
Author's personal copy

Applied Soft Computing 12 (2012) 2740–2755

Contents lists available at SciVerse ScienceDirect

Applied Soft Computing

j ourna l ho me p age: www.elsev ier .com/ l ocate /asoc

Repeated weighted boosting search for discrete or mixed search space and
multiple-objective optimisation�

Scott F. Page a,1, Sheng Chenb,c,∗, Chris J. Harrisb, Neil M. Whiteb

a Waterfall Solutions Ltd., Guildford, Surrey GU2 9JX, UK
b Electronics and Computer Science, Faculty of Physical and Applied Sciences, University of Southampton, Southampton SO17 1BJ, UK
c Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia

a r t i c l e i n f o

Article history:

Received 24 November 2010

Received in revised form 15 February 2012

Accepted 5 March 2012

Available online 24 April 2012

Keywords:

Global optimisation

Constrained optimisation

Discrete and mixed search space

Multiple-objective optimisation

Pareto-optimality

Genetic algorithms

Repeated weighted boosting search

a b s t r a c t

Repeated weighted boosting search (RWBS) optimisation is a guided stochastic search algorithm that is

capable of handling the difficult optimisation problems with non-smooth and/or multi-modal cost func-

tions. Compared with other alternatives for global optimisation solvers, such as the genetic algorithms

and adaptive simulated annealing, RWBS is easier to implement, has fewer algorithmic parameters to

tune and has been shown to provide similar levels of performance on many benchmark problems. In

its original form, however, RWBS is only applicable to unconstrained, single-objective problems with

continuous search spaces. This contribution begins with an analysis of the performance of the original

RWBS algorithm and then proceeds to develop a number of novel extensions to the algorithm which

facilitate its application to a more general class of optimisation problems, including those with discrete

and mixed search spaces as well as multiple objective functions. The performance of the extended or

generalised RWBS algorithms are compared with other standard techniques on a range of benchmark

problems, and the results obtained demonstrate that the proposed generalised RWBS algorithms offer

excellent performance whilst retaining the benefits of the original RWBS algorithm.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Guided stochastic search algorithms are widely used to solve

complex optimisation problems where gradient based methods are

ineffective, such as when the cost function is non-smooth and/or

multi-modal. Two such global optimisation methods, the genetic

algorithms (GAs) [1–4] and the adaptive simulated annealing (ASA)

[5–8], are well-known within the engineering community and have

now become classic global optimisation solvers. More recently,

repeated weighted boosting search (RWBS) [9] was proposed as

a guided search or meta-heuristic global optimisation algorithm.

RWBS is essentially a multi-start search technique [10], where the

local optimisation mechanism is based on an iterative, adaptive,

weighted convex combination. Interestingly, this convex combina-

tion is analogous to the crossover operator in a GA. In conjunction

with a reflection operator, the convex combination generates new

solutions in a manner similar to the simplex method. The adap-

� The authors acknowledge the support of Phase 1 of the UK MOD DIF DTC under

Project 8.1 Active Sensor Management.
∗ Corresponding author at: Electronics and Computer Science, Faculty of Physical

and Applied Sciences, University of Southampton, Southampton SO17 1BJ, UK.

E-mail addresses: scottpage888@gmail.com (S.F. Page), sqc@ecs.soton.ac.uk (S.

Chen), cjh@ecs.soton.ac.uk (C.J. Harris), nmw@ecs.soton.ac.uk (N.M. White).
1 The author was with Electronics and Computer Science, University of Southamp-

ton, when the work reported in this paper was carried out.

tive weight update process is a modified boosting technique [11].

The advantages of RWBS [9] include ease of implementation, very

few number of tuning parameters, and capable of achieving the

levels of performance comparable with the standard benchmark

techniques, such as the GA and ASA. A number of applications have

since been reported, covering the diverse fields of machine learn-

ing, chaotic system stabilisation, image and signal processing as

well as wireless communication designs [9,12–27].

Whilst the original RWBS algorithm is a very useful optimisa-

tion tool for diverse applications, its original form proposed in [9]

is restricted to unconstrained, single-objective optimisation prob-

lems with continuous search spaces. Many real-life problems are

however constrained, multiple-objective optimisation problems

with discrete and/or mixed search spaces. An example of such more

generic problems is the optimisation encountered in the authors’

research on optimal sensor scheduling [28]. With this motivation,

this contribution proposes a number of novel extensions to the orig-

inal RWBS algorithm to facilitate its application in a more general

context. In particular, the aim is to exploit RWBS to solve the prob-

lems which can be formulated in the following generic framework:

min
u∈U

f (J1(u), J2(u), . . . , JN(u)) (1)

s.t. g(u) = 0

h(u) ≤ 0

1568-4946/$ – see front matter © 2012 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.asoc.2012.03.056

Author's personal copy

S.F. Page et al. / Applied Soft Computing 12 (2012) 2740–2755 2741

where u = [u1 u2 · · · un]T is the n-dimensional vector of bounded

decision variables to be optimised, U denotes the feasible set of u,

g(u) is a vector of equality constraints, h(u) is a vector of inequality

constraints, Ji(u) is the ith objective function, and f is the objec-

tive preference function which may or may not be present. Note

that U can represent a continuous space, a discrete space or a

mixed space. Evaluation of the objective function may be analytic

or procedural, and the cost function is not necessarily continuous or

differentiable.

Specifically, the paper begins by providing new and extensive

performance analysis results for the original RWBS algorithm. Sub-

sequently, in order to permit optimisation over discrete and mixed

search spaces, a new method is proposed which allows the con-

vex combination operator to generate new points in the discrete

space. The resulting RWBS algorithm for discrete and mixed search

spaces is shown to have a similar efficiency to the original RWBS

for continuous search spaces. Additionally, a number of methods for

incorporating variable constraints are briefly discussed, including

penalty functions and repair operators. The original RWBS algo-

rithm is then modified for the use in multiple-objective problems

where no objective preference structure is available. The resulting

algorithm maintains a set of Pareto-optimal solutions for sub-

sequent inspection by the designer, similar to the well-known

non-dominated sorting genetic algorithm (NSGA-II) algorithm [29].

The performance of the resulting algorithm, the new ‘Pareto-RWBS’

algorithm, is assessed using some well-known benchmark prob-

lems, and the modified RWBS algorithm is shown to offer promising

levels of performance, whilst retaining the attractive properties of

the original version.

The reminder of this paper is organised as follows. Section 2

describes the original RWBS algorithm and compares its perfor-

mance quantitatively with the following conventional techniques:

a multi-start gradient-search (MSGS) algorithm with the quasi-

Newton method as its local search technique; random search;

and a GA. A number of parameter sensitivity experiments are

subsequently presented which lead to tuning recommendations

for the RWBS. Section 3 proposes a new method for extending

the RWBS algorithm to discrete and mixed search spaces. The

efficiency of the resulting algorithm is compared with the orig-

inal RWBS. The computational complexity of the algorithm is

also discussed. Constraint handling techniques are briefly dis-

cussed in Section 4. Section 5 derives the novel multiple-objective

Pareto-RWBS algorithm and presents a number of experiments,

comparing the Pareto-RWBS algorithm with the NSGA-II algorithm

[29]. Our conclusions and discussions on further work are offered in

Section 6.

2. Original RWBS optimisation algorithm

The optimisation problem considered in [9] is re-produced here

for convenience2:

min
u∈U

J(u) (2)

where u = [u1 u2 · · · un]T is the n-dimensional vector of continuous-

valued decision variables to be optimised, U is the feasible set of u

and J(u) is the cost function which can be non-smooth. The orig-

inal RWBS algorithm [9] is a multi-start search method with the

weighted boosting search (WBS) as its local optimiser, which is

first presented below.

2 This will then be extended to the generic optimisation problem (1) outlined in

Section 1.

2.1. Weighted boosting search as a local optimiser

Consider a population of Ps points: ui ∈ U for 1 ≤ i ≤ Ps. These Ps

points are initially chosen at random. Define

ibest = arg min
1≤i≤Ps

J(ui) and ubest = uibest
, (3)

iworst = arg max
1≤i≤Ps

J(ui) and uworst = uiworst
. (4)

Next, a (Ps + 1)th point is generated by performing a convex com-

bination of {ui}
Ps
i=1

:

uPs+1 =

Ps
∑

i=1

ıiui, (5)

where the weights satisfy ıi ≥ 0, 1 ≤ i ≤ Ps, and

Ps
∑

i=1

ıi = 1. (6)

The point uPs+1 is always within the convex hull defined by {ui}
Ps
i=1

.

A mirror image of uPs+1 is then generated with respect to ubest and

along the direction defined by ubest − uPs+1:

uPs+2 = ubest + (ubest − uPs+1). (7)

If uPs+1 or uPs+2 are outside U, they can be projected back to U. The

best of uPs+1 and uPs+2 replaces uworst in the population, according

to their cost function values. This process is repeated until the pop-

ulation converges. The convergence can be assumed, for example,

if

‖uPs+1 − uPs+2‖ < �B, (8)

where the small positive scalar, �B, is the chosen accuracy.

The weights, {ıi}
Ps
i=1

, are adapted according to a boosting tech-

nique [9]. In the first iteration (t = 0), the weights are distributed

uniformly:

ıi(0) =
1

Ps
, 1 ≤ i ≤ Ps. (9)

In subsequent iterations (t > 0) weights are updated using the fol-

lowing procedure. First, the cost function values are normalised:

Ji =
Ji

∑Ps

j=1
Jj

, 1 ≤ i ≤ Ps, (10)

then a weighting factor ˇ(t) is computed according to:

�(t) =

Ps
∑

i=1

ıi(t − 1)Ji, ˇ(t) =
�(t)

1 − �(t)
. (11)

The weights are then updated for 1 ≤ i ≤ Ps:

ıi(t) =

{

ıi(t − 1)ˇ(t)Ji if ˇ(t) ≤ 1,

ıi(t − 1)ˇ(t)1−Ji if ˇ(t) > 1,
(12)

and normalised according to:

ıi(t) =
ıi(t)

∑Ps

j=1
ıj(t)

, 1 ≤ i ≤ Ps. (13)

2.2. Repeated weighted boosting search as a global optimiser

The WBS procedure described above is repeated multiple times

with random population initialisation in order to search for a global

optimum. Each repetition is termed a generation and an elitist

based initialisation is used, which keeps the best solution found in

the previous generation. The RWBS global optimisation algorithm

can then be described as follows [9].

Author's personal copy

2742 S.F. Page et al. / Applied Soft Computing 12 (2012) 2740–2755

Specify the algorithmic parameters: population size Ps, number

of generations in the repeated search Ng, number of iterations in

the WBS NB and accuracy for terminating the WBS �B.

© Outer loop: generations for g = 1 : Ng

– Generation initialisation: Initialise the population by setting

u
(g)
1

= u
(g−1)
best

and randomly generating the rest of the popula-

tion members u
(g)
i

, 2 ≤ i ≤ Ps, where u
(g−1)
best

denotes the solution

found in the previous generation. If g = 1, u
(g)
1

is also randomly

chosen.

– Weighted boosting search initialisation: Assign the initial

weights ıi(0) = 1
Ps

, 1 ≤ i ≤ Ps, for the population, and calculate

the cost function value of each point:

Ji = J(u(g)
i

), 1 ≤ i ≤ Ps.
– Inner loop: weighted boosting search for t = 1 : NB

• Step 1: Boosting

(1) Find:
ibest = arg min

1≤i≤Ps

Ji,

iworst = arg max
1≤i≤Ps

Ji.

Denote u
(g)
best

= u
(g)
ibest

and u
(g)
worst = u

(g)
iworst

.

(2) Normalise the cost function values:

Ji =
Ji

∑Ps

j=1
Jj

, 1 ≤ i ≤ Ps.

(3) Compute the weighting factor ˇ(t) according to:

�(t) =

Ps
∑

i=1

ıi(t − 1)Ji, ˇ(t) =
�(t)

1 − �(t)
.

(4) Update the weights for 1 ≤ i ≤ Ps:

ıi(t) =

{

ıi(t − 1)ˇ(t)Ji for ˇ(t) ≤ 1,
ıi(t − 1)ˇ(t)1−Ji for ˇ(t) > 1,

and normalise them:

ıi(t) =
ıi(t)

∑Ps

j=1
ıj(t)

, 1 ≤ i ≤ Ps.

• Step 2: Parameter updating

(1) Construct the (Ps + 1)th point using the formula:

uPs+1 =

Ps
∑

i=1

ıi(t)u
(g)
i

.

(2) Construct the (Ps + 2)th point using the formula:

uPs+2 = u
(g)
best

+ (u
(g)
best

− uPs+1).
(3) Compute the cost function values J(uPs+1) and J(uPs+2)

for these two points, and find:

i∗ = arg min
i=Ps+1,Ps+2

J(ui).

(4) The pair {ui∗ , J(ui∗)} then replaces {u
(g)
worst, Jiworst

} in the

population.
• If ‖uPs+1 − uPs+2‖ < �B, exit Inner loop

– End of Inner loop The solution found in the gth generation is

u
(g)
best

© End of Outer loop This yields the solution u(Ng)
best

Comments: RWBS shares a number of similarities with GAs that

employ elitism. Both are population-based techniques which com-

bine a local search based on current members of the population (i.e.

convex combination in RWBS and crossover in a GA), and a stochas-

tic search component (the outer loop in RWBS and mutation in a

GA), designed to prevent the algorithm from converging towards

local optima. The performance of these two techniques can, there-

fore, be expected to be similar in general. Indeed, the experiments

reported in [9] do confirm this. RWBS is most closely related to a

GA which employs a convex crossover operator, single offspring

selection, and elitism.

Computational complexity: The computational complexity of the

RWBS algorithm can easily be analysed in the following manner.

There are at most NB inner loop iterations, each consisting of O(Ps)

operations, where the notation O represents ‘order of’. Each outer

loop iteration or ‘generation’, of which there are Ng, therefore, con-

sists of O(NBPs) operations. The total computational complexity of

the RWBS is, therefore, given by O(NgNBPs).

2.3. Convergence to global optimality

There are two main factors which affect the global convergence

performance of RWBS. In the simplest terms, RWBS is capable of

reaching the global optimality due to the stochastic search compo-

nent. Since there is always a population member generated using

a uniform distribution over the decision space domain U, then the

algorithm will, in the limit, converge to a global minimum with

probability one, assuming that a global minimum lies within the

chosen domain. The convergence rate of RWBS is, therefore, lower

bounded by that of pure stochastic search:

CRWBS ≥ CRS, (14)

where CRWBS and CRS are the convergence rates of RWBS and pure

random search (with the same generating distribution), respec-

tively.

The convergence rate of RWBS is, however, expected to exceed

that of random search due to the local search component in Eq. (5).

A successful local search technique should converge to the local

optimum very rapidly and thus the overall performance of RWBS

will, in part, hinge on the combined convergence rate of the convex

combination and reflection operators. However, it will be shown

that the definition of ‘locality’ that is appropriate for RWBS is dif-

ferent from that associated with conventional local search such as

steepest-descent.

The steepest-descent algorithm is designed to find the local

minimum which lies within the (convex) ‘basin of attraction’ of

a single point. It proceeds by computing the gradient of the objec-

tive function at a point, and moving in the direction of the negative

gradient. The weighted boosting technique in RWBS, however, is

a population-based technique designed to find a local minimum

within the convex hull defined by the population of points {ui}. In

many cases, this region will represent a larger subspace than the

basin of attraction around a single point, especially if the search

space is large and multi-modal. It should also be noted that due to

the reflection operator in Eq. (7), the size of the convex hull that is

assessed by the RWBS inner loop can increase if J(uPs+1) > J(uPs+2),

and the solution found at the end of the inner search loop can in

fact be outside of the convex hull defined by the initial popula-

tion at the beginning of the inner loop. The local search in RWBS

is, therefore, technically less restrictive than hill climbing or algo-

rithms directly based on Newton’s method, as it is able to explore a

larger subspace. In application, RWBS exhibits a smoothing or low-

pass effect which guides the optimisation towards the optimum of

a smoothed version of the cost function. Thus, in general, it is con-

jectured that RWBS is expected to perform well in the cases were

the cost function is approximately globally convex. A rigorous proof

of this concept is the subject of further work.

2.4. Benchmark convergence experiments

This section presents a number of benchmark convergence

experiments which analyse the performance of the original RWBS

algorithm in more depth than the presentation in [9]. More specif-

ically, the performance of the RWBS algorithm is compared to a

random search, the MSGS, and a GA. A number of well known test

functions with different attributes are used.

Author's personal copy

S.F. Page et al. / Applied Soft Computing 12 (2012) 2740–2755 2743

Fig. 1. Two-dimensional Ackley function: there are multiple local minima and one

global minimum at uglobal = [0 0]T with J(uglobal) = 0.

Fig. 2. Two-dimensional Rastrigin function: there are multiple local minima and

one global minimum at uglobal = [0 0]T with J(uglobal) = 0.

The first test function considered is a two-dimensional version

of the widely used Ackley function:

J(u) = − 20 exp



−0.2

√

√

√

√

1

2

2
∑

i=1

u2
i



 − exp

(

1

2

2
∑

i=1

cos(2�ui)

)

+ 20 + e, (15)

where u = [u1 u2]T. This function is illustrated in Fig. 1. For points

outside the interval { − 10 ≤ uj ≤ 10}, j = 1, 2, the cost function is

assigned a value of 100.

The second test function considered is the well-known two-

dimensional Rastrigin function:

J(u) = 20 + u2
1 + u2

2 − 10(cos(2�u1) + cos(2�u2)). (16)

The surface of this function is illustrated in Fig. 2. For points outside

the interval { − 5 ≤ uj ≤ 5}, j = 1, 2, the cost function is again assigned

a value of 100.

Fig. 3. Two-dimensional simple multi-modal benchmark cost function (the plot is

inverted for clarity): there are two local minima corresponding to ulocal1 ≈ [0 1]T

with J(ulocal1) ≈ 2.5 and ulocal2 ≈ [−2 2]T with J(ulocal2) ≈ 2.5, respectively, as well as

the single global minimum at uglobal ≈ [1 − 1]T with J(uglobal) ≈ 2.0.

The above two functions are standard benchmark cost functions

widely used in assessing the performance of optimisation algo-

rithms. Both are non-smooth and have multiple local optima which

should present difficulties to the MSGS. RWBS and GAs are gener-

ally expected to provide superior performance over the MSGS in

these types of problems.

Thirdly, a simple two-dimensional function with two local min-

ima and one global minimum is tested, and the cost function

considered is given by

J(u) = 1.5(1 − exp(−(u1 − 1)2
− (u2 + 1)2)) + 1 − exp(−(u1 + 2)2

− (u2 − 2)2) + 1 − exp(−u2
1 − (u2 − 1)2). (17)

The surface of this cost function is illustrated in Fig. 3. For points

outside the interval { − 4 ≤ uj ≤ 4}, j = 1, 2, the cost function is

assigned a value of 100. This simpler cost function is smooth and

its global optimum has a large basin of attraction, which should

not present much difficulty to the MSGS. This function was chosen

in order to compare the performance of RWBS with the MSGS on

simple problems where the MSGS technique is known to perform

well.

In order to create a basic MSGS algorithm, single sample is

repeatedly taken from a uniform distribution over the prede-

fined variable intervals and used to seed the MATLAB Optimisation

Toolbox function fminunc [30]. Thus, in this application, the local

gradient search optimiser of the MSGS adopts the optimisation

algorithm fminunc, which employs a medium-scale algorithm

based on the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) Quasi-

Newton method with a mixed quadratic and cubic line search

procedure [30]. The random search method employed is also

based on repeated uniform sampling over the respective vari-

able intervals. A GA was created using the MATLAB function ga

from the Genetic Algorithm and Direct Search Toolbox. This high

performance GA is based on the following components: a scat-

tered crossover, zero-mean Gaussian mutation, stochastic uniform

selection, double-vector real coding, migration, and a relative rank-

based fitness scaling process.

Fig. 4 presents the results of the performance comparison on

Ackley function. The number of cost function evaluations is plotted

against the mean best cost function value found so far, averaged

Author's personal copy

2744 S.F. Page et al. / Applied Soft Computing 12 (2012) 2740–2755

0 200 400 600 800 1000 1200 1400 1600

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Number of Cost Function Evaluations

A
v
e

ra
g

e
 C

o
s
t
F

u
n

c
ti
o

n

Convergence Comparison of Random Search, MSGS, RWBS and GA

Uniform Random SearchU

U

Multi−Start Quasi−NewtonM

M

RWBSR

R

Genetic AlgorithmG

G

Global Optimum

Fig. 4. Convergence performance comparison of the random search, MSGS, RWBS

and GA on the test problem, Ackley function (15).

over 100 Monte-Carlo experiments of each algorithm. The RWBS

algorithm was used with the following settings which were found

to be appropriate using very rapid coarse tuning experiments:

Ps = 11, Ng = 150, NB = 15 and �B = 0.02. The GA settings were mixed

default values and empirically chosen ones. The default parame-

ters of the GA used are: crossover fraction = 2, elitism count = 2 and

migration interval = 20, which remained constant throughout all

the experiments. The initial population range and the population

size of 100 by contrast were chosen using coarse tuning experi-

ments. Default settings for the maximum number of iterations and

termination tolerances were used for the MSGS algorithm as they

were deemed appropriate for the problem. From Fig. 4, it can be

seen that the convergence rates of the GA and RWBS are much faster

than that of the MSGS, while the random search has the worst con-

vergence rate and appears to have the difficulty to converge to the

global optimum. On average, RWBS finds a solution within 0.05 of

the global optimum after only 253 cost function evaluations. The

GA requires 1200 cost function evaluations in order to reach the

same accuracy, while the MSGS requires 1327 cost function eval-

uations. The random search procedure remains at least 0.6 away

from the global optimum after 2000 cost function evaluations.

It is noted that a number of rule-of-thumb-based approaches

have been proposed for tuning GAs, for example in [31]. One such

approach for choosing the GA population size is to simply use

approximately 10 times the number of dimensions, correspond-

ing to a population size of 20 in this case. This method has been

shown to provide good performance in a number of cases. However,

the experiments presented herein were repeated with a population

size of 20 and the GA results were, in general, found to be infe-

rior to those generated using the above-described parameters. One

possible explanation for this observation is that the rule-of-thumb

may make assumptions about the nature of the GA (e.g. regard-

ing coding, crossover and mutation operators, and fitness scaling

mechanisms etc) which are not justified in this case. Additional

rules-of-thumb for selecting GA parameters, such as crossover rate,

mutation rate, and number of generations have also been proposed

in the literature. Investigating the relative performance of RWBS

against the GA tuned using appropriate rules is, therefore, an inter-

esting area of future work. All the results presented in this section

are based on direct trial and error parameter tuning for the RWBS,

GA and MSGS, rather than using rules-of-thumb. For the benchmark

problem of Ackley function (15), the RWBS with only brief tuning

0 500 1000 1500 2000

0

2

4

6

8

10

12

Number of Cost Function Evaluations

A
v
e

ra
g

e
 C

o
s
t
F

u
n

c
ti
o

n

Convergence Comparison of Random Search, MSGS, RWBS and GA

Uniform Random SearchU

U

Multi−Start Quasi−NewtonM

M

RWBSR

R

Genetic AlgorithmG

G

Global Optimum

Fig. 5. Convergence performance comparison of the random search, MSGS, RWBS

and GA on the test problem, Rastrigin function (16).

0 200 400 600 800 1000

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

Number of Cost Function Evaluations

A
v
e

ra
g

e
 C

o
s
t
F

u
n

c
ti
o

n
Convergence Comparison of Random Search, MSGS, RWBS and GA

Uniform Random SearchU

U

Multi−Start Quasi−NewtonM

M

RWBSR

R

Genetic AlgorithmG

G

Global Optimum

Fig. 6. Convergence performance comparison of the random search, MSGS, RWBS

and GA on the simple multi-modal test problem of (17).

of the two major parameters, Ps and NB, performs slightly better

than the GA and significantly better than the MSGS algorithm.

Fig. 5 shows the results generated with Rastrigin function. In this

case the RWBS algorithm was again used with the following set-

tings which were found to be appropriate: Ps = 11, Ng = 150, NB = 15

and �B = 0.02. Once again, the default GA settings were used, except

for the initial population range and the population size of 100 which

were chosen empirically. Default settings for the maximum num-

ber of iterations and termination tolerances were again used for

the MSGS algorithm. For this example, the initial convergence rate

of the GA is slightly faster than that of the RWBS, but the RWBS

finds a value within 0.05 of the global optimum within 1773 cost

function evaluations while the GA reaches the same solution accu-

racy within 1900 cost function evaluations. As expected, the MSGS

requires significantly more cost function evaluations (in fact larger

than 6900) to reach a similar level of accuracy. Again, the random

search has the worst convergence rate.

Fig. 6 illustrates the performance comparison using the function

defined in Eq. (17). In this case, the RWBS algorithm was applied

with the following settings which were empirically found to be

appropriate: Ps = 6, Ng = 150, NB = 5 and �B = 0.02. The GA population

Author's personal copy

S.F. Page et al. / Applied Soft Computing 12 (2012) 2740–2755 2745

Table 1

Convergence performance comparison: mean number of cost function evaluations

required to identify solution within the accuracy of 0.05 from the global optimum.

Algorithm\test function Ackley Rastrigin Simple

multi-modal

RWBS 253 1773 173

GA 1200 1900 300

MSGS 1327 >6900 214

Random Search >2000 >6900 >2000

Boldface obviously indicates the best value among the four values.

size was once again set to 100. Default settings for the maximum

number of iterations and termination tolerances were again used

for the MSGS algorithm. It is clear from Fig. 6 that neither the RWBS

nor the GA can significantly outperform the MSGS algorithm. This

is expected as the basin of attraction for the global minimum in this

example is very large, compared to that of the global minimum of

Ackley or Rastrigin function. The MSGS is, therefore, likely to find

the global minimum quite rapidly. In fact, both the RWBS and MSGS

algorithms outperform the GA in this case. More specifically, the

results show that the RWBS and MSGS find solutions within 0.05 of

the global minimum after 173 and 214 cost function evaluations,

respectively, while the GA requires 300 cost function evaluations

to achieve the same solution accuracy.

Table 1 summarises the performance comparison for the three

benchmark test problems. In each case, the RWBS converges to

within the accuracy of 0.05 from the true global minimum faster

than all the other algorithms. This provides additional support to

the conjecture that the RWBS is a very promising algorithm for

black-box optimisation problems, especially considering the very

minor tuning requirements involved and the ease of implementa-

tion. In most cases examined herein the RWBS algorithm was found

to perform well with the two key parameters set to 5 ≤ Ps ≤ 15 and

5 ≤ NB ≤ 20. Coarse tuning within these ranges can be used to fine

tune the algorithm performance very quickly.

2.5. RWBS algorithmic parameter sensitivity

The performance of RWBS on a given problem is dependent on

the cost function to be optimised, and on the chosen RWBS algorith-

mic parameters. In order to make efficient use of RWBS, therefore,

the robustness or sensitivity of the algorithm’s performance to the

algorithmic parameter variations is investigated. As the original

RWBS algorithm has a total of four tuning parameters: the popula-

tion size Ps, the number of generations Ng, the number of boosts or

iterations in the WBS NB and the WBS termination threshold �B, the

parameter sensitivity is a surface on the four-dimensional param-

eter space. If each parameter is tested over N discrete values, then

the total number of optimisation runs extends to N4. Moreover,

it is very difficult to visualise a high-dimensional surface. How-

ever, practical experience has suggested that the key algorithmic

parameters of interest are the population size, Ps, and the number

of boosts, NB. In practice, the number of generations, Ng, must be

chosen to be sufficiently large to ensure a global convergence, in

a similar way to which the number of generations used in a GA is

chosen. Varying the number of generations in this context would

not provide significant insight as it will simply effect whether or

not the algorithm finds a solution, namely, converges successfully

or not. The termination threshold, �B, is of more direct interest with

respect to the convergence rate. Varying the termination threshold

would, therefore, provide additional insight into the rate of conver-

gence. However, it is clear that one can simply remove the inner

loop convergence test and only terminate the inner loop when the

number of boosts, NB, has been reached. In this way, there would be

no need to specify the parameter �B, and the parameter, NB, would

become the remaining control mechanism for convergence rate.

Fig. 7. Parameter sensitivity surface (a) and contour plot (b) for the RWBS applied

to the simple multi-modal test problem of (17).

This analysis also supports the empirical experience suggesting that

Ps and NB are the key algorithmic parameters.

Therefore, we test the RWBS algorithm over a range of values

for the two key parameters, Ps and NB. It is informative to per-

form this process in order to provide some pragmatic suggestions

for approaches to parameter choice. Specifically, for all the three

benchmark cases, the algorithm was tested over the parameter

ranges of 3 ≤ Ps ≤ 50 and 3 ≤ NB ≤ 30, and the results were averaged

over 50 Monte-Carlo simulations. The number of generations, Ps,

was set to a very high value, and the termination threshold, �B, was

kept constant. For each pair of Ps and NB, we recorded the mini-

mum number of cost function evaluations required to maintain the

performance level as described in the previous section.

Fig. 7(a) and (b) presents the parameter sensitivity surface and

its contour plot, respectively, obtained by applying the RWBS algo-

rithm to the simple multi-modal test problem of (17). It should be

pointed out that the areas of the surface that appear to require zero

cost evaluation correspond to those simulations where a solution

of the required accuracy was not found. It is immediately notice-

able from Fig. 7 that, in general, the larger the population size, the

larger the number of cost function evaluations required. This pro-

vides justification for the suggestion to use small population sizes

given in [9]. It is interesting to note that the optimum performance

appears to occur when a population size of around 10 is chosen.

As the population size increases, the algorithm requires more cost

Author's personal copy

2746 S.F. Page et al. / Applied Soft Computing 12 (2012) 2740–2755

Fig. 8. Parameter sensitivity surface (a) and contour plot (b) for the RWBS applied

to the benchmark test problem of Rastrigin function (16).

evaluations to converge. The results of Fig. 7 also indicate a level of

relative insensitivity to the number of boosts for this example, and

this provides evidence for the assertion that the population size is a

more dominant key parameter, in terms of effect on the algorithm’s

performance.

Fig. 8(a) and (b) plots the parameter sensitivity surface and its

contour plot, respectively, obtained by applying the RWBS algo-

rithm to the benchmark test problem, Rastrigin function of (16).

Unlike the case of the simple multi-modal test problem, a differ-

ent parameter sensitivity surface is observed, in that the algorithm

now exhibits more sensitivity to the number of boosts for small

and large population sizes. However, it is noted that if the popu-

lation size is set to an appropriate value (sizes less than 20 seem

to offer reasonable performance), there is still a level of relative

insensitivity to the number of boosts.

Fig. 9(a) and (b) shows the parameter sensitivity surface and its

contour plot, respectively, obtained by applying the RWBS to the

benchmark test problem, Ackley function of (15). Similar results to

the previous examples are observed, suggesting the relative insen-

sitivity to the number of boosts and the good levels of performance

achievable with low population sizes.

In summary, therefore, the parameter sensitivity results indi-

cate that the dominant key parameter of importance is the

population size, Ps. If an appropriate choice of this parameter is

made, the algorithm exhibits a level of insensitivity to the number

Fig. 9. Parameter sensitivity surface (a) and contour plot (b) for the RWBS applied

to the benchmark test problem of Ackley function (15).

of boosts, NB. In addition, the results demonstrate that small popu-

lation sizes are capable of providing good levels of performance

across a range of different cost functions, further strengthening

the potential of the RWBS algorithm for black-box optimisation, in

problems such as those relevant to the autonomous sensor manage-

ment [28]. Moreover, the following trade-off in parameter tuning

can be drawn.

Like most stochastic search algorithms, the RWBS must

be tuned to each particular problem to achieve the best

results. The main trade-off in relation to convergence success

is between the number of generations, Ng, and the number of

boosts, NB, which balance the stochastic component of the algo-

rithm with its local search component. Appropriate choice of the

algorithmic parameters depends on whether the cost function is

suspected to contain multiple local minima. As the population size

increases, the effect of each boosting iteration is attenuated. This is

because a larger population is likely to cover a larger subspace and

thus it takes longer for the boosting process to focus on a particu-

lar region of interest. Experiments suggest that larger populations,

therefore, demand higher values for NB, and as a consequence, the

convergence rate may become slower. The advantage of a larger

population is that the probability of encompassing the basin of

attraction of the global minimum is increased. If the cost func-

tion is also relatively convex then the probability of locating the

global minimum in a shorter time period is also increased. Initial

Author's personal copy

S.F. Page et al. / Applied Soft Computing 12 (2012) 2740–2755 2747

Decision variable u
1

D
e

c
is

io
n

 v
a

ri
a

b
le

 u
2

Regular Discrete Search Space

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Fig. 10. Example of regular discrete decision variable space overlaid with the con-

tour plot of the cost function (17), where black dot markers correspond to possible

decision variable values which are located on the grid with the increment of 0.25.

experience with the algorithm suggests that smaller populations

often provide more efficient results for non-smooth cost functions.

The results presented above also indicate that if the population size

is chosen appropriately, the algorithm will exhibit relative insensi-

tivity to the number of boosts.

3. Extension to mixed search spaces

The RWBS algorithm described in Section 2 is only applicable to

problems where the decision variables are defined over a continu-

ous search space. This is because the weighted convex combination

in the local search inner loop, Eq. (5), is a continuous-valued func-

tion. However, in many problems, the decision variables are defined

over a discrete space, or a mixture of continuous space and dis-

crete space, often described as a ‘mixed’ space. It should also be

noted that in some cases, the cost function may only be defined

or evaluated on the discrete points and, therefore, methods based

on continuous-valued optimisation followed by discretisation are

not always applicable. Consider the case where the search space

U is purely discrete, such as that illustrated in Fig. 10. In this case,

the search space is regular and feasible points are located on the

grid with the increment of 0.25. In order to ‘convert’ the RWBS

algorithm to operate over discrete search spaces, the convex com-

bination operator must be constrained in some way to generate

discrete solutions. A modified parameter update step is proposed

here and the resulting algorithm is termed the nearest-neighbour

RWBS (NNRWBS). This new algorithm retains the original convex

combination operator but modifies the generated point so that it is

assigned to a feasible value in the discrete space. It is assumed that

the underlying search space U is a regular grid in an n-dimensional

space.

3.1. Nearest-neighbour parameter update

A simple and efficient method to generate a new discrete point

from a weighted combination of points in discrete space is given as

follows. Firstly, generate an intermediate point, v1, by computing

the weighted convex combination as in (5), and a second interme-

diate point, v2, is then generated by reflection using Eq. (7). Next,

assign or ‘snap’ the new points to the nearest discrete points accord-

ing to some distance measure, e.g. Euclidean norm. The resulting

NNRWBS algorithm is identical to the original RWBS with the

Decision variable u
1

Objective Functions as Contours in Decision Space

D
e

c
is

io
n

 v
a

ri
a

b
le

 u
2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Fig. 11. Illustration of the NNRWBS parameter update on the simple multi-modal

function of (17), using a regular discrete search space with feasible points located on

the grid with the increment of 0.25 as in Fig. 10. (For interpretation of the references

to colour in the text, the reader is referred to the web version of the article.)

exception of the parameter update step which is replaced with the

following (this particular example uses the Euclidean norm as the

distance metric).

• Step 2: NNRWBS parameter update

(1) Construct the (Ps + 1)th point by first generating the interme-

diate point using:

v1 =

Ps
∑

i=1

ıi(t)u
(g)
i

, (18)

and then assigning the new point to the discrete grid using:

uPs+1 = argmin
u∈U

‖u − v1‖. (19)

(2) To construct the (Ps + 2)th point, first use the formula3

v2 = ubest + (ubest − v1), (20)

and then assign the new point to the discrete grid using:

uPs+2 = argmin
u∈U

‖u − v2‖. (21)

(3) Compute the cost function values J(uPs+1) and J(uPs+2) for

these two points, and find:

i∗ = arg min
i=Ps+1,Ps+2

J(ui). (22)

(4) The pair {ui∗ , J(ui∗)} then replaces {u
(g)
worst, Jiworst

} in the popu-

lation.

Note that the 3rd and 4th stages of the new parameter update

step remain in the original form, but the first two stages are now

modified. The NNRWBS parameter update step is illustrated in

Fig. 11. The green circle markers indicate the two intermediate

points, v1 and v2. The red asterisk markers illustrate the original

members of the population, and the red and black cross markers

indicate the (Ps + 1)th and (Ps + 2)th points generated, respectively.4

3 One could equally use uPs+1 instead of v1 .
4 Note that if the search space U is a regular grid then the (Ps + 1)th point is

guaranteed to be within the convex hull defined by {u
(g)

i
}Ps
i=1

.

Author's personal copy

2748 S.F. Page et al. / Applied Soft Computing 12 (2012) 2740–2755

0 100 200 300 400 500 600 700 800

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

Number of Cost Function Evaluations

A
v
e

ra
g

e
 C

o
s
t
F

u
n

c
ti
o

n

Convergence Comparison of NNRWBS and RWBS

NNRWBS

RWBS

Global Optimum

Fig. 12. Convergence performance comparison of the nearest-neighbour RWBS and

the original RWBS on the simple multi-modal test problem of (17).

Computational complexity: The computational complexity of the

NNRWBS algorithm only differs from that of the original RWBS

due to the extra two quantisation operations within each inner

loop (and only in discrete dimensions). If the structure of the dis-

crete space is known, then the quantisation can, in some cases, be

performed relatively cheaply. For instance, in a regular Euclidean

space, a simple rounding operation is sufficient. In such cases, the

extra computation involved is small, and the overall complexity

remains as O(NgNBPs). In general, however, the complexity will

depend on the difficulty involved in assigning the intermediate

points to feasible points. If a highly irregular search space is used, a

grid-based look up table may be used to identify candidate feasible

points and an exhaustive search employed to select the new point.

RWBS for mixed search space: For an optimisation task over a

mixed search space U, some of the n decision variables have dis-

crete or integer values, while the rest of the decision variables have

continuous values. Application of the RWBS algorithm for optimi-

sation over such a mixed search space can be achieved by applying

the NNRWBS parameter update step in the appropriate discrete

dimensions, while retaining the original parameter update step in

the rest continuous dimensions.

3.2. Benchmark convergence experiments

The performance of the proposed NNRWBS algorithm is

assessed by comparison with the original RWBS algorithm oper-

ating on an equivalent continuous search space. The simple

multi-modal test problem (17) and the benchmark test problem

of Ackley function (15) were used in the comparison. The NNRWBS

algorithm was applied using a regular discrete search space with

feasible points located on the grid with the distance of 0.01 in the

both dimensions, and the same algorithmic parameter values as

used in the RWBS simulation of Section 2.4 were adopted.

Fig. 12 shows the results obtained for the simple multi-modal

cost function (17), while Fig. 13 depicts the results generated for

the test problem, Ackley function (15). In the both cases, the per-

formance of the NNRWBS are very similar to those of the original

RWBS algorithm for continuous search space, indicating that the

modified parameter update step offers a reasonable approach to

apply the RWBS in discrete space cases. In addition, as pointed

out previously, if the search space is regular, then the quantisa-

tion operations in Eqs. (19) and (21) can be computed relatively

0 100 200 300 400 500 600 700

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of Cost Function Evaluations

A
v
e

ra
g

e
 C

o
s
t

F
u

n
c
ti
o

n

Convergence Comparison of NNRWBS and RWBS

NNRWBS

RWBS

Global Optimum

Fig. 13. Convergence performance comparison of the nearest-neighbour RWBS and

the original RWBS on the test problem, Ackley function of (15).

Fig. 14. Comparison of the Euclidean convex hull and discrete space embedded

convex hull, where the shaded grey area is the discrete embedded convex hull while

the Euclidean convex hull is depicted by the dashed trace.

easily. This experiment thus suggests that the NNRWBS algorithm

retains the efficiency of the original RWBS algorithm.

3.3. Embedded hull parameter update

While the convex combination in the nearest-neighbour param-

eter update step can only generate intermediate points within the

Euclidean convex hull defined by the population, the (Ps + 1)th point

can, of course, be outside of the Euclidean convex hull. Despite

of this, the use of the Euclidean convex operator may be consid-

ered restrictive as it does not account for the differences between

the notions of continuous and discrete convexity. When discrete

spaces are modelled with cell complexes, a number of different

types of convexity can be defined, each with different properties

[32]. The embedded convex hull is particularly useful in this con-

text due to its simple shape. By identifying the embedded convex

hull defined by the population, it is possible to relax the parame-

ter update so that it operates over a larger subspace, potentially

leading to superior performance. An illustration of this concept

can be found in Fig. 14. Some of the points in the embedded

Author's personal copy

S.F. Page et al. / Applied Soft Computing 12 (2012) 2740–2755 2749

convex hull are unreachable through the use of the nearest-

neighbour parameter update, for example, the point ue in Fig. 14. By

augmenting the population with a set of new points, such that the

overall population forms a Euclidean hull that covers the embed-

ded hull, all points become reachable. An alternative discrete space

parameter update step which results in the embedded hull RWBS

(EHRWBS) algorithm, therefore, operates in the following man-

ner: (a) identify the embedded discrete convex hull defined by the

current population; (b) find a sparse set of new points such that

the overall enlarged population creates a convex hull in Euclidean

space which completely covers the discrete embedded hull; and

(c) perform the nearest-neighbour convex combination algorithm

on the resulting enlarged population, and retain the Ps population

members after the update.

Generating a sparse set of points to enclose the discrete embed-

ded hull can be achieved in various ways. A simple method is

proposed which exploits the fact that the embedded convex hull

will always be an n-dimensional hyper-cuboid. To find a set of

points which form a Euclidean hull that encloses the embedded

hull, all that is required is to find the intersection of the lines defined

by the minimum and maximum points in each decision variable

dimension. The number of points required to represent this hull

is n + 1, although in many cases the number of points that needs

to be added to the population, m, will be less than n + 1, as some

of the nodes of the hyper-cuboid will already be members of the

population. The resulting EHRWBS algorithm is, like the NNRWBS,

identical to the original RWBS algorithm apart from the parameter

update step in the inner loop. The EHRWBS parameter update step

proceeds as follows.

• Step 2: EHRWBS parameter update

(1) Identify the minimum and maximum points in all the n

dimensions.

(2) Identify the m nodes of the embedded hull hyper-cuboid that

are not already members of the population, and augment

the population with these points to create an intermediate

enlarged population of size Ps + m.

(3) To construct the th point, first generate an intermediate point

using:

v1 =

Ps+m
∑

i=1

ıi(t)u
(g)
i

, (23)

and then assign the new point to the discrete grid using:

uPs+1 = argmin
u∈U

‖u − v1‖. (24)

(4) To construct the (Ps + 2)th point, first generate an intermedi-

ate point using the formula

v2 = ubest + (ubest − v1), (25)

and then assign the new point to the discrete grid using:

uPs+2 = argmin
u∈U

‖u − v2‖. (26)

(5) Compute the cost function values J(uPs+1) and J(uPs+2) for

these two points, and find:

i∗ = arg min
i=Ps+1,Ps+2

J(ui). (27)

(6) The pair {ui∗ , J(ui∗)} then replaces {u
(g)
worst, Jiworst

} in the

enlarged population.

(7) Remove the m worst points from the enlarged population of

size Ps + m, so that the size of the population remains Ps.

4. Extension to constrained optimisation

There has been a wide range of studies investigating methods

for incorporating constraints into stochastic search processes, in

particular, for evolutionary algorithms [33,34]. One of the sim-

plest methods to handle constraints in stochastic search technique

is to simply reject any infeasible solutions which are gener-

ated, and this is sometimes known as the death-penalty method.

The most popular approach, however, is the application of less

drastic penalty functions [35]. Penalty function based techniques

transform the original constrained problem into an unconstrained

problem, where the penalty function is added to the original cost

function. Sometimes, the penalty is made proportional to the total

constraint violation [33]. Various kinds of penalty functions have

been investigated, and they can be broadly classified according to

whether they are static or dynamic, and whether they are adaptive

or non-adaptive. Dynamic penalty functions reduce the effect of the

constraints as the optimisation process evolves. The main criticism

of the penalty function approach is that it is very difficult to tune

the penalty functions. However, the authors of [34] have shown

that by searching both the original decision space and an asso-

ciated Lagrange-multiplier subspace, that some of the problems

associated with tuning penalty functions can be avoided.

Both the death-penalty and penalty-function methods can be

used directly with the RWBS. However, it is noted that experi-

mentation suggests that the reflection operator in the algorithm

often yields infeasible solutions, and thus the question arises as to

how to deal with such points. Simply deleting the infeasible points

generated in the reflection operation may amount to question the

legitimacy of this operator, and will at least reduce the effective-

ness of the reflection operation. An alternative approach is to use a

repair method, whereby infeasible points are assigned a value in the

decision space which places them at the boundary of the constraint.

Application of such methods is the subject of future work.

5. Extension to multiple objective problems

It is well known that if a priori information regarding the rela-

tive importance of different optimisation objectives is available, the

multiple-objective optimisation problem can be reformulated as a

single-objective problem, such as in the simple weighting method.

Techniques which operate in this context can be termed ‘non-

Pareto methods’ as they search for solutions to surrogate problems.

However, if preference information is not available or the nature of

the Pareto-frontier is of direct interest, then the optimisation algo-

rithm must generate a set of Pareto-optimal solutions. Ideally, the

solutions should be well distributed across the Pareto-frontier.5

These methods can be termed ‘Pareto methods’. The solution set

can then be used to consider which solution is most appropriate for

the particular problem and to implicitly infer some relative impor-

tance of the objectives. Several methods have been proposed to

adapt common population based stochastic search techniques, in

particular GAs, to generate Pareto-optimal sets. An introduction to

this topic can be found in [36]. Other multiobjective evolutionary

algorithms can be found in [37,38], and detailed review of multi-

objective evolutionary algorithms is given in [39,40].

There are two main aspects to designing an efficient algorithm

for Pareto-optimisation. Firstly, the algorithm needs to embody

a mechanism which drives solutions towards the Pareto-frontier

and, secondly, there needs to be a mechanism which ensures

a good distribution of solutions across the frontier. Typically, a

form of Pareto-ranking or Pareto-sorting is used to guide the

5 What is meant by ‘well distributed’ in this context is often problem specific, but a

reasonably uniform distribution over the Pareto-frontier may be deemed desirable.

Author's personal copy

2750 S.F. Page et al. / Applied Soft Computing 12 (2012) 2740–2755

optimisation towards the frontier [36]. These techniques effectively

modify the cost value or fitness value for a solution depend-

ing on its performance relative to other solutions in the set, in

contrast to the absolute notion of optimality used in conven-

tional optimisation. Solutions which are ‘non-dominated’ or mildly

dominated (i.e. only dominated by a limited number of other solu-

tions) are attributed a higher fitness or lower cost than those

which are strongly dominated. This promotes the generation of

more non-dominated solutions. Distribution of solutions across

the Pareto-frontier is commonly achieved using ‘sharing’ or ‘niche’

methods [36,41]. Sharing methods distribute an individual’s fitness

depending on how many solutions are nearby it,6 thus encour-

aging spread and avoiding the problems associated with ‘genetic

drift’. The difficulty with sharing techniques is that the user must

define the so-called ‘sharing parameter’ [36]. In general, man-

ual fixing of the sharing parameter requires knowledge of the

objective function and adds to the tuning complexity of the opti-

misation algorithm. However, the authors of [43] have shown

that if the sharing process is considered from a density estima-

tion viewpoint, the sharing parameter is analogous to a smoothing

parameter, and thus the sharing process can be automated by

modelling the population density using density estimation tech-

niques, such as Parzen window density estimator [44]. The authors

of [43] further show that with appropriate choice of kernel func-

tion, it is possible to create a parameterless sharing process. It

should be noted, however, that the density estimator uses rec-

ommended heuristics for its internal parameters. In contrast, a

distance based measure is used in [29] which is completely param-

eterless.

As the RWBS is a population-based stochastic search method, it

can be readily adapted to the Pareto-optimisation case by a num-

ber of modifications. These include the addition of a Pareto-ranking

process and a mechanism which encourages distribution as well

as the modified elitism process that retains a larger set of solu-

tions between generation, instead of the single point in the original

algorithm.

5.1. Elitism count, pareto ranking, distribution and cost mapping

In the original RWBS algorithm for single-objective optimisa-

tion, the elitism process retains the single best solution to the

next generation. This elitism process must be modified so that

a larger set of solutions is retained. More specifically, in order

to identify a suitable set of Pareto-optimal solutions, a record of

potential solutions must be retained during each generation. To

achieve this, the elitism process is extended so that a larger pro-

portion of the current population is kept between each generation.

This introduces a new parameter, Pe, known as the ‘elitism count’,

which specifies how many population members are kept between

generations.

All the population members are ranked relatively, in terms of

Pareto-dominance, according to the ‘fast-non-dominated-sort’ pro-

cedure proposed in [29]. To encourage a good spread across the

Pareto-frontier, the resulting Pareto-ranking of the ith population

member, Ri, and the mean distance from all the other points, Di, as

well as a scaling parameter, Pr, are used to compute a distance and

ranking adjusted cost according to

Ĵi =
PrRi

Di
, 1 ≤ i ≤ Ps. (28)

6 Sharing can take place either in the decision space or the fitness space, although

in some cases decision space sharing is preferable [42].

5.2. Pareto repeated weighted boosting search algorithm

The proposed Pareto-RWBS algorithm is constructed as follows.

Specify the following algorithmic parameters7: population size Ps,

number of generations in the repeated search Ng, number of iter-

ations in the WBS NB, Pareto-ranking scaling Pr, and elitism count

Pe.

© Outer Loop: generations for g = 1 : Ng

– Pareto generation initialisation: Initialise the population by set-

ting u
(g)
i

= u
(g−1)
best,i

for 1 ≤ i ≤ Pe, and randomly generating the

rest of the population members u
(g)
i

for Pe + 1 ≤ i ≤ Ps, where

{u
(g−1)
best,i

}Pe
i=1

denotes the set of the ‘best’ Pe solutions found in the

previous generation. If g = 1, u
(g)
i

, 1 ≤ i ≤ Pe, are also randomly

chosen.

– Weighted boosting search initialisation: Assign the initial

weights ıi(0) = 1
Ps

, 1 ≤ i ≤ Ps, for the population. Calculate the

cost function values for each point of the population set

{u
(g)
i

}Ps
i=1

and for each objective function

Ji,o = Jo(u
(g)
i

), 1 ≤ o ≤ N, (29)

where 1 ≤ i ≤ Ps and N is the number of the objective functions.

– Inner Loop: weighted boosting search for t = 1 : NB

• Step 1: Pareto Boosting

(1) Perform Pareto Ranking, Distance Measure and Cost

Mapping for the current population {u
(g)
i

, Ji,o, 1 ≤ o ≤

N}Ps
i=1

. Specifically,

(a) Calculate the Pareto-ranking for each member of the

population:

{Ri}
Ps
i=1 = FastNonDominatedSort {Ji,o, 1 ≤ i ≤ Ps,

1 ≤ o ≤ N}, (30)

using the method proposed in [29].

(b) For each member of the population, compute the

mean Euclidean distance to all the other points in

the decision variable space:

Di =
1

Ps

∑

j /= i

‖u
(g)
i

− u
(g)
j

‖, (31)

for 1 ≤ i ≤ Ps.

(c) Compute the distance and ranking adjusted costs:

Ĵi =
PrRi

Di
, 1 ≤ i ≤ Ps. (32)

(2) Find

ibest = arg min
1≤i≤Ps

Ĵi,

and denote u
(g)
best

= u
(g)
ibest

.

(3) Normalise the distance and ranking adjusted cost val-

ues:

Ji =
Ĵi

∑Ps

j=1
Ĵj

, 1 ≤ i ≤ Ps.

(4) Compute a weighting factor ˇ(t) according to

�(t) =

Ps
∑

i=1

ıi(t − 1)Ji, ˇ(t) =
�(t)

1 − �(t)
.

7 As the aim is to find a set of solutions that are well spread across the Pareto-

frontier, the accuracy for terminating the WBS, �B , in the original RWBS becomes

irrelevant, and the inner loop is simply terminated after the NB boosts.

Author's personal copy

S.F. Page et al. / Applied Soft Computing 12 (2012) 2740–2755 2751

(5) Update the weights for 1 ≤ i ≤ Ps

ıi(t) =

{

ıi(t − 1)ˇ(t)Ji for ˇ(t) ≤ 1,
ıi(t − 1)ˇ(t)1−Ji for ˇ(t) ≤ 1,

and normalise them:

ıi(t) =
ıi(t)

∑Ps

j=1
ıj(t)

, 1 ≤ i ≤ Ps.

• Step 2: Pareto parameter update

(1) Construct the (Ps + 1)th point using the formula

uPs+1 =

Ps
∑

i=1

ıi(t)u
(g)
i

.

(2) Construct the (Ps + 2)th point using the formula

uPs+2 = u
(g)
best

+ (u
(g)
best

− uPs+1).
(3) For these two new points, compute their objective func-

tion values: Ji,o, 1 ≤ o ≤ N and i = Ps + 1, Ps + 2.

(4) For i = 1 :2

(i) Perform Pareto Ranking, Distance Measure

and Cost Mapping for the enlarged population

{u
(g)
j

, Jj,o, 1 ≤ o ≤ N}Ps+2−(i−1)
j=1

to yields {Ĵj}
Ps+2−(i−1)
j=1

(ii) Find jworst = arg max
1≤j≤Ps+2−(i−1)

Ĵj , and remove u
(g)
jworst

from the population

This removes the two ‘worst’ points, and keeps the pop-

ulation size to Ps.

– End of Inner loop Choose the Pe best solutions, {u
(g)
best,i

}Pe
i=1

:

For i = 1 : Pe

(i) Perform Pareto Ranking, Distance Measure and Cost

Mapping for the population {u
(g)
j

, Jj,o, 1 ≤ o ≤ N}Ps−(i−1)
j=1

to

yields {Ĵj}
Ps−(i−1)
j=1

(ii) Find jbest = arg min
1≤j≤Ps−(i−1)

Ĵj , set u
(g)
best,i

= u
(g)
jbest

, and remove

u
(g)
jbest

from the population

© End of outer loop This yields the solution set {u(Ng)
i

}Ps
i=1

5.3. Benchmark convergence experiments

In order to evaluate the proposed Pareto-RWBS algorithm, its

performance is compared with the NSGA-II algorithm on a number

of test problems. The NSGA-II algorithm is a well-known state-of-

the-art multiple-objective optimisation algorithm which has been

shown to produce very good results on a wide range of problems

[29]. The NGSA-II implementation used here utilises real-coding,

binary tournament selection, binary crossover with probability

0.9, polynomial mutation with probability 1/n, where n is the

dimension of the decision variable space, and non-dominated sort-

ing in conjunction with a crowding operator. In the experiments,

the results were presented as individual simulations rather than

multiple Monte-Carlo (MC) simulations for the Pareto-RWBS and

NSGA-II.

5.3.1. SCH function

The first test function experimented is the one-dimensional

‘SCH’ function taken from [29], which exhibits a simple convex

Pareto-frontier:

{

J1(u) = u2,

J2(u) = (u − 2)2.
(33)

The decision variable u in this case lies in the interval [− 1, 1]. The

following settings were used for the Pareto-RWBS: Ps = 25, NB = 10,

Ng = 100, Pe/Ps = 0.8, and Pr = 10. These algorithmic parameters were

found to produce the best results based on trial and error. The pop-

ulation size and the number of generations for the NSGA-II were 30

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8

9

J
1

J
2

Pareto Optimal Front in Objective Space

Fig. 15. Objective space performance comparison of the NSGA-II and Pareto-RWBS

on the convex test problem of SCH function (33), where red dot markers indicate

the feasible solutions generated by MC simulation, blue smaller asterisk markers

indicate the candidate solutions generated by the NSGA-II, and black larger asterisk

markers are the Pareto-RWBS candidate solutions. (For interpretation of the refer-

ences to colour in this figure legend, the reader is referred to the web version of the

article.)

and 50, respectively. These NSGA-II settings were also tuned using

trial and error to provide the best performance.

The results obtained for this test function are illustrated in

Fig. 15, which shows the resulting objective space solutions. In this

figure and all the other objective-space based figures in this sec-

tion, red dot markers indicate the feasible solutions generated by

multiple MC simulations based on random sampling in the deci-

sion space which help to visually locate the Pareto-frontier, blue

smaller asterisk markers indicate the candidate solutions generated

by the NSGA-II, and black larger asterisk markers are the candidate

solutions generated by the Pareto-RWBS. It is noted immediately

from Fig. 15 that the Pareto-RWBS algorithm is capable of finding

solutions across the Pareto-frontier. However, the distribution of

the solutions found by the Pareto-RWBS is inferior to that of the

NSGA-II results, as it is less uniform across the Pareto-frontier.

5.3.2. KUR function

This test function, the two-dimensional ‘KUR’ function, is again

taken from [29], and is an example where the Pareto-frontier is

non-convex:






















J1(u) =

n−1
∑

i=1

− 10 exp (− 0.2

√

u2
i

+ u2
i+1

),

J2(u) =

n
∑

i=1

(|ui|
0.8 + 5 sin(u3

i)).

(34)

In this case, n = 2, u = [u1 u2]T, and the both decision variables lie

in the interval [− 5, 5]. The following settings were used for the

Pareto-RWBS: Ps = 25, NB = 10, Ng = 100, Pe/Ps = 0.8 and Pr = 10. The

population size and the number of generations for the NSGA-II were

30 and 50, respectively. As in the first test problem, these param-

eters were chosen through trial and error. The results for this test

function are illustrated in Figs. 16 and 17.

Similar to the first test problem of SCH function (33), both the

NSGA-II and Pareto-RWBS algorithms focus on the same convex

region of the Pareto-frontier, as can be seen from Fig. 16. A close-

up of the objective space in the region where the majority of the

solutions are located is illustrated in Fig. 16(b), which reveals that

Author's personal copy

2752 S.F. Page et al. / Applied Soft Computing 12 (2012) 2740–2755

−10 −9 −8 −7 −6 −5 −4 −3 −2
−10

−5

0

5

10

15

20

J
1

J
2

Pareto Optimal Front in Objective Space

(a)

−9.5 −9 −8.5 −8 −7.5 −7
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

1

J
1

J
2

Pareto Optimal Front in Objective Space

(b)

Fig. 16. Comparison of full objective space performance (a) and close-up objective

space performance (b) for the NSGA-II and Pareto-RWBS on the non-convex test

problem of KUR function (34), where red dot markers indicate the feasible solutions

generated by MC simulation, blue smaller asterisk markers indicate the candidate

solutions generated by the NSGA-II, and black larger asterisk markers are the Pareto-

RWBS candidate solutions. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of the article.)

the Pareto-RWBS algorithm approaches the Pareto-frontier suc-

cessfully and the solutions are distributed across a similar region

as the NSGA-II candidate solutions. The distribution of the Pareto-

RWBS solutions across this region, however, is less optimal (i.e. less

uniform) in comparison with that of the NSGA-II results, as was also

observed with the first test problem.

The decision variable space results, plotted in Fig. 17, and all

the subsequent decision variable space based figures in this section

should be interpreted as follows: the overlaid contours represent

the objective functions, and blue smaller asterisk markers indicate

the NSGA-II candidate solutions, while red larger asterisk markers

indicate the Pareto-RWBS candidate solutions. From Fig. 17, it can

be observed that the Pareto-optimal solutions lie in a very small

region of the decision variable space and the Pareto-RWBS algo-

rithm has identified a very similar region to that of the NSGA-II.

However, the Pareto-RWBS solutions are slightly more spread out

in the decision space in comparison with the NSGA-II solutions,

indicating that there are scopes for further improvements in the

Pareto-ranking and cost adjustment process of the Pareto-RWBS.

Decision variable u
1

D
e

c
is

io
n

 v
a

ri
a

b
le

 u
2

Objective Functions as Contours in Decision Space

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Fig. 17. Decision variable space comparison of the NSGA-II and Pareto-RWBS on

the non-convex test problem of KUR function (34), where the overlaid contours

represent the objective functions, blue smaller asterisk markers indicate the can-

didate solutions generated by the NSGA-II, and red larger asterisk markers are the

Pareto-RWBS candidate solutions. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of the article.)

5.3.3. Multi-modal function

The performance of the two algorithms in the case where the

Pareto-frontier is multi-modal is examined using the following

two-dimensional test function adopted from [42]:



































J1(u) = u1,

g(u2) = 2.0 − exp

(

−

(

u2 − 0.2

0.004

)2
)

−0.8 exp

(

−

(

u2 − 0.6

0.4

)2
)

,

J2(u) =
g(u2)

u1
,

(35)

where u = [u1 u2]T, u1 ∈ [0.1, 1] and u2 ∈ [0, 1]. Again, the following

algorithmic parameters were used for the Pareto-RWBS: Ps = 25,

NB = 10, Ng = 100, Pe/Ps = 0.8 and Pr = 10, while the population size

and the number of generations of the NSGA-II were set to 30 and

50, respectively. The results obtained for this test function are illus-

trated in Figs. 18 and 19.

This optimisation problem has multiple modes, an attribute

which is known to cause difficulties for many multiple-objective

optimisation methods. The Pareto-RWBS algorithm demonstrates

the ability to identify a range of modes and, in some regions

of the Pareto frontier, outperforms the NSGA-II algorithm, as

can be seen in Fig. 18. Once again, a reasonable area of the

Pareto-frontier is identified by the Pareto-RWBS, but the distri-

bution of the solutions is less uniform than that of the NSGA-II

results. The relative positions of the candidate solutions in the

decision variable space, as depicted in Fig. 19, are not as infor-

mative in this case, and it is difficult to infer insight into the

operation of the Pareto-RