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We propose a simple and computationally efficient construction algorithm for two class

linear-in-the-parameters classifiers. In order to optimize model generalization, a forward

orthogonal selection (OFS) procedure is used for minimizing the leave-one-out (LOO)

misclassification rate directly. An analytic formula and a set of forward recursive updating

formula of the LOO misclassification rate are developed and applied in the proposed

algorithm. Numerical examples are used to demonstrate that the proposed algorithm is an

excellent alternative approach to construct sparse two class classifiers in terms of performance

and computational efficiency.

Keywords: Classification; Cross validation; Forward Regression; Regularization; System identification.

1. Introduction

In most supervised learning algorithms, some system

input/output mappings are constructed as parametric

models, e.g., neural networks, kernel regression/classi-

fication models, based on observational data,

i.e., pairs of system input/output examples. The two

class classification problems can be configured into

a regression framework that solves a separating

hyperplane for two classes, with the known class

labels used as the system output examples for model

training. Models are identified according to some

objective criteria, e.g., the minimization of model

generalization errors. Note that information-based

criteria of model generalization, such as the AIC

(Akaike 1974), often include a penalty term to avoid

an oversized model, which may tend to overfit to the

training data set. Parsimonious models are also

preferable in engineering applications, since a

model’s computational complexity scales with its

model complexity. Moreover, a parsimonious model

is easier to interpret from the viewpoint of knowledge
extraction. Consequently, a practical nonlinear model-
ing principle is to find the smallest model that

generalizes well. Modeling techniques on model con-

struction/selection have be widely studied, e.g., sup-

port vector machine (SVM), relevance vector machine

(RVM), and orthogonal forward regression (OFR)

(Vapnik 1995, Hong and Harris 2001, Tipping 2001,

Scholkopf and Smola 2002). The orthogonal least

square algorithm (Chen et al. 1989) was developed as

a practical linear-in-the-parameters models construc-

tion algorithm. A large class of nonlinear representa-

tions, e.g., radial basis functions (RBF) networks and

SVM can be classified as the linear-in-the-parameters

models. An orthogonal forward selection (OFS)

procedure can be applied to construct parsimonious

two class classifiers by incrementally maximizing the

Fisher ratio of class separability measure (Mao 2002,

Chen et al. 2006b). Alternatively, the SVM is based on

the structural risk minimization (SRM) principle and

approximately minimizes an upper bound on the

generalization error (Vapnik 1995) via minimizing of

the norm of weights in the feature space*Corresponding author. Email: x.hong@reading.ac.uk
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(Vapnik 1998). The SVM is characterized by a kernel

function, lending its solution as that of the convex

quadratic programming, such that the resultant model

corresponds to a sparse model with a subset of the

training data set used as support vectors.
In regression, a fundamental concept in the evalua-

tion of model generalization capability is that of cross
validation (Stone 1974). The leave-one-out (LOO)
cross validation is often used to estimate general-

ization error for choosing among different network
architectures (Stone 1974). LOO errors can be

derived using algebraic operation rather than
actually splitting the training data set for linear-

in-the-parameters models. The calculation of LOO
errors is computational expensive. The generalized

cross validation (GCV) (Golub et al. 1979) has been
introduced as a variant of leave-one-out (LOO) cross
validation to improve computational efficiency. For

the construction of a sparse regression model that
generalizes well, regressors are incrementally appended

in an efficient forward regression procedure while
minimizing the LOO errors (Hong et al. 2003, Chen

et al. 2004).
In this article, the construction of parsimonious

linear-in-the-parameters models using LOO cross

validation for two class classifiers is considered. An
analytic formula for LOO misclassification rate is
initially derived, based on the regularized orthogonal

least squares (ROLS) parameter estimates (Chen et al.
2004). The proposed algorithm shares some common

derivations as in Hong et al. (2003) and Chen et al.
(2004), as both use the same orthogonalization

procedure. Note that in classification, the modeling
objective is often to minimize the number of

misclassified samples rather than the MSE and LOO
errors. The proposed method extends forward regres-
sion procedure in Hong et al. (2003) and Chen et al.

