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Abstract: This paper examines approaches to the realisation of nonlinear filters as used in signal 
and image processing. The design of adaptive nonlinear processors is examined and their 
application as adaptive equalisers to alleviate bandlimiting, distortion and interference in a typical 
communications channel is investigated. This paper re-examines the equalisation process as one 
which seeks to correctly classify the channel output into one of a finite and known alphabet of 
symbols encompassing the data at the channel input. The optimal solution for this classification 
problem is shown to be inherently nonlinear. Several nonlinear structures are examined, which 
allow much more complex classification boundaries, and provide greatly enhanced performance for 
the nonlinear filter over the more conventional linear filter. Finally the use of a nonlinear predictor is 
investigated for time series analysis. 
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1. INTRODUCTION 

Linear processors are bounded by the fact that the 
output is formed by a weighted sum of the input sig- 
nal values or samples. They are a restricted class of 
systems but they do predominate in most electronic 
communication systems, The linear property means 
that the response to a sum of two or more inputs is 
equal to the sum of the responses to the individual 
inputs, as is implied in the principle of superposition. 
Systems are often not only linear but also time invari- 
ant, in that their properties such as gain etc, hopefully 
do not alter with time. 

Many electronic components, however, only provide 
linear operation over a restricted range of (small) sig- 
nals and when the signal amplitude increases then the 
system becomes nonlinear. This is clearly true in an 
amplifier as the signal magnitude approaches the 
power supply voltages then saturation in the gain 
stages introduces limiting or clipping and the output 
signal is no longer related, in a linear manner, to the 
input signal, Figure 1. 

In electronics there are many phenomena which 
cause the system output to be nonlinearly related to 
the input. The diode detector and rectifier both have 
a nonlinear characteristic. Other significant nonlinear 

effects arise from non-Gaussian or impulsive noise. 
Film for recording images as well as photodetectors 
are nonlinear, as is the human perception system. In 
this latter case the logrithmic nonlinearities in human 
vision system are vital to achieve the large dynamic 
range and permit it to handle the wide range of input 
signals. Many other image processing operations, 
such as maximum entropy restoration, are nonlinear, 
as is the corresponding speech system which is used 
to represent efficiently the PCM encoded signals. 
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Fig. 1 Nonlinear distortion in an amplifier. 
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With this plethora of nonlinear operations it is not 
surprising that engineers have turned to using nonlin- 
ear processing techniques to more efficiently model, 
filter and recover these distorted signals. This paper 
thus discusses nonlinear processing techniques and 
concentrates on investigating the recent advances in 
nonlinear adaptive filters to process nonstationary 
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signal types. 

2. FILTERS FOR NOISE REDUCTION 

It is widely realised that if a signal is corrupted by 
wideband noise then the noise can he reduced by 
lowpass filtering. Lowpass filters can he designed 
into finite impulse response (FIR) filters by appropri- 
ate design and selection of the weight coefficient val- 
ues, h,, Figure 2. The relationship between the filter 
input, x(k), and output, y(k), can he summarised as: 

N-I 
y(k) = ~ hix(k-i) (1) 

where N is the number of weights in the filter. 

Unfortunately to he effective the passband width 
must he narrow and this often distorts the signal. In 
image processing, where a 2-dimeusional filter i s  
used, the effect of the iowpass operation removes all 
the high frequency components which are associated 
with edge features. Thus the filtered image will have 
blurred edges. The image processing community 
thus have, for some time, used nonlinear order statis- 
tic or median filters, to remove impulse noise. 

hN~ y(k) 
Fig. 2 Finite impulse filter. 

The 1-D median FIR filter processes an odd number 
of pixels or samples and it rank orders the magni- 
tudes of the samples from the largest to the smallest 
and outputs the middle or median value. This is 
clearly a nonlinear filter as the output is based on the 
statistics of the input data. This median filter is espe- 
cially useful in impulsive noise provided that the 
number of noise samples encountered is less than 
half the number of samples or pixels being processed 
in the filter. Features such as edges are largely unaf- 
fected by the processing. Figure 3 shows a schematic 
example of a 1-D input signal as filtered in a lowpass 
(mean) and median filter. 

