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Abstract. A unified approach is proposed for sparse kernel data mod-
elling that includes regression and classification as well as probability
density function estimation. The orthogonal-least-squares forward selec-
tion method based on the leave-one-out test criteria is presented within
this unified data-modelling framework to construct sparse kernel models
that generalise well. Examples from regression, classification and den-
sity estimation applications are used to illustrate the effectiveness of this
generic sparse kernel data modelling approach.

1 Introduction

The objective of modelling from data is not that the model simply fits the
training data well. Rather, the goodness of a model is characterised by its gener-
alisation capability, interpretability and ease for knowledge extraction. All these
desired properties depend crucially on the ability to construct appropriate sparse
models by the modelling process, and a basic principle in practical data modelling
is the parsimonious principle of ensuring the smallest possible model that ex-
plains the training data. Recently considerable research efforts have been focused
on sparse kernel data modelling techniques [1,2,3,4,5,6]. Sparse kernel modelling
methods typically use every training input data as a kernel. A sparse representa-
tion is then sought based on various criteria by making as many kernel weights
to (near) zero values as possible. A different approach to these sparse kernel
modelling methods is the forward selection using the orthogonal least squares
(OLS) algorithm [7,8], developed in the late 80s for nonlinear system modelling,
which remains highly popular for data modelling practicians.

Since its derivation, many enhanced variants of the OLS forward-selection
algorithm have been proposed by incorporating the new developments from ma-
chining learning and the approach has extended its application to all the areas of
data modelling, including regression, classification and kernel density estimation
[9,10,11,12,13,14,15]. This contribution continues this theme, and it presents a
unified framework for sparse kernel modelling that include all the three classes
of data modelling applications, namely, regression, classification and probability
density function (PDF) estimation. Based on this unified data-modelling frame-
work, the OLS forward selection algorithm using the leave-one-out (LOO) test

H. Yin et al. (Eds.): IDEAL 2007, LNCS 4881, pp. 27–36, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



28 S. Chen, X. Hong, and C.J. Harris

criteria and local regularisation (LR) is employed to construct sparse kernel mod-
els with excellent generalisation capability. Experimental results are included to
demonstrate the effectiveness of the OLS forward selection algorithm based on
the LOO test criteria within the proposed unified data-modelling framework.

2 A Unified Framework for Data Modelling

Given the training data set, DN = {xk, yk}N
k=1, where xk =

[x1,k x2,k · · ·xm,k]T ∈ Rm is an observation sample and yk is the target or
desired response for xk, the task is to infer a kernel model of the form

ŷ = f̂(x; βN , ρ) =
N∑

i=1

βiKρ(x,xi) (1)

to capture the underlying data generating mechanism, where ŷ denotes the model
output, βN = [β1 β2 · · · βN ]T is the kernel weight vector and Kρ(•, •) is the
chosen kernel function with a kernel width ρ. Many types of kernel function can
be employed and a commonly used one is the Gaussian function of the form

Kρ(x, ck) =
1

(2πρ2)m/2 e
−‖x−ck‖2

2ρ2 , (2)

where ck ∈ Rm is the k-th kernel centre vector. For regression and classifica-
tion problems, the factor 1

(2πρ2)m/2 can be combined into kernel weights βi. The
generic kernel model (1) is defined by placing a kernel at each of the training
input samples xk and forming a linear combination of all the bases defined on
the training data set. A sparse representation is then sought by selecting only
Ns significant regressors from the full regressor set, where Ns � N .

The underlying data generating mechanism is governed by y = f(x)+ε, where
ε is a white process representing the observation noise. For regression problems,
the unknown mapping f : Rm → R. Regression is a supervised learning problem,
as the desired response yk ∈ R for the training data point xk is given. For two-
class classification problems, the unknown mapping f : Rm → {−1, +1}. The
estimated class label for the pattern vector xk is given by ỹk = sgn(ŷk) with

sgn(y) =
{

−1, y ≤ 0,
+1, y > 0.

(3)

Classification is also a supervised learning problem, since the correct label
yk ∈ {−1, +1} for the training data point xk is provided. For PDF estimation
problems, the data {xk}N

k=1 are drawn from a unknown density f : Rm → R+.
Because f is a PDF, f(x) ≥ 0 for x ∈ Rm and

∫
Rm f(u) du = 1. Thus, a kernel in

a kernel density estimate must satisfy Kρ(x, ck) ≥ 0 and
∫
Rm Kρ(u, ck) du = 1.