(2004) to classification problem by using the leave-
one-out misclassification rate, the true generalization

capability of a classifier, for model selection, rather
than the direct extension of Hong et al. (2003) and

Chen et al. (2004) of using LOO errors for model
selection. Furthermore, it is shown that the orthogo-

nalization procedure brings the advantage of calculat-
ing the LOO misclassification rate via a set of new

forward recursive updating formula at minimal
computational expense. Then, a fast two class
linear-in-the-parameters classifier construction algo-

rithm is presented using orthogonal forward selection
by directly minimizing LOO misclassification rate to

optimize the model generalization. Numerical exam-
ples are used to demonstrate the efficacy of the

proposed approach compared with other current
kernel-based classifiers.

2. Problem formulation

Consider a training data set DN ¼ fx ði Þ, yði Þg
N
i¼1, in

which yði Þ 2 f1,� 1g denotes the class type for each data
sample xði Þ 2 <n. Let a two class classifier
fðxÞ : <n! f1, � 1g be formed using the data set. The
linear-in-the-parameters classifier is given as

ŷði Þ ¼ sgnðf ði ÞÞ with f ði Þ ¼
XL
j¼1

hjpjðx ði ÞÞ ð1Þ

where pj (.) denotes the classifier kernels with a known
nonlinear basis function, such as RBF, or B-spline fuzzy
membership functions. Model (1) is very general, but the
Gaussian kernel functions pjðxÞ ¼ expf� x� cj

�� ��2=2�2g
are employed in this study, where cj 2 <

n are kernel
centers, �j are model parameters, L is the number of
regressors (kernels), and ŷði Þ is the model predicted class
label for x(i).

Taking the complete training data set DN, denoting
�ði Þ ¼ yði Þ � f ði Þ as the modeling residual sequence
with zero mean, equation (1) can be written in vector
form as

y ¼ Phþ� ð2Þ

where �¼ [�(1), . . . , �(N)]T is the residual vector, and
P ¼ ½p1, . . . , pL� 2 <

N�L is the regression matrix, with
column vectors pj¼ [pj(x(1)), . . . , pj (x(N))]T. Denote the
row vectors in P as p(i)¼ [p1(i), . . . , pL(i)]

T, i¼ 1, . . . ,N.
Geometrically, a set of parameter vectors �¼ [�1, . . . , �L]
defines a hyperplane by

XL
j¼1

hjpj ðxÞ ¼ 0 ð3Þ

dividing the data into two classes.
An orthogonal decomposition of P is

P ¼WA ð4Þ

where A¼ {aij} is an L�L unit upper triangular matrix
and W is an N�L matrix with orthogonal columns that
satisfy

WTW ¼ diagf�1, . . . , �Lg ð5Þ

with

�j ¼ wT
j wj, j ¼ 1, . . . ,L ð6Þ

For W, the column vectors are denoted as
wj¼ [wj(1)), . . . ,wj(N)]T, j¼ 1, . . . ,L, and the row vectors
as w(i)¼ [w1(i ), . . . ,wL(i )]

T, i ¼ 1, . . . ,N.

120 X. Hong et al.
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Equation (2) can now be expressed as

y ¼ ðPA�1ÞðA�Þ þ� ¼W!þ� ð7Þ

in which � ¼ [�1, . . . , �L]
T is an auxiliary vector, for

which the regularized orthogonal least squares (ROLS)
parameter estimates (Chen et al. 2004) is

�j ¼
wT
j y

�j þ �j
, j ¼ 1, . . . ,L ð8Þ

in which �j are positive regularization parameters. If all
�j is set as zero, the parameter estimator is simply the
least squares estimator. The original model coefficient
vector �¼ [�1, . . . , �L]

T can then be calculated from
A�¼! through back-substitution.
The regularization parameters, �j, can be optimized

iteratively using an evidence procedure (Mackay
1992, Tipping 2001, Chen et al. 2004). The
following updating formulae quoted from Chen et al.
(2004) are used to determine the regularization
parameters.