More recently interest has focussed on weighted 
median filters (Gabbonj) and stack filters (Coyle). In 
the weighted median filter a non-negative integer 
weight is assigned to each position in the filter win- 
dow, as in the FIR filter, prior to the rank order opera- 
tion. These structures are particularly important 
when the filter is to be adaptive and the weights have 

to be trained. They are used for noise reduction as 
shown in the processed speech waveform of Tabus, 
Figure 4. Other work on 2-D images (Yin) compares 
the mean square and mean absolute errors in lowpass, 
median and weighted median filters, where consider- 
able performance improvements are obtained over 
the simple median filters. 
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Fig. 3 Linear mean and nonlinear median filtering. 
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Fig. 4 Noise reduction in speech, courtesy Tabus. (a) 
I0 s of speech signal with added (dotted) burst errors, 
(b) error after 3-point median filtering as in Fig. 3, (c) 
reduced error after using the filter of Tabus. 

Other noise reduction filters are the stack filters 
(Coyle). These operate by applying multiple thresh- 
olds to the input signal and binary quantising the out- 
puts into parallel channels. These separate channels 
are processed in median filters and then the binary 
outputs are summed, at each sample value, to obtain 
the multi-level outpuL Thus the signal or image is 
processed in a stack of filters. This achieves a weak 
superposition property, not unlike a linear filter. 
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Stack filters with boolean operations are particularly 
important for efficient VLSI implementation of high 
speed image processing operations. 

3. ADAPTIVE EQUALISATION 

input, x(k) ,  and the channel output, y(k), can be sum- 
m a r i ~  in the following extended equation: 

N-! 
y(k) = ~, hix(k - i) + n(k) (2) 

b,O 

Adaptive channel equalisation is an old problem for 
which a variety of solutions have been proposed and 
attempted (Qureshi). There is always a commercial 
demand to increase the capacity of existing commw 
nications channels and to operate in more difficult 
environments with more severe levels of intersymbol 
interference (ISI), co-channel interference, additive 
noise and Doppler spread. 

This paper re-examines the equalisation process as 
one which seeks to correctly classify an observed 
sequence (the channel output) into one of a finite and 
known alphabet of symbols (the data at the channel 
input). It demonstrates that by adopting a Bayesian 
approach an optimum decision boundary can be 
defined by certain probability density functions - 
effectively defining an optimal nonlinear equaiiser as 
a mapping from observations to decisions. A geomet- 
ric visualisation of classification highlights the short- 
comings of the linear equaliser. 

Now explore techniques for constructing the nonlin- 
ear equaliser starting with the multilayer percepu'on 
(MLP) or neural network. Greatly enhanced perfor- 
mance can be achieved using this highly nonlinear 
structure. We demonstrate how the polynomial-based 
Volterra.filter can also be configured as an equaliser 
and how its performance compares with that of the 
MLP. Finally, a radial basis function (RBF) structure 
is examined and it is show to be a more natural solu- 
tion. 

z ~ n(k) 

Fig. $ Channel model. 

Many digital communications channels are subject to 
intersymbol interference (ISI), due to restricted band- 
width and/or the presense of muitipath distortion in 
the transmission medium. Many such channels can be 
characterised by a FIR digital channel filter and an 
additive noise source, Figure 5. The observed 
sequence, {y(k)}, is formed by adding Ganssian ran- 
dora noise to the output of  the FIR channel filter, of 
equation (I). The relationship between the channel 

Essentially, the equalisation problem is that of using 
the information present in the observed channel out- 
put vector 

y(k) = [y(k) y ( k  - 1) . - .  y (k  - M + 1)] r (3) 

to produce an estimate, :t(k - d), of the channel input 
x ( k -  d), as illuslrated in Figure 6. The device or 
algorithm which performs this function is the 
equaliser which has order M and operates with lag 
(delay) d, Figure 6. 

n(k) 

(k-d) 

Fig. 6 Generic equaliser structure. 

4. A CLASSIFICATION PROBLEM 

In order to exploit the characteristics of the transmit- 
ted sequence more fully it is appropriate to highlight 
the finite state nature of the channel itself. To sim- 
plify the development we will assume that the trans- 
mitted sequence is binary with equal probability. For 
the simple case where the channel has 2 coefficients 
and the equaliser vector y(k) has 2 elements, we can 
summarise all possible channel output vectors by the 
following equation: 

r ,(k) ]_[ho h, + ,, 

ho j 
which can be written more compactly as 

y(k) = H x(k) + n(k) = 9(k) + n(k) (5) 

The vector y(k) contains channel output values 
before noise has been added. Table I shows all possi- 
ble channel output vectors for a simple 2 coefficient 
channel. 
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X(k) x(k- I) x(k-2) 
,, ,,,, 

-1 - !  - I  

-1 -1 +1 

- I  +1 - I  

- I  +1 +1 

+1 -1 - !  