Moreover the kernel weights must satisfy the nonnegative constraint

βk ≥ 0, 1 ≤ k ≤ N, (4)
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and the unity constraint
βT

N1N = 1, (5)

where 1N denotes the vector of ones with dimension N . Kernel density estimation
is an unsupervised learning problem because the desired response is unknown
for each training data point xk. This difficult is circumvented by “inventing” a
target function yk for xk, so that the problem becomes a constrained regression
one with the constraints (4) and (5). In particular, we choose yk to be the value
of the Parzen window estimate [16,17] at point xk. This choice of the desired
response for density estimation is fully justified in [13].

Let the modelling error at training data point xk be εk = yk − ŷk, where

ŷk = [Kρ(xk,x1) Kρ(xk,x2) · · · Kρ(xk,xN )] βN = φT (k)βN . (6)

Define Φ = [φ1 φ2 · · · φN ] with φk = [Kρ(x1,xk) Kρ(x2,xk) · · · Kρ(xN ,xk)]T

for 1 ≤ k ≤ N , y = [y1 y2 · · · yN ]T and ε = [ε1 ε2 · · · εN ]T . The regression model
(1) over the training data set DN can then be expressed in the matrix form

y = ΦβN + ε. (7)

Let an orthogonal decomposition of the regression matrix Φ be Φ = WAN ,
where AN is the N × N upper triangular matrix with unity diagonal elements,
and W = [w1 w2 · · ·wN ] with orthogonal columns satisfying wT

i wj = 0, if i �= j.
The regression model (7) can alternatively be expressed as

y = WgN + ε, (8)

where the weight vector gN = [g1 g2 · · · gN ]T satisfies the triangular system
ANβN = gN . The model (6) is equivalently expressed by

ŷk = wT (k)gN , (9)

where wT (k) = [wk,1 wk,2 · · · wk,N ] is the k-th row of W.

3 Orthogonal-Least-Squares Algorithm

As established in the previous section, the regression, classification and PDF
estimation can all be unified within the common regression modelling framework.
Therefore, the OLS forward selection based on the LOO test criteria and local
regularisation (OLS-LOO-LR) [10] provides an efficient algorithm to construct
a sparse kernel model that generalise well.

3.1 Sparse Kernel Regression Model Construction

The LR aided least squares solution for the weight parameter vector gN can be
obtained by minimising the following regularised error criterion [11]

JR(gN , λ) = εT ε + gT
NΛgN , (10)
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where λ = [λ1 λ2 · · · λN ]T is the vector of regularisation parameters, and Λ =
diag{λ1, λ2, · · · , λN}. Applying the evidence procedure results in the following
iterative updating formulas for the regularisation parameters [9]

λnew
i =

γold
i

N − γold

εT ε

g2
i

, 1 ≤ i ≤ N, (11)

where gi for 1 ≤ i ≤ N denote the current estimated parameter values, and

γ =
N∑

i=1

γi with γi =
wT

i wi

λi + wT
i wi

. (12)

Typically a few iterations (less than 10) are sufficient to find a (near) optimal λ.
The use of LR is known to be capable of providing very sparse solutions [2,11].

For regression, the OLS-LOO-LR algorithm selects a sparse model by incre-
mentally minimising the LOO mean square error (MSE) criterion, which is a
measure of the model’s generalisation performance [10,14,18]. At the n-th stage
of the OLS selection procedure, an n-term model is selected. The LOO test error,
denoted as ε

(n,−k)
k , for the selected n-term model is defined as [10,14]

ε
(n,−k)
k = ε

(n)
k /η

(n)
k , (13)

where ε
(n)
k is the usual n-term modelling error and η

(n)
k is the associated LOO

error weighting. The LOO MSE for the model with a size n is then defined by

Jn =
1
N

N∑

k=1

(
ε
(n,−k)
k

)2
=

1
N

N∑

k=1

(
ε
(n)
k

)2
/

(
η
(n)
k

)2
. (14)

This LOO MSE can be computed efficiently due to the fact that ε
(n)
k and η

(n)
k

can be calculated recursively according to [10,14]

ε
(n)
k = ε

(n−1)
k − wk,ngn (15)

and
η
(n)
k = η

(n−1)
k − w2

k,n/
(
wT

nwn + λn

)
, (16)

respectively, where wk,n is the k-th element of wn. The selection is carried out
as follows. At the n-th stage of the selection procedure, a model term is selected
among the remaining n to N candidates if the resulting n-term model produces
the smallest LOO MSE Jn. The selection procedure is terminated when

JNs+1 ≥ JNs , (17)

yielding an Ns-term sparse model. The LOO statistic Jn is at least locally convex
with respect to the model size n [14]. Thus, there exists an “optimal” model size
Ns such that for n ≤ Ns Jn decreases as n increases while the condition (17)
holds. The sparse regression model selection procedure is now summarised.
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Initialisation: Set λi = 10−6 for 1 ≤ i ≤ N , and set iteration index I = 1.
Step 1: Given the current λ and with the following initial conditions

ε
(0)
k = yk, η

(0)
k = 1, 1 ≤ k ≤ N, and J0 = yT y/N, (18)

use the OLS-LOO procedure [10] to select a subset model with NI terms.
Step 2: Update λ using (11) and (12) with N = NI . If the maximum iteration

number (e.g. 10) is reached, stop; otherwise set I+ = 1 and go to Step 1.

3.2 Sparse Kernel Classifier Construction

The same LOO cross validation concept [18] is adopted to provide a measure of
classifier’s generalisation capability. Denote the test output of the LOO n-term
model evaluated at the k-th data sample of DN not used in training as ŷ

(n,−k)
k .

The associated LOO signed decision variable is defined by

s
(n,−k)
k = sgn(yk)ŷ(n,−k)

k = ykŷ
(n,−k)
k , (19)

where sgn(yk) = yk since the class label yk ∈ {−1, +1}. The LOO misclassifica-
tion rate can be computed by

Jn =
1
N

N∑

k=1

Id

(
s
(n,−k)
k

)
, (20)

where the indication function is defined by Id(y) = 1 if y ≤ 0 and Id(y) = 0 if
y > 0. The LOO misclassification rate Jn can be evaluated efficiently because
s
(n,−k)
k can be calculated very fast [15]. Specifically, express the LOO signed

decision variable as s
(n,−k)
k = ψ

(n)
k /η

(n)
k . The recursive formula for η

(n)
k is given

in (16), while ψ
(n)
k can be represented using the recursive formula [15]

ψ
(n)
k = ψ

(n−1)
k + ykgnwk,n − w2

k,n/
(
wT

nwn + λn

)
. (21)

The OLS-LOO-LR algorithm described in Subsection 3.1 can readily be ap-
plied to select a sparse kernel classifier with some minor modifications. Moreover,
extensive empirical experience has suggested that all the regularisation param-
eters λi, 1 ≤ i ≤ N , can be set to a small positive constant λ, and there is no
need to update them using the evidence procedure. The sparse kernel classifier
selection procedure based on this OLS-LOO algorithm is now summarised.

Setting λ to a small positive number, and with the following initial conditions

ψ
(0)
k = 0 and η

(0)
k = 1 for 1 ≤ k ≤ N, and J0 = 1, (22)

use the OLS-LOO procedure [15] to select a subset model with Ns terms.

The LOO misclassification rate Jn is also locally convex with respect to the
classifier’s size n. Thus there exists an optimal model size Ns such that for
n ≤ Ns Jn decreases as n increases, while JNs ≤ JNs+1. Therefore the selection
procedure is automatically terminated with a subset classifier containing only
Ns significant kernels.



32 S. Chen, X. Hong, and C.J. Harris

3.3 Sparse Kernel Density Estimator Construction

Since the kernel density estimation problem can be expressed as a constrained
regression modelling, the OLS-LOO-LR algorithm detailed in Subsection 3.1
can be used to select a sparse kernel density estimate. After the structure de-
termination using the OLS-LOO-LR algorithm, a sparse Ns-term subset kernel
model is obtained. Let ANs denote the subset matrix of AN , corresponding to
the selected Ns-term subset model. The kernel weight vector βNs

, computed
from ANsβNs

= gNs , may not satisfy the constraints (4) and (5). However, we
can recalculate βNs

using the multiplicative nonnegative quadratic programming
(MNQP) algorithm [3,6]. Since Ns is very small, the extra computation involved
is small. Formally, this task is defined as follows. Find βNs

for the model

y = ΦNsβNs
+ ε, (23)

subject to the constraints

βi ≥ 0, 1 ≤ i ≤ Ns, (24)

βT
Ns

1Ns = 1, (25)

where ΦNs denotes the selected subset regression matrix and βT
Ns

=
[β1 β2 · · · βNs ]. The kernel weight vector can be obtained by solving the following
constrained nonnegative quadratic programming

min
βNs

{ 1
2βT

Ns
CNsβNs

− vT
Ns

βNs
}

s.t. βT
Ns

1Ns = 1 and βi ≥ 0, 1 ≤ i ≤ Ns,

(26)

where CNs = ΦT
Ns

ΦNs = [ci,j ] ∈ RNs×Ns is the related design matrix and
vNs = ΦT

Ns
y = [v1 v2 · · · vNs ]T . Although there exists no closed-form solution

for this optimisation problem, the solution can readily be obtained iteratively
using a modified version of the MNQP algorithm [3].

Specifically, the iterative updating equations for βNs
are given by [6,13]

r<t>
i = β<t>

i

⎛

⎝
Ns∑

j=1

ci,jβ
<t>
j

⎞

⎠
−1

, 1 ≤ i ≤ Ns, (27)

h<t> =

(
Ns∑

i=1

r<t>
i

)−1 (
1 −

Ns∑

i=1

r<t>
i vi

)
, (28)

β<t+1>
i = r<t>

i

(
vi + h<t>

)
, (29)

where the superindex <t> denotes the iteration index and h is the Lagrangian
multiplier. During the iterative procedure, some of the kernel weights may be
driven to (near) zero [3,6]. The corresponding kernels can then be removed from
the kernel model, leading to a further reduction in the subset model size.
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Table 1. Comparison of modelling accuracy for the Boston housing data set. The
results were averaged over 100 realizations and quoted as the mean±standard deviation.

algorithm model size training MSE test MSE
OLS-LOO-LR 58.6 ± 11.3 12.9690 ± 2.6628 17.4157 ± 4.6670

SVM 243.2 ± 5.3 6.7986 ± 0.4444 23.1750 ± 9.0459

4 Empirical Data Modelling Results
Boston Housing Data Set. This was a regression benchmark data set, avail-
able at the UCI repository [19]. The data set comprised 506 data points with
14 variables. The task was to predict the median house value from the remain-
ing 13 attributes. From the data set, 456 data points were randomly selected
for training and the remaining 50 data points were used to form the test set.
Because a Gaussian kernel was placed at each training data sample, there were
N = 456 candidate regressors in the full regression model (1). The kernel width
for the OLS-LOO-LR algorithm was determined via a grid-search based cross
validation. The support vector machine (SVM) algorithm with the ε-insensitive
cost function was also used to construct the regression model for this data set,
as a comparsion. The three learning parameters of the SVM algorithm, the ker-
nel width, error-band and trade-off parameters, were tuned via cross validation.
Average results were given over 100 repetitions, and the two sparse Gaussian
kernel models obtained by the OLS-LOO-LR and SVM algorithms, respectively,
are compared in Table 1.

For the particular computational platform used in the experiment, the
recorded average run time for the OLS-LOO-LR algorithm when the kernel
width was fixed was 200 times faster than the SVM algorithm when the kernel
width, error-band and trade-off parameters were chosen. It can be seen from
Table 1 that the OLS-LOO-LR algorithm achieved better modelling accuracy
with a much sparser model than the SVM algorithm. The test MSE of the SVM
algorithm was poor. This was probably because the three learning paremeters,
namely the kernel width, error-band and trade-off parameters, were not tuned
to the optimal values. For this regression problem of input dimension 13 and
data size N ≈ 500, the grid search required by the SVM algorithm to tune the
three learning parameters was expensive and the optimal values of the three
learning parameters were hard to find.

Diabetes data. This two-class classification benchmark data set was originated
in the UCI repository [19] and the data set used in the experiment was obtained
from [20]. The feature space dimension was m = 8. There were 100 realisations
of the data set, each having 468 training patterns and 300 test patterns. Seven
existing state-of-the-art radial basis function (RBF) and kernel classifiers were
compared in [20,21]. The results given in [20] were reproduced in Table 2. For
the first 5 methods studied in [20], the nonlinear RBF network with 15 opti-
mised Gaussian units was used. For the SVM algorithm with Gaussian kernel,
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Table 2. Average classification test error rate in % over the 100 realizations of the
diabetes data set. The first 7 results were quoted from [20].

algorithm test error rate model size
RBF-Network 24.29 ± 1.88 15

AdaBoost RBF-Network 26.47 ± 2.29 15
LP-Reg-AdaBoost 24.11 ± 1.90 15
QP-Reg-AdaBoost 25.39 ± 2.20 15

AdaBoost-Reg 23.79 ± 1.80 15
SVM 23.53 ± 1.73 not available

Kernel Fisher Discriminant 23.21 ± 1.63 468
OLS-LOO 23.00 ± 1.70 6.0 ± 1.0

no average model size was given in [20] but it could safely be assumed that it was
much larger than 40. The kernel Fisher discriminant was the non-sparse optimal
classifier using all the N = 468 training data samples as kernels.

The OLS-LOO algorithm was applied to construct sparse Gaussian kernel
classifiers for this data set, and the results averaged over the 100 realisations
are also listed in Table 2. It can be seen that the proposed OLS-LOO method
compared favourably with the existing benchmark RBF and kernel classifier
construction algorithms, both in terms of classification accuracy and model size.

Six-dimensional density estimation. The underlying density to be estimated
was given by

f(x) =
1
3

3∑

i=1

1

(2π)6/2

1

det1/2 |Γ i|
e−

1
2 (x−μi)

T Γ −1
i (x−μi) (30)

with
μ1 = [1.0 1.0 1.0 1.0 1.0 1.0]T ,

Γ 1 = diag{1.0, 2.0, 1.0, 2.0, 1.0, 2.0},
(31)

μ2 = [−1.0 − 1.0 − 1.0 − 1.0 − 1.0 − 1.0]T ,

Γ 2 = diag{2.0, 1.0, 2.0, 1.0, 2.0, 1.0},
(32)

μ3 = [0.0 0.0 0.0 0.0 0.0 0.0]T ,

Γ 3 = diag{2.0, 1.0, 2.0, 1.0, 2.0, 1.0}.
(33)

A training data set of N = 600 randomly drawn samples was used to construct
kernel density estimates, and a separate test data set of Ntest = 10, 000 samples
was used to calculate the L1 test error for the resulting estimate according to

L1 =
1

Ntest

Ntest∑

k=1

∣∣∣f(xk) − f̂(xk; βN , ρ)
∣∣∣ . (34)

The experiment was repeated Nrun = 100 different random runs.
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Table 3. Performance comparison for the six-dimensional three-Gaussian mixture

method L1 test error kernel number
Parzen window estimate (3.5195 ± 0.1616) × 10−5 600 ± 0

SKD estimate of [12] (4.4781 ± 1.2292) × 10−5 14.9 ± 2.1
OLS-LOO-LR/MNQP (3.1134 ± 0.5335) × 10−5 9.4 ± 1.9

Simulation was used to test the proposed combined OLS-LOO-LR and MNQP
algorithm and to compare its performance with the Parzen window estimator as
well as our previous sparse kernel density (SKD) estimation algorithm [12]. The
algorithm of [12], although also based on the OLS-LOO-LR regression frame-
work, is very different from the current combined OLS-LOO-LR and MNQP
algorithm. In particular, it transfers the kernels into the corresponding cumula-
tive distribution functions and uses the empirical distribution function calculated
on the training data set as the target function of the unknown cumulative dis-
tribution function. Moreover, in the work of [12], the unity constraint is met by
normalising the kernel weight vector of the final selected model, which is nonop-
timal, and the nonnegative constraint is ensured by adding a test to the OLS
forward selection procedure, which imposes considerable computational cost.

The optimal kernel width was found to be ρ = 0.65 for the Parzen window
estimate and ρ = 1.2 for both the previous SKD algorithm and the combined
OLS-LOO-LR and MNQP algorithm, respectively, via cross validation. The re-
sults obtained by the three density estimator are summarised in Table 3. It
can be seen that the proposed combined OLS-LOO-LR and MNQP algorithm
yielded sparser kernel density estimates with better test performance.

5 Conclusions

A regression framework has been proposed for sparse kernel modelling, which
unifies the supervised regression and classification problems as well as the un-
supervised PDF learning problem. An OLS algorithm has been developed for
selecting sparse kernel models that generalise well, based on the LOO test crite-
ria and coupled with local regularisation. For sparse kernel density estimation,
a combined approach of the OLS-LOO-LR algorithm and multiplicative non-
negative quadratic programming has been proposed, with the OLS-LOO-LR
algorithm selecting a sparse kernel density estimate while the MNQP algorithm
computing the kernel weights of the selected model to meet the constraints
for density estimate. Empirical data modelling results involving regression,
classification and density estimation have been presented to demonstrate the
effectiveness of the proposed unified data modelling framework based on the
OLS-LOO-LR algorithm, and the results shown have confirmed that this unified
sparse kernel regression framework offers a state-of-the-art for data modelling
applications.
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