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Abstract: A blind adaptive scheme is proposed for joint maximum likelihood (ML) channel estimation and data detection of single-
input multiple-output (SIMO) systems. The joint ML optimisation over channel and data is decomposed into an iterative optimisation
loop. An efficient global optimisation algorithm called the repeated weighted boosting search is employed at the upper level to optimally
identify the unknown SIMO channel model, and the Viterbi algorithm is used at the lower level to produce the maximum likelihood
sequence estimation of the unknown data sequence. A simulation example is used to demonstrate the effectiveness of this joint ML
optimisation scheme for blind adaptive SIMO systems.
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1 Introduction

The single-input multiple-output (SIMO) system, con-
sisting of a single-antenna transmitter and a receiver
equipped with multiple antennas, has enjoyed popularity
owing to its simplicity. A space-time equaliser (STE) based
on this SIMO structure is capable of mitigating the chan-
nel impairment arising from hostile multipath propagation.
For the sake of improving the achievable system through-
put, blind adaptation of the STE is attractive, since this
avoids the reduction of the effective throughput by invoking
training. Blind space-time equalisation of the SIMO system
can be performed by directly adjusting the STE’s param-
eters using the constant modulus algorithm (CMA) type
adaptive scheme[1−5]. Blind space-time equalisation per-
formance can further be improved by aiding the CMA with
a soft decision-directed scheme[6]. Research for blind adap-
tive SIMO systems has also been focused on blind chan-
nel identification[7−9]. Once the SIMO channel impulse re-
sponses (CIRs) have been identified, various designs, such
as the minimum mean square error or minimum bit er-
ror rate[10], can be invoked for the STE. Alternatively, the
decoupled weighted iterative least squares with projection
(DW-ILSP) algorithm[11,12] can be adopted. The DW-ILSP
algorithm is a batch suboptimal EM-type algorithm, which
iteratively performs channel estimation and symbol detec-
tion.

This contribution develops a blind adaptive scheme of
joint maximum likelihood (ML) channel estimation and
data detection for the SIMO system. The proposed al-
gorithm decomposes the joint optimisation over channel
and data into an iterative optimisation loop by combining
a global optimisation method, referred to as the repeated
weighted boosting search (RWBS)[13], for an optimal es-
timation of the SIMO channel and the Viterbi algorithm
(VA)[14] for the maximum likelihood sequence estimation
of the transmitted data sequence. Specifically, at the upper
level, the RWBS algorithm searches the channel parameter
space to optimise the ML criterion, while at the lower level,
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the VA decodes data based on the given channel model
and feeds back the corresponding likelihood metric to the
RWBS algorithm. The effectiveness of this joint ML esti-
mation scheme for blind equalisation of the SIMO system
is demonstrated by a simulation example. We point out
that a genetic algorithm (GA) can be used in place of the
RWBS algorithm to optimise the SIMO channel estimate.
In this case the proposed scheme becomes an extension of
the joint ML channel and data estimation scheme using the
GA originally developed for the single-input single-output
(SISO) system[15].

2 The proposed blind joint ML estima-
tion algorithm

Consider the SIMO system employing a single transmit-
ter antenna and L (> 1) receiver antennas. The symbol-rate
sampled antennas’ outputs xl(k), 1 ≤ l ≤ L, are given by

xl(k) =

nc−1X
i=0

ci,ls(k − i) + nl(k) (1)

where nl(k) is the complex-valued Gaussian white noise as-
sociated with the lth channel and E[|nl(k)|2] = 2σ2

n, {s(k)}
is the transmitted symbol sequence and is assumed to take
values from the quadrature phase shift keying (QPSK) sym-
bol set {±1± j}, and ci,l are the CIR taps associated with
the lth receive antenna. For notational simplicity, we have
assumed that each of the L channels has the same length
of nc. Let

xxx = [x1(1) x1(2) · · ·x1(N) x2(1) · · ·xL(N)]T (2)

