvement achievable by the optimal nonlinear beamforming over
the optimal linear one. Two cases of user power distribution were con-
sidered. In the equal power (EP) case, all four users had the same signal
power, and therefore, all the SIRs were 0 dB. In the unequal power
(UEP) case, users 1, 2, and 4 had the same power but user 3 had 6 dB
more power than users 1, 2, and 4. The total signal power, however,
was kept the same for both the EP and UEP cases. Fig. 2 compares
the BER performance of the Bayesian beamforming and the L-MBER
beamforming. As expected, the Bayesian beamforming achieved much
better BER performance over the optimal linear beamforming. This
performance gain was of course obtained at the cost of an increased
complexity. Note that the horizontal axis in Fig. 2 is the average SNR
as defined in (3), not the desired user SNR.

Fig. 3. User 1 BER performance of the LSCE-based adaptive SRBF beam-
former for the EP case, given � � .

From Fig. 2, it can be seen that in the EP case the performance of the
individual linear beamformer depended on the particular user’s angular
position as well as the other users’ locations. By contrast, all the four
optimal Bayesian beamformers had the similar performance. Below a
plausible explanation for this enhanced robustness of Bayesian beam-
forming is offered, where the signal space is the same one, namely,

 , but different users partition 
 into different four subsets. In the EP
user case, the amount of interference is similar for each user. However,
the different users require a different partitioning of 
 . For users 3
and 4, this underlying partitioning is linearly nonseparable and, hence,
inherent error floors are observed for the L-MBER beamformers of
users 3 and 4. By contrast, the Bayesian beamformer, by virtue of
being the optimal nonlinear detection solution, is capable of success-
fully operating in both the linearly separable and linearly nonseparable
cases. Because the amount of interference is similar for each user, the
Bayesian beamformers of the different users exhibit a similar perfor-
mance. Moreover, the results of the UEP case shown in Fig. 2 also
confirm that the nonlinear beamforming was much more robust to the
near–far effect than the linear beamforming. Because of this remark-
able robustness property, we only concentrated on the user 1 in the
EP case when investigating adaptive implementation of the nonlinear
beamforming.

First, the LSCE-based adaptive implementation was investigated,
and Fig. 3 depicts the user 1 BER performance of the adaptive SRBF
beamformer with the different numbers of training symbols 
 , given
�
�
� � 
�

�, in comparison with the case of the perfect channel knowl-
edge. It can be seen from Fig. 3 that the LSCE-based adaptive imple-
mentation required 
 � �
 training symbols to closely approach the
optimal Bayesian performance. The performance shown in Fig. 3 was
obtained by setting the RBF variance �
�

� to the true noise variance 
�
�.

The influence of the RBF variance �
�
� used to the BER performance

of the LSCE-based adaptive SRBF beamformer is illustrated in Fig. 4,
given the SNR value of 7 dB and 
 � �
 training symbols. It can
be seen from Fig. 4 that the performance of the LSCE-based adap-
tive SRBF beamformer is not sensitive at all to the value of the RBF
variance and there exists a large range of �
�

� values that enable the
LSCE-based adaptive SRBF beamformer to match the Bayesian per-
formance.

The clustering-based adaptive SRBF beamforming was then studied.
For this example, the number of the subset channel states was ��� �
�
, and we used the first 64 data points �����, � � � � �
, as the initial
RBF centers. The initial cluster variations were set to ������ � ��� for
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Fig. 4. Influence of the RBF variance on the BER performance of the LSCE-
and clustering-based adaptive SRBF beamformers for user one of the EP case,
given SNR � 7 dB.

Fig. 5. Learning curves of the cluster algorithm for user 1 of the EP case, in
terms of Euclidean distance between the RBF centers and true channel states
averaged over ten runs, given SNR � 7 dB.

� � � � ���, and the adaptive constant for updating the cluster vari-
ations was chosen to be �� � �����. Note that the general rule is that
all the initial cluster variations ������ should be set to the same small
positive number and �� should be set to a constant slightly less than
1.0. Convergence performance of the cluster-variation-enhanced clus-
tering algorithm was assessed in the simulation based on the Euclidean
distance between the set of the RBF centers ����

�

��� and the set of the
true subset channel states ������

�
�
�

��� defined as

	
��� �
�

���

�

���

������� ��
���
�
��� (28)

Given SNR � 7 dB, Fig. 5 plots the learning curves of the clustering
algorithm in terms of the Euclidean distance (28) averaged over ten dif-
ferent random runs for the three values of the adaptive gain ��. It is seen
from Fig. 5 that for this example the best convergence performance was
achieved with �� � ���. The robustness of the clustering-based adap-
tive SRBF beamforming with respect to the value of the RBF variance
���
� used is also demonstrated in Fig. 4, while Fig. 6 compares the BER

performance of the clustering-based adaptive SRBF beamformer for
user one after convergence with that of the optimal Bayesian beam-
former, given the RBF variance ���

� � ��
�.

VI. CONCLUSION

A nonlinear-beamforming-based detector has been extended
to multiple-antenna-assisted wireless systems that employ the com-
plex-valued QPSK modulation. It has been demonstrated that nonlinear

Fig. 6. User 1 BER performance of the clustering-based adaptive SRBF beam-
former for the EP case, given � � , in comparison with the optimal
Bayesian beamforming performance.

beamforming is capable of substantially improving the achievable
system performance and significantly increasing user capacity over
the traditional linear beamforming, at the cost of an increased compu-
tational complexity. By explicitly exploiting the inherent symmetry of
the optimal Bayesian solution, a novel complex-valued SRBF network
has been proposed for adaptive nonlinear beamforming. It has been
shown that in the uplink scenario adaptive SRBF beamforming can
be implemented efficiently by estimating the system’s channel matrix
based on the LSCE. For the much more challenging downlink scenario,
the cluster-variation enhanced clustering algorithm has been adopted
to implement the adaptive SRBF beamforming. The robustness of the
adaptive SRBF beamformer with respect to the RBF variance used
has been verified in the simulation. Our future research will focus on
the extension of this complex-valued SRBF network to the generic
MIMO system in the framework of nonlinear space-time equalization,
where frequency selective channels are encountered. Further work
will also be carried out to investigate decision-directed adaptation for
the clustering algorithm in order to shorten the training length.
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