+ i  - i  +! 

+1 +1 - i  

+1 +1 +1 

9(*) 
-1.5 

- ! .5  

-0.5 

.0.5 

~(A-l) 

-1,5 

-0.5 

-~0,5 

+1.5 

40.5 -1.5 

+0.5 .0.5 

+!.5 ~1.5 

+1.5 +1.5 

Table I Noise-free outputs for channel n(:)= I +o. s:". 
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Fig, 7 Observation space formed by two successive 
outputs from channel H(z)=  l + 0 . 5 z  -I. Dashed 
line: linear decision boundary, solid curves: optimal 
decision boundaries with different values of noise 
v a r i a n c e  n 2. 

Figure 7 shows each of these 8 possible points plot- 
ted as either a × to indicate that the output vector rep- 
resents an input x(k) = -1 or a • to represent an input 
x(k) = +1. When we add noise to the vector ~(k), the 
8 points become 8 clusters where the displayed 
points are the means or centres of the clusters. Thus 
the equalisation problem now involves the assigning 
of regions within the observation space spanned by 
the noisy channel output vector y(k) to represent 
inputs of either x(k) = +1 or x(k) = -1. 

The linear equaliser performs such a classification in 
conjunction with a decision device or slicer. The 
decision boundary is the locus of all values of y(k) 
for which the output of the linear filter is zero. The 
decision device in this simple case is a sign function 
and when y(k) has only two elements, it is a straight 
(dashed) line in Figure 7 which divides the space into 
two regions. All observation vectors to the right of 
line will be classified as indicating that x(k) = + 1  and 
all points to the left of the line as x(k) = - 1 .  Take for 
example the points y = [-0.5 0.5] r and 

y = [1.5 0.5] r .  The point associated with a -1 deci- 
sion is closer to the boundary than the point associ- 
ated with a +1 decision. Therefore, in the presence of 
noise, there is a higher probability of a channel out- 
put vector centred on [-0. 5 0. 5] r being incorrectly 
detected as a +I than a channel output centred on 
[l. 50.  5] r being incorrectly detected as a - I .  This is 
clearly a non-optimum strategy. 

This geometrical description of the shortcomings of 
the linear equaliser leads us directly to a Bayesian 
approach (Chert, 1990IEE). Having observed a vec- 
tor y(k), if the probability that it was caused by 
x ( k - d )  =+1 exceeds the probability that it was 
caused by x ( k -  d ) - - l ,  then we should decide in 
favour of +1 and vice versa. The optimal decision 
boundary is the locus of all values of y(k) for which 
the probability that x ( k -  d ) =  +1 given a value for 
y(k) is equal to the probability that x ( k - d ) - - 1  
given the same y(k). More formally, the decision 
boundary can be defined as the solution to a condi- 
tional probability equation, which leads to the follow- 
ing nonlinear equaliser function (Chert, 1990IEE) 
based on the difference of conditional density func- 
tions: 

.e(k - d) = sgn ( py,x(y(k)lx(k - d) -- +l)  - 

p~(y(k)lx(k - d) = -1) ) (6) 

The density functions and hence the equaliser can 
now be derived directly from the generation mecha- 
nism summarised in equation (4). The decision 
boundary defined by this analysis is illustrated for 
various levels of noise in Figure 7. For low levels of 
noise the boundary is piecewise linear but it becomes 
more smooth as the noise level increases. Clearly to 
equalise this channel we require to use a nonlinear 
filter. 

The above geometric analysis can easily be applied to 
the general equaliser structure of Figure 6. In general, 
the optimal Bayesian decision boundary is a hyper- 
surface in the M-dimensional observation space and 
the realization of this nonlinear boundary requires 
nonlinear decision capability. The linear equaliser 
can however only implement a hyperplane decision 
boundary. 