sss = [s(−nc + 2) · · · s(0) s(1) · · · s(N)]T (3)

ccc = [c0,1 c1,1 · · · cnc−1,1 c0,2 · · · cnc−1,L]T (4)

be the vector of N × L received signal samples, the corre-
sponding transmitted data sequence and the vector of the
SIMO CIRs, respectively. The probability density function
of the received data vector xxx conditioned on the SIMO CIR
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ccc and the symbol vector sss is

p(xxx|ccc,sss) =
1

(2πσ2
n)NL

×

e
− 1

2σ2
n

PN
k=1

PL
l=1|xl(k)−Pnc−1

i=0 ci,ls(k−i)|2
. (5)

The joint ML estimate of ccc and sss is obtained by max-
imising p(xxx|ccc,sss) over ccc and sss jointly. Equivalently, the joint
ML estimate is the minimum of the cost function

JML(ĉcc, ŝss) =
1

N

NX

k=1

LX

l=1

˛̨
˛̨
˛xl(k)−

nc−1X
i=0

ĉi,lŝ(k − i)

˛̨
˛̨
˛

2

(6)

namely

(ĉcc∗, ŝss∗) = arg

»
min
ĉcc,ŝss

JML(ĉcc, ŝss)

–
. (7)

The joint minimisation process (7) can also be solved using
an iterative loop first over the data sequences ŝss and then
over all the possible channels ĉcc:

(ĉcc∗, ŝss∗) = arg

»
min

ĉcc

„
min

ŝss
JML(ĉcc, ŝss)

«–
. (8)

The inner or lower-level optimisation can readily be carried
out using the standard VA. In order to guarantee a joint ML
estimate, the search algorithm used in the outer or upper-
level optimisation should be capable of finding a global-
optimal or near optimal channel estimate efficiently. We
employ the RWBS guided random search algorithm[13] to
perform the outer optimisation task. The detailed RWBS
algorithm is given in Appendix. The proposed blind joint
ML optimisation scheme can now be summarised.
Outer level optimisation. The RWBS algorithm
searches the SIMO channel parameter space to find a global
optimal estimate ĉcc∗ by minimising the mean square error
(MSE)

JMSE(ĉcc) = JML(ĉcc, s̃ss∗) (9)

Inner level optimisation. Given the channel estimate
ĉcc, the VA provides the ML decoded data sequence s̃ss∗, and
feeds back the corresponding value of the likelihood metric
JML(ĉcc, s̃ss∗) to the upper level.

Let CVA be the complexity of the VA required to de-
code a data sequence of N × L samples, and denote NVA

the total number of VA calls required for the RWBS algo-
rithm to converge. The complexity of the proposed scheme
is obviously NVA × CVA. The RWBS algorithm is a sim-
ple yet efficient global search algorithm. In several global
optimisation applications investigated in [13], including the
blind joint ML channel estimation and data detection for
the SISO system, the RWBS algorithm achieved a similar
convergence speed as the GA and was seen to be more ac-
curate than the GA. The RWBS algorithm has additional
advantages of requiring minimum programming effort and
having fewer algorithmic parameters that require to set.

3 Simulation example

In the simulation, the number of receiver antennas was
L = 4, the transmitted data symbols were QPSK, and the
SIMO CIRs, listed in Table 1, were simulated. The length

of data samples was N = 50. In practice, the value of
the likelihood metric JMSE(ĉcc) is all that the upper level
optimiser can see, and the convergence of the algorithm
can only be observed through the MSE (9). In simulation,
the performance of the algorithm can also be assessed by
the mean tap error defined as

MTE = ‖ccc− a · ĉcc‖2 (10)

where

a =

8
>>><
>>>:

+1, if ĉ → +c

−1, if ĉ → −c

−j, if ĉ → +jc

+j, if ĉ → −jc

(11)

Note that since (ĉcc∗, ŝss∗), (−ĉcc∗,−ŝss∗), (−jĉcc∗, +jŝss∗) and
(+jĉcc∗,−jŝss∗) are all the solutions of the joint ML estima-
tion problem (7), the channel estimate ĉcc can converges to
ccc, −ccc, jccc or −jccc.