�newj ¼
�newj

N� �old
�T�

N� �2j
, j ¼ 1, . . . ,L

where �j ¼
wT
j wj

�j þ wT
j wj

and � ¼
XL
j¼1

�j:

ð9Þ

3. Leave-one-out misclassification rate

The misclassification rate for a given two class classifier
based on (1) can be evaluated based on the misclassified
data examples as

J ¼ 1
N

XN
i¼1

Id½yði Þf ði Þ� ð10Þ

where Id(.) denotes the misclassification indication
function for a data example, and is defined as

IdðvÞ ¼
1 if v50
0 if v � 0

�

Cross-validation criteria are metrics that measure
a model’s generalization capability (Stone 1974). One
commonly used version of cross-validation is the so
called leave-one-out cross-validation. The idea is that,
for any predictor, each data point in the estimation
data set DN is sequentially set aside in turn, a model
is estimated using the remaining (N� 1) data, and the
prediction error is derived for the data point that was
removed. By excluding the ith data example

in estimation data set, the output of the model
for the ith data example using a model estimated by
using remaining (N� 1) data examples is denoted as
f (�i)(i). The associated predicted class label is calcu-
lated by

ŷð�i Þði Þ ¼ sgnð f ð�iÞði ÞÞ ð11Þ

It is desirable to derive a classifier with good general-
ization capability, i.e., to derive a classifier with a
minimal misclassification error rate over a new data set
that is not used in model estimation. The leave-one-out
(LOO) cross validation is often used to estimate
generalization error for choosing among different net-
work architectures (Stone 1974). The LOO misclassifi-
cation rate is computed by

J ð�Þ ¼
1

N

XN
i¼1

Id½ yði Þf ð�iÞði Þ� ¼ 1
N

XN
i¼1

Id½gði Þ� ð12Þ

in which g(i) denotes y(i)f(�i)(i). If g(i)<0, this means
the ith data sample is misclassified, such that the class
label produced by the model f (�i) is different from the
actual class label y(i).

Instead of directly calculating (11) for predicted class
labels, which requires extensive computational effort, it
is shown in the following that the LOO misclassification
rate can be evaluated without actually sequentially
splitting the estimation data set.

4. A forward regression kernel classifier

identification algorithm minimizing leave-one-out

misclassification rate (LOOþOFS)

The leave-one-out model residual is given by

�ð�iÞði Þ ¼ yði Þ � f ð�i Þði Þ ð13Þ

It has been shown that the LOO model residuals can be
derived using an algebraic operation rather than actually
splitting the training data set based on the Sherman–
Morrison–Woodbury theorem (Myers 1990). For
models evaluated using regularized orthogonal least
square parameter estimates, it can be shown that the
LOO model residuals (Chen et al. 2004) are given by

� ð�i Þði Þ ¼
�ði Þ

1� wði ÞT½WTWþ���1wði Þ

¼
yði Þ � f ði Þ

1�
PL

j¼1

w2
j ði Þ

�j þ �j

ð14Þ

A fast linear-in-the-parameters classifier construction algorithm 121
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where ,¼diag{�1, . . . , �L}. Hence

yði Þ � fð�iÞði Þ ¼
yði Þ � f ði Þ

1�
PL

j¼1

w2
j ði Þ

�jþ�j

ð15Þ

Multiplying both sides of (15) with y(i), and applying

y2ði Þ ¼ 1, 8i, to yield

1� yði Þf ð�iÞði Þ ¼
1� f ði Þyði Þ

1�
PL

j¼1

w2
j ði Þ

�jþ�j

ð16Þ

so that

yði Þf ð�iÞði Þ ¼

PL
j¼1 �jwjði Þyði Þ �

PL
j¼1

w2
j ði Þ

�jþ�j

1�
PL

j¼1

w2
j ði Þ

�jþ�j

ð17Þ

In the following, it is shown that computational expense

associated with classifier regressors determination can

be significantly reduced by utilizing the forward regres-

sion process via a recursive formula. In the forward

regression process, the model size is configured as a

growing variable k. Consider the model construction by

using a subset of k regressors (k�L), that is, a subset

selected from the full model set consisting of L initial

regressors (given by (2)) to approximate the system. By

replacing L with a variable model size k, and y(i)f(�i)(i)

with gk(i), (17) is represented by

gkði Þ ¼

Pk
j¼1 �jwjði Þyði Þ �

Pk
j¼1

w2
j ði Þ

�jþ�j

1�
Pk

j¼1

w2
j
ði Þ

�jþ�j

¼
�kði Þ

	kði Þ

ð18Þ

where

	kði Þ ¼ 1�
Pk

j¼1 w
2
j ði Þ=�j þ �j, �kði Þ ¼

Pk
j¼1 �jwjði Þ

yði Þ �
Pk

j¼1 w
2
j ði Þ=�j þ �j.