5. THE MULTILAYER PERCEPTRON 

In practice we do not know the channel impulse 
response and hence cannot directly form the function 
defined by equation (6). To construct this function 
adaptively using training data, we might first apply a 
very general nonlinear structure known as the multi- 
layer perceptron (MLP) (Lippmann) to the problem. 
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The basic building block of the MLP is the single 
neuron or node which is shown in Figure 8. A node 
receives a number of inputs x l , "  ", x, ,  say, which are 
then multiplied by a set of weights w l , "  ", wn and 

the resultant values are summed. A constant O, 
known as the node threshold, is added to this 
weighted sum of inputs, and the output of the node is 
obtained by evaluating a nonlinear function, f ,  of the 
total. The output mapping function is the operation 
which makes this processor nonlinear. We focus our 
attention on nodes where the node activation func- 
tion, f ,  is defined by 

f(x) = (1 -e-X)l(l + • -x) (7) 

the graph of which is also shown in Figure 8. 

learn a task adaptively, MLPs can be trained by 
means of the back-propagation (BP) algorithm 
(Rumelhart). This is a simple stochastic gradient- 
descent algorithm similar to that used in linear 
equalisers (Qureshi). 

The major difficulty with the MLP is that training is 
essentially a nonlinear optimisation problem. The 
mean squared error surface is multi-modal and hence 
it is exlremely difficult to design gradient type algo- 
rithms which are guaranteed to find the global mini- 
mum under all input signal conditions, hence the next 
algorithm development. 

x±" w ±",,~ 

Xn:" ° 

f(x) 

~ X  

- 1  

Fig. 8 Node structure and activation function. 

In the MLP a number of nodes are arranged in layers, 
as depicted in Figure 9. A multi-dimensional input is 
passed to each node in the first layer. The outputs of 
the first layer nodes then become inputs to the nodes 
in the second layer, and so on. The output of the net- 
work is therefore the outputs of the nodes lying in the 
final layer. Thus, weighted connections exist from a 
node to every node in the succeeding layer, but no 
connections exist between nodes in the same layer. 
Since an equaliser usually has one output the network 
has a single node in the output layer. 

MLPs which have three layers are essentially capable 
of forming any desired decision region (Gibson, 
1990), and it is this property which makes them 
attractive as nonlinear equalisers. When required to 

Fig. 9 Multilayer perceptron equaliser. 

The slab algorithm (Hassell Sweatman et al. 1994) is 
a deterministic design method for constructing a 2 
layer MLP from McCulloch and Pins units i.e. the 
node activation function of equation (7) is 
f ( x )  = sgu(x) and is such that the node output is 
either +1 or -1. The output of the ith node in the hid- 
den layer is typically: 

sgu(yr(k) w i - Oi ) 

where w i is the vector of weights on the input to the 
ith node and Oi is the threshold. The algorithm 
requires knowledge of the noise free states or equiv- 
alently the channel impulse response and application 
of linear programming techniques. 

Figure 1O illustrates the application of the algorithm 
to a simple channel equalisation problem with a com- 
plicated decision space. The noise free states assoca- 
tiated with transmitting a +1 or -1 are shown on Fig- 
use lO(a). The hyperplane A is chosen such that all 
states associated with a - l  are to the right of it. Its 
companion, B, is chosen such that all points to its left 
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are associated with a +1. If A and B are the same 
hyperplane then the states are linearly seperable, as 
the hyperplanes are identical and the common hyper- 
plane defines the coefficients of a linear equaliser. If 
the states are not linearly seperable the space 
between the two lines is "slab 1". The width of the 
slab is chosen to minimise the number of states 
within it. The hyperplanes A and B define two nodes 
on the MLP structure illustrated on Figure 10Oa). 
The weights on the input to the second layer of  the 
network are now taken from a geomeuic series. In 
this case any decision made by nodes A and B will 
dominate the final decision and they have significant 
weight values (½). Thus if the input vector y(k) is to 
the left of hyperplane A an output decision o f+ l  will 
result. If the vector is to the right of B an output 
decision of -1 will result. Finally if the vector is 
within slab 1, nodes A and B will contribute a total of 
0 to the output node and will not affect the final deci- 
sion. 

~t.I) 

0.75 

(b) 

Fig. 10 MLP constructed by the Slab algorithm for 
channel H ( z ) = O . 3 3 3 + O . 6 6 7 z - I + z - 2 :  (a) state 
structure and resultant hyperplanes; (b) MLP archi- 
tecture. 

The next step is to consider only states within slab 1 
and repeat the process. All points associated with a 
+1 are above hyperplane D, all points associated with 
a -1 are below hyperplane C and the number of states 
within slab 2 has been minimised. Hyperlanes C and 
D give us nodes C and D in the network. Finally 
within slab 2 the states are linearly separable with the 
further hyperplane E giving node E in the network 
with the smallest weight values on the output node. 

In comparing the slab algorithm, against the more 
conventional MLE the slab algorithm is more pre- 
dictable in training to achieve the required weight 
solution but it may suffer a minor performance degra- 
dation. 
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6. THE VOLTERRA SERIES 

The classical approach to dealing with nonlinear sys- 
tems is the Volterra series (VS) expansion. Essen- 
tially, it is a modification to a Taylor series to include 
a time dispersive or memory element. Using a VS we 
can construct a nonlinear equaliser of the form 
(Chen, 1990IEE): 

M-I M-I M-I 
f~(y(k)) = ~, wiy(k - i) + ~,  ~ wijy(k - i)y(k - j )  

i~O i~O j=i 

M-I M-I M-I 
+ ~_, ~,  ~ w i j t y ( k - i ) y ( k - j ) y ( k - l ) + + +  (8) 

iffiO j=i l f j  

~?(k - d) = sgn(fv(Y(k))) (9) 

The coefficients w i, w O, wot, etc are known as the 
Volterra kernals. 

In theory the number of terms in equation (8) can be 
infinite. However in practice only a finite number of 
terms can be implemented. Consider a simple VS 
equaliser where M = 2 and the polynomial expansion 
is truncated to degree-2 terms: 

~(k - d) = sgn(woy(k) + wi y(k - 1) + 

wo0y2(k) + w01 y(k)y(k  - 1 ) + wjl yZ(k - 1 )) (10) 

The structure of the equaliser defined by equation 
(10) is illustrated in Figure 11. The advantage inher- 
ent in the VS equaliser over the MPL is that it is lin- 
ear in the parameters. The equaliser can he trained by 
using standard linear adaptive algorithm to update the 
kernal vector wv. A drawback of the VS equaliscr is 
that the number of kernals increases exponentially as 
the degree or the order M increases. 
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Fig. 11 Volterra equaliser of order 2 and degree 2. 
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(b) Dashed curve: VS equaLiser. 

l 0 
v 

). 

! 1 

R(k)=l 

Fig. 12 Comparison of decision boundaries. Channel 
H ( z ) =  l + 0 . 5 z  -I, solid curve: optimal decision 
boundary. 

.2 in Figure 5 and equation (2), was 0.2, representing 
a signal to noise ratio (SNR) of approximately 8 dB. 
The MLP has a 2 -  9 -  5 -  1 configuration. That is, 
the observation vector y(k) has 2 elements corre- 
sponding to the two tap channel transfer function, the 
first hidden layer has 9 nodes, the second hidden 
layer has 5 nodes and the output layer has 1 node. 
The VS equaliser has a structure of order 2 and 
degree 3. The decision boundaries of these two non- 
linear equalisers, obtained after a training sequence 
of 300 samples, are compared with the optimal deci- 
sion boundary in Figure 12(a) and (b) respectively. 
Performance of the MLP and VS equalisers for more 
realistic channels and equaliser configurations have 
extensively been studied (Chen, 1990IEE; Gibson. 
1991SP). 

7. THE RADIAL BASIS FUNCTION NETWORK 

In this section a third adaptive nonlinear structure, 
namely the radial basis function (RBF) network of 
Broombead, is described. The RBF network is ideal 
for equalisation application because it has an equiv- 
alent structure to the optimal Bayesian equalisation 
solution (Chen, 1993NN). The schematic of the RBF 
network is depicted in Figure 13. The overall 
response of the network can be summarised in the 
following equation: 

n r  

fAy(t)) = ]~ wi$; (l l) 
i=1 

f i  e 

= ~ ,  w,¢~[v(lO- c,~l 2/p;) 

output 
layer 

×> 

layer 

y(k) y (k-M+l) 

Figure 12 illustrates the performance of the straight- 
forward MLP and VS equalisers when used to 
equalise a simple channel with transfer function 
H(z) = 1 + 0. 5z -l. The power of the additive noise, 

Fig. 13 Radial basis function network. 
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ci are the RBF centres which have the same dimen- 
sional as the input vector y(k), II'll denotes the 
Euclidean norm, Pi are the  positive constants known 
as the widths, and ¢(.) is the basis function. To use 
the RBF network for detecting the channel input 
x ( k -  d) ,  the  output of the network, f r ,  is passed 
through a decision slicer. 

The relationship between the RBF network and the 
Bayesian equalisation solution, equation (6), can be 
given explicitly (Mulgrew, 1996). The number of 
centres, nr, is equal to that of the noise-free channel 
output vector ~, and ei are in fact these vectors. The 
weights w i are all known and they are the corre- 
sponding scaling factors of the conditional density 
functions in equation (6). The widths Pi are con- 
trolled by the noise variance n 2, and are usually set at 
Pi = 2¢r, 2, while ¢(.) is the noise probability density 
function which is usually Gaussian. When these con- 
ditions are met, the RBF network realizes precisely 
the Bayesian equalisation solution. 

For the simple channel and the equaliser configura- 
tion given in Figure 13, 60 training samples were 
used to estimate the RBF centres based on the clus- 
tering scheme. The resulting RBF equaliser produces 
a decision boundary which is indistinguishable from 
the optimal Bayesian decision boundary. The bit 
error rate of the _,O~ptive RBF equaliser was further 
compared with that of the optimal Bayesian equaliser 
for the channel with impulse response H ( z )  = O. 3482 
+0. 8704z -l + 0. 3482z -2 under a variety of SNR val- 
ues. The equaliser had a s~ucture of M = 4 and 
d = 1. The adaptive RBF equaliser used the least 
mean square algorithm to identify the channel model 
with a training sequence of 90 samples. The bit error 
rate curves of the adaptive RBF and Bayesian 
equalisers are depicted in Figure 14. The third error 
rate curve in Figure 14 was obtained by the Wiener 
filter which is the theoretical performance bound of 
the linear equaliser. From Figure 14, it is seen that 
the adaptive RBF equaliser realizes the optimal per- 
formance and is far superior to the linear equaliser. 

To realize the optimal Bayesian solution using the 
RBF network, one thus needs to identify the cenlres 
or the noise-free channel output vectors. Cben 
(1993) conveniently achieved this using two alterna- 
tive schemes. The first method identifies the channel 
model using standard linear adaptive algorithm and 
then calculates the noise-free vectors from the gener- 
ation mechanism, H x(k), of equation (5). The sec- 
ond method estimates these vectors or centres 
directly using a supervised and unsupervised cluster- 
ing algorithms (Cben, 1993NN and 1993SP). 
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Callender(1994) has also compared the RBE MLP 
and VS equalisers and added distance classification 
techniques based on the Mahalanobis distance metric. 
The modified Mahalanobis (Callender, 1992) adds 
noise to the covariance update recursion to avoid con- 
vergence problems. 

The intimate link between the RBF network and the 
Bayesian equaliser makes the RBF design an attrac- 
tive solution to equalisation problems. The perfor- 
mance of the RBF equaliser is superior to the MLP 
and VS equalisers and it needs a much shorter train- 
ing period than these other two nonlinear equalisers. 
Moreover the two adaptive schemes for the RBF 
equaliser are guaranteed to converge to the optimal 
Bayesian solution. 

8. THE DECISION FEEDBACK EQUALISER 

A powerful technique to improve equalisation perfor- 
mance is to use decision feedback (Qureshi). A 
generic decision feedback equaliser (DFE) is illus- 
trated in Figure 15, where M and n b are known as the 
feedforward and feedback orders respectively. This 
structure is obtained by expanding the equaliser input 
vector y(k) of Figure 5 to include the past detected 
symbols t b ( k  - d )=[~ (k  - d - 1).. .~(k - d - nh)] r. 
The conventional DFE (Qureshi) is based on a linear 
filtering of the expanded equaliser input vector [yr (k) 
t r ( k  - d)]  r.  

Fig. 14 Performance on the fixed 
H ( z )  = 0. 3482 + 0. 8704z -z + 0. 3482z °2. 

channel Similar to the discussion in section 4, we can view 
the equalisation process defined in Figure 15 as a 
classification problem and derive its optimal solution 
(Chen, 1993SP & 1992). The three nonlinear struc- 
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tures given previously can then be applied to adap- 
tively implement this Bayesian solu~on.+ In particular.:, 
the RBF design has many advantage.< It provides a 
clear explanation of how decision feedback improves 
performance, as well as reducing the computational 
complexity. 

Fig. 15 A generic decision feedback equaliser. 

Figure 16 shows results on a 4 symbol quadrature 
amplitude modulated (4-QAM) system, comparing a 
conventional DFE detector, a Bayesian (i.e. RBF) 
DFE and a maximum likelihood Viterbi algorithm 
(MLVA) equaliser, with delays of 2 & 10 symbols. 
The Bayesian is superior to the conventional detector 
by 3 dB but the MLVA is best with longer delay of 10 
on this stationary channel, as it is able to perform a 
more accurate channel estimate. 

design using a simulated mobile radio nonstationary 
(l~lLag) c h ~ | .  ~ channel input x(k)  is again 
4~(~AM and the symbol rate is 300 lffIz. The trans- 
mission pulse has a raised-cosine characteristic with 
a rolloff factor of 0.5 and is split equally between the 
transmitter and receiver filters. A multipath Rayleigh 
fading channel is simulated with a Doppler frequency 
of 100 Hz, and the channel dispersion spans 4 sym- 
bol durations. The time-varying channel thus has a 
transfer function 

H(z)  = ho(k) + hm(k)z-l + . . . . . . .  +h4(k)z -4 (12) 

The time-varying taps hi(k) and the channel output 
y( k ) are complex-valued. 

Three adaptive equalisers, namely the conventional 
DFE, the maximum likelihood sequence estimator 
(MLSE) (Forney) and the Bayesian DFE based on the 
RBF design, are investigated. The conventional DFE 
is fractional spaced (FS), that is, the channel output is 
sampled at a rate faster than the symbol rate. It has 
nine half-symbol spaced feedforward terms and 4 
feedback terms. The MLSE is implemented as a 
Viterbi detector with a fixed decision delay of 6 sym- 
bol periods and equipped with a least mean square 
channel estimator. The Bayesian DFE based on the 
RBF design has a structure of d = 2, M = 3 and 
nb= 4, and it employs a least mean square channel 
estimator to adaptively update the RBF centres. The 
symbol error rates of these three adaptive equalisers 
are depicted in Figure 17. 
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Fig. 16 DFE performance comparisons on the same 
channel as used in Fig. 14. 

Chert (1993SP) has also demonstrated adaptive per- 
formance of the Bayesian DFE based on the RBF 
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Fig. 17 Performance comparison for a multipath fad- 
ing mobile radio channel with 100 Hz Doppler. 

From Figure 17, it can be seen that the adaptive 
Bayesian DFE based on the RBF design is far supe- 
rior over the adaptive MLSE. This is very interesting 
since the theoretical performance of the Bayesian 
DFE is inferior to that of the MLSE. The equalisation 
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configurations of Figures 6 and 16 are known as the 
symbol-by-symbol equaliser where detection of the 
channel input sequence is on a symbol-by-symbol 
basis. The MLSE on the other hand is the optimal 
solution for a very different class of sequence- 
estimation equalisers. It provides the lowest error rate 
attainable for any equaliser when the channel is 
known. However, for fast time-varying channels such 
as moble radio fading channels, the adaptive MLSE 
suffers serious performance degradation due to chan- 
nel tracking errors. In contrast the adaptive Bayesian 
DFE based on the RBF design is very robust and suf- 
fers a much smaller degradation in the time-varying 
environment. A more extensive simulation study is 
presented in (Chan, 1995). 

It has also been convincingly demonstrated how the 
RBF can be deployed to realise new designs of blind 
equalisers with equally significant performance 
results (Chen, 1994ICC). 

moid network model (Chen, 1990LIC; Weigend). 
Chen (1994JASE) has also fitted an RBF model to 
this sunspot time series. 

Because this is a scalar time series, Chens 
(1994JASE) RBF network employed a single output 
node. The nonlinearity of hidden nodes was chosen 
to be the thin-plate-spline function. The desired 
value for the predictor lag was derived by fitting RBF 
predictors of different lags and choosing one that 
gives the best result. For the sunspot time series, it is 
found that a lag of 8 was an appropriate choice. The 
one-step RBF predictor 

9(t + I I t)= f, (y(t), y(t - I),... y(t - 7)) (13) 

was fitted to the training data set. The evaluation of 
the fitted RBF predictor is then done by examining 
the prediction error and the normalized prediction 
variance was further used to evaluate the fitted RBF 
model. 

9. SIGNAL PREDICTION 

These nonlinear processing techniques are equally 
applicable to signal prediction (Mulgrew, 1992) and 
system modelling (Cben, 1992IJC) as well as equali- 
sation. Application of the RBF model to nonlinear 
signal prediction has been regularly demonstrated by 
analyzing for example the time series of the annual 
sunspot numbers. The annual sunspot numbers for 
the years 1700-1979 are plotted as 280 observations 
in Figure 18. 
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Fig. 18 Sun spot time series data. 

The sunspot data from 1700 to 1920 were used for 
training and the data from 1921 to 1979 were 
employed for evaluating predictive accuracy. 
Because this time series is nonstationery, a shorter 
v~flidation set, 1921-1955, is also used for evaluation 
of the prediction accuracy. Many researchers have 
fitted various predictors or models to the sunspot time 
series. These include the linear autoregressive model 
and the bilinear model (Gabr), the threshold autore- 
gressive model (Tong), the polynomial or Volterra- 
series (Cben, 1989), and the one-hidden-layer sig- 
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Fig. 19 RBF predictor fitted to Fig. 18 validation data 
with the OLS training algorithm. 

The training set has 221 samples and therefore there 
are 221 candidates for the RBF centres. The orthog- 
onal least squares (OLS) algorithm was initially 
employed to construct a one-step RBF predictor. As 
expected, when the OLS algorithm added more cen- 
tres to the selected RBF network, the accuracy of the 
model over the training set continued to improve. 
After 25 centres had been selected, the normalised 
variance over the validation set began to increase as 
more centres were added in to the network. This sug- 
gested that the selection procedure should be termi- 
nated at the 25th step, giving rise to a RBF predictor 
of 25 centres. Figure 19 shows the one-step predic- 
tions over the validation set, superimposed on the 
time series observations. 

Clustering and least squares (LS) algorithm was also 
employed to fit a one-step RBF predictor to the 
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sunspot time series (Chen 1994JASE). The number 
of hidden nodes was again chosen to be 25: ' The 
training input data were passed through the clustering 
algorithm five times with the corresponding adaptive 
gain being 0.2, 0.1, 0.05, 0.025 and 0.01. After the 
centres had been obtained, the weights were then 
learnt using the recusive least squares (RLS) algo- 
rithm. Repeated training was performed by passing 
the data through the RLS algorithm five times. The 
one-step predictions over the years 1921-1979 are 
again superimposed on the original time series obser- 
vations in Figure 20. Comparing Figure 19 with Fig- 
ure 18, it can be seen that the predictor obtained by 
the OLS algorithm has better short-term predictions 
than the predictor fitted by the clustering and RLS 
algorithm, but the long-term predictions of the latter 
are better than those of the former! 

the RBF network. 

10. CONCLUSIONS 

This paper has attempted to briefly review the appli- 
cation of nonlinear filter structures to noise reduction, 
channel equalisation and prediction problems. These 
sffuctures show considerable promise for improved 
noise reduction and the nonlinear adaptive filters give 
significantly improved equaliser performance over 
linear filter approaches. Recent equaliser research has 
focused on the radial basis function design incorpo- 
rating decision feedback, and this provides a practical 
and powerful equalisation scheme which even outper- 
forms the maximum likelihood sequence-detection in 
a highly nonstationary environment. 
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Fig. 20 RBF predictor fitted to Fig. 18 validation data 
with clustering and the RLS algorithm. 

Some time ago Chen (1989) fitted a subset polyno- 
mial model to the sunspot time series and showed 
that it had better performance than the linear and 
bilinear models of Gabr. For the sake of comparison, 
Chen selected the same predictor lag of 9 as used in 
the linear and bilinear models. Weigend has also 
constructed a sigmoid network model for the sunspot 
time series and demonstrated its superior perfor- 
mance over the threshold model of Tong. They chose 
a predictor lag of 12 because this was the value used 
in the threshold model. The overall multi-step pre- 
diction performance of the RBF model obtained in 
Cherts (1994JASE) study was better than either those 
of the subset polynomial model or the sigmoid net- 
work model. It is worth pointing out that only a 
modest number of cenues were used in the Chen 
RBF model. Weigend surprisingly commented that 
the RBF approach was inefficient and required a very 
large number of centres. Chens more recent results 
clearly suggest otherwise! Chen (1994JASE) also 
describes other system modelling simulations using 

The results presented here are typical of those 
received from nonlinear filter designs, and hence the 
RBF is now assuming a prominant position as one of 
the most am'active nonlinear filter design approaches. 
As a result of these excellent results the RBF is now 
being applied to other communications processor 
functions such as interference cancellation (Mulgrew, 
1995) and bearing estimation. 
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