Fig. 1 MSE against number of VA evaluations averaged over

50 runs using the RWBS for the SIMO channel listed in

Table 1. The length of data samples N = 50.

Figs. 1 and 2 show the evolutions of the MSE and MTE
averaged over 50 runs and for different signal to noise ratios
(SNR), respectively, obtained by the proposed blind joint
ML optimisation scheme using the RWBS. From Fig. 1,
it can be seen that the MSE converges to the noise floor.
Phase ambiguity of 90◦, 180◦ or 270◦ associated with the
blind ML estimate for sss cannot be resolved by the blind
adaptive scheme itself. In practice, this ambiguity is re-
solved either by adopting differential encoding or by em-
ploying a few pilot training symbols. We adopted the com-
plete blind adaptive scheme of using differential encoding.
Fig. 3 depicts the bit error rate (BER) of the blind joint
ML optimisation scheme with differential encoding, in com-
parison with the BERs of the optimal maximum likelihood
sequence estimation in the known channel case with and
without differential encoding. It is seen that the proposed
blind scheme only induces half dB degradation in SNR com-
pared with the optimal solution with differential encoding.

We also used the GA to perform the upper-level opti-
misation, and the results obtained by this GA-based blind
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Table 1 The simulated SIMO system

Channel Channel impulse response

1 0.365 2−0.273 9j 0.730 4+0.182 5j -0.440 2+0.176 1j

2 0.278 3+0.237 6j −0.636 2+0.103 9j 0.667 1−0.074 1j

3 −0.639 3+0.249 4j −0.516 9−0.308 4j 0.365 1+0.182 6j

4 −0.153 9+0.692 8j −0.538 9−0.077 0j 0.268 3−0.357 8j

Fig. 2 MTE against number of VA evaluations averaged over

50 runs using the RWBS for the SIMO channel listed in

Table 1. The length of data samples N = 50.

joint ML estimation scheme are presented in Figs. 4 and
5. Comparing Fig. 1 with Fig. 4, it can be seen that both
the RWBS and GA based schemes have similar convergence
speed in terms of the total number of required VA evalua-
tions. It can also be seen that the true estimation accuracy
of the RWBS-based scheme is more accurate than that of
the GA-based one, as confirmed by comparing Fig. 2 with
Fig. 5.

All the above results were obtained under the assump-
tion that the correct SIMO CIR length nc = 3 was known.
In reality, the CIR length nc is unknown and has to be esti-
mated. Fig. 6 shows the MSE of the blind joint ML scheme
using the RWBS optimiser, as a function of the estimated
channel length. It can be seen that the true channel length
nc = 3 was correctly identified by the blind joint ML opti-
misation scheme.

4 Conclusions

A batch scheme using the global optimisation method,
called the RWBS, has been developed for blind space-time
equalisation of the SIMO system based on the joint ML
channel estimation and data detection. The proposed al-
gorithm provides the best performance over other types of
blind adaptive schemes for SIMO systems at the expense of
computational complexity. Our simulation study has shown
that this blind joint ML optimisation scheme requires very
few received data samples to achieve a near optimal so-
lution of the maximum likelihood sequence estimation for
data detection.

Fig. 3 Comparison of bit error rate performance using the ML

sequence detection for the SIMO channel listed in Table 1. The

length of data samples for the blind scheme is N = 50.

Appendix. Repeated weighted boosting
search

Solve the generic optimisation problem

min
uuu∈U

J(uuu) (12)

where U defines the feasible set of uuu, with the RWBS
algorithm[13]. The algorithm is detailed in the following.

Specify the algorithmic parameters: population size PS ,
number of generations in the repeated search NG, and num-
ber of iterations in the weighted boosting search NB .
Outer loop: generations For (g = 1; g ≤ NG; g = g+1)
{
Generation initialisation: Initialise the population by set-
ting uuu

(g)
1 = uuu

(g−1)
best and randomly generating rest of the pop-

ulation members uuu
(g)
i , 2 ≤ i ≤ PS , where uuu

(g−1)
best denotes the

solution found in the previous generation. If g = 1, uuu
(g)
1 is

also randomly chosen
Weighted boosting search initialisation: Assign the initial
distribution weightings δi(0) = 1

PS
, 1 ≤ i ≤ PS , for the

population, and calculate the cost function value of each
point

Ji = J(uuu
(g)
i ), 1 ≤ i ≤ PS

Inner loop: weighted boosting search For (t = 1;
t ≤ NB ; t = t + 1) {
Step 1. Boosting
1) Find

ibest = arg min
1≤i≤PS

Ji and iworst = arg max
1≤i≤PS

Ji
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Fig. 4 MSE against number of VA evaluations averaged over

50 runs using the GA for the SIMO channel listed in Table 1.

The length of data samples N = 50.

Denote uuu
(g)
best = uuu

(g)
ibest

and uuu
(g)
worst = uuu

(g)
iworst

2) Normalise the cost function values

J̄i =
JiPPS

m=1 Jm

, 1 ≤ i ≤ PS

3) Compute a weighting factor βt according to

ηt =

PSX
i=1

δi(t− 1)J̄i, βt =
ηt

1− ηt

4) Update the distribution weightings for 1 ≤ i ≤ PS

δi(t) =

(
δi(t− 1)βJ̄i

t , for βt ≤ 1

δi(t− 1)β1−J̄i
t , for βt > 1

and normalise them

δi(t) =
δi(t)PPS

m=1 δm(t)
, 1 ≤ i ≤ PS

Step 2. Parameter updating
1) Construct the (PS + 1)th point using the formula

uuuPS+1 =

PSX
i=1

δi(t)uuu
(g)
i

2) Construct the (PS + 2)th point using the formula

uuuPS+2 = uuu
(g)
best +

“
uuu

(g)
best − uuuPS+1

”

3) Compute the cost function values J(uuuPS+1) and
J(uuuPS+2) for these two points and find

i∗ = arg min
i=PS+1,PS+2

J(uuui)

4) The pair (uuui∗ , J(uuui∗)) then replaces (uuu
(g)
worst, Jiworst) in

the population

Fig. 5 MTE against number of VA evaluations averaged over

50 runs using the GA for the SIMO channel listed in Table 1.

The length of data samples N = 50.

Fig. 6 MSE as a function of the estimated SIMO channel

length using the RWBS for the SIMO channel listed in Table 1.

The length of data samples N = 50.

} End of inner loop The solution found in the gth

generation is uuu = uuu
(g)
best

} End of outer loop This yields the solution uuu = uuu
(NG)
best

The motivations and analysis of the RWBS algorithm as
a global optimiser were detailed in [13]. To guarantee a
global optimal solution as well as to achieve a fast conver-
gence, the algorithmic parameters, PS , NG and NB , need
to be set carefully. The appropriate values for these algo-
rithmic parameters depend on the dimension of uuu and how
hard the objective function is optimised. Generally, these
algorithmic parameters have to be found empirically, just
as in any global optimisation algorithm. The elitist initial-
isation is very useful, as it keeps the information obtained
by the previous search generation, which otherwise would
be lost due to the randomly sampling initialisation. In the
inner loop optimisation, there is no need for every member
of the population to converge to a (local) minimum, and it
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is sufficient to locate where the minimum lies. Thus, the
number of weighted boosting iterations, NB , can be set to
a relatively small integer. This makes the search efficient,
achieving convergence with a small number of the cost func-
tion evaluations. The population size PS and the number of
generations NG should be chosen sufficiently large so that
the parameter space is sampled sufficiently to guarantee a
global-optimal solution.
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