�k(i), 	k(i) can be represented using the following

recursive formula

�kði Þ ¼ �k�1ði Þ þ �kwkði Þyði Þ �
w2
kði Þ

�k þ �j

	kði Þ ¼ 	k�1ði Þ �
w2
kði Þ

�k þ �j

ð19Þ

Thus, the LOO misclassification rate for a new model

with size increased from (k� 1) to k is calculated by

J
ð�1Þ
k ¼

1

N

XN
i¼1

Id½gkði Þ� ð20Þ

where gkði Þ ¼ �kði Þ=	kði Þ. This is advantageous in that,
for a new model whose size is increased from (k� 1) to
k, we only need to adjust both numerator �k(i) and the
denominator 	k(i) based on that of the model of size
(k� 1), with a minimal computational effort. The
Gram–Schmidt procedure is used to construct the
orthogonal basis wk in a forward regression manner
(Hong et al. 2003, Chen et al. 2004). At each regression
step, the regressor with the minimal LOO misclassifica-
tion rate J

ð�Þ

k is selected.

4.1 LOO misclassification rate minimization-based
forward Gram–Schmidt subset selection algorithm
(LOOþOFS)

1. Initialize �0(i)¼ 0, 	0(i)¼ 1, for i¼ 1, . . . ,N. Set
regularization parameters �j as a very small positive
value �.

2. At the kth step where k� 1, for 1� l�L,
l 6¼ l1, . . . l 6¼ lk� 1, compute

a
ðlÞ
jk ¼

1 if j ¼ k
wT
j pl

wT
j wj

, 1 � j5k

(

w
ðlÞ
k ¼

pl if k ¼ 1

pl �
Pk�1

j¼1 a
ðlÞ
jkwj, k � 2

�

�ðlÞk ¼ ðw
ðlÞ
k Þ

Tw
ðlÞ
k ,

�ðlÞk ¼
ðw
ðlÞ
k Þ

Ty

�ðlÞk þ�
,

�ðlÞk ði Þ ¼ �k�1ði Þþ �
ðlÞ
k w
ðlÞ
k ði Þyði Þ�

½w
ðlÞ
k ði Þ�

2

�ðlÞk þ�
, ði¼ 1, . . . ,NÞ

	ðlÞk ði Þ ¼ 	k�1ði Þ�
½w
ðlÞ
k ði Þ�

2

�ðlÞk þ�
, ði¼ 1, . . . ,NÞ

g
ðlÞ
k ði Þ ¼

�ðlÞk ði Þ

	ðlÞk ði Þ
, ði¼ 1, . . . ,NÞ

J
ð�, lÞ
k ¼

1

N

XN
i¼1

Idðg
ðlÞ
k ði ÞÞ ð21Þ

Find

lk ¼ arg½minfJ
ð�, lÞ
k ,

1 � l � L, l 6¼ l1, . . . , l 6¼ lk�1g�
ð22Þ

and select

ajk ¼ a
ðlkÞ
jk , J

ð�Þ

k ¼ J
ð�, lkÞ
k ð23Þ

122 X. Hong et al.
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and update

�kði Þ ¼ �
ðlkÞ
k ði Þ, 	kði Þ ¼ 	

ðlkÞ
k ði Þ, ði ¼ 1, . . . ,NÞ ð24Þ

wk ¼ w
ðlkÞ
k ¼

plk if k ¼ 1

plk �
Pk�1

j¼1 ajkwj k � 2

�

3. The procedure is monitored and terminated at the
derived k¼ n� step, when J

ð�Þ

k � J
ð�Þ

k�1. Otherwise, set
k¼ kþ 1, and go to step 2.

The above procedure derives a model with nh � L
regressors. Finally, with a predetermined number of
iterations, the procedure as given in (9) (with L replaced
by n�) is applied to derive the optimized regularization
parameters that are used in the final model.

4.2 Remarks

1. The computational complexity in above LOOþOFS
algorithm is in the order of O(NL). The actual
computation cost varies with the final model size, and
the smaller the derived model size n�, the smaller the
computation expense. When N is very large, e.g., over
several thousands, a reduced subset of data points can
be used so that L�N to control the computational
complexity. Note that the proposed procedure for
regularization parameters optimization is operated
based on n��L selected regressors, hence, the
additional computation cost involved in regulariza-
tion parameters optimization is very small at the
level O(Nn�).

2. Note that it is generally difficult to perform
parameter estimation, so as to optimize the
classification performance directly. This is due to
the factors, such as unknown probability function
of the data distribution or possibly non-
differentiable objective functions. In the proposed
algorithm and other algorithms (Mao 2002, Chen
et al. 2006b, Hong et al. 2007), the two class
classification problem is configured as a regression
problem, and the least squares-type parameter
estimators have been used for parameter estimation.
This brings the advantage that the classifier can be
easily obtained. The disadvantage of the regression
approach is that models are not directly derived by
optimizing the classification performance. However,
in the proposed algorithm we initially use least
squares-type parameter estimator for generating
candidate models, followed by the direct evaluation
of these models in terms of classification perfor-
mance. The model selection step can therefore

guarantee that the best model in terms of classifica-
tion performance is found amongst the candidate
models. This means that the aforementioned dis-
advantage could be alleviated effectively.

3. A closely related method is the kernel matching
pursuit (KMP) (Vincent and Bengio 2002). One of
the contributions in (Vincent and Bengio 2002) is to
adopt variations of loss functions, for either the
model term selection or parameter estimation.
A key difference and advantage of the proposed
algorithm in comparison with KMP is that there is
no need to use a separate validation set to
terminate the algorithm. In the proposed algorithm,
the LOO classification error represents model
generation capability for classification and is
calculated analytically.

4. Clearly the width � has a high impact in the
performance of the obtained classifier. However,
the classification performance is quite robust to the
width �, as long as this is chosen in a wide range in
the same scale of the input data set. Note that the
input data samples should be standardized if the
input variables are not in the same range. A simple
way of locating a good choice of � is to use a
simple grid search empirically with cross validation,
and this approach is used in the illustrative
examples below. Obviously, there is an added
computational complexity, but this would be
equally applicable to any alternative approaches
with Gaussian kernels. Alternatively each kernel
may have individually tunable width and be
optimized (Chen et al. 2006a).

5. Illustrative examples

Numerical experiments were performed to demonstrate
the modeling results of the proposed LOOþOFS
algorithm in comparison to that of several existing
classifications algorithms as published in Rätsch et al.
(2001). Three data sets were experimented: breast
cancer, diabetes, and heart, which are available from
Rätsch (n.d.). Note that we did not experiment on all the
data set provided in Rätsch (n.d.), as our aim is simply
to demonstrate the proposed approach can be used as
a viable alternative. For the details of alternative
methods used in comparison, the readers are referred
to Rätsch et al. (2001).

The results of first six methods for all examples are
quoted from Rätsch et al. (2001) and Rätsch (n.d.). Each
data set contains 100 realizations of training and test data
set respectively. Models are constructed over 100 training
data sets and generalization performance is evaluated
using the average misclassification rate of the

A fast linear-in-the-parameters classifier construction algorithm 123
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corresponding models over the 100 test data sets. The
Gaussian kernel functions pjðxÞ ¼ expf� x� cj

�� ��2=2�2g
have been employed in the experiments. Values of � were
predetermined to derive individual models for each
realization. For each realization of all three data sets,
the full training data sets were used as the RBF centers to
form the candidate regressors set. The performance is
summarized in tables 1–3 respectively. The results have
shown that the proposed approach can construct
parsimonious classifiers with competitive classification
accuracy for these data sets.

6. Conclusions

Based upon the idea of using the orthogonal forward
selection (OFS) procedure to optimize model

generalization, a simple and computationally efficient
algorithm has been introduced to construct
sparse two class linear-in-the-parameters classifiers
by directly minimizing the leave-one-out (LOO)
misclassification rate. The contribution is to develop
a set of forward recursive updating formula of the
LOO misclassification rate in the proposed algorithm.
Experimental results on three benchmark examples are
used to demonstrate the efficacy of the proposed
approach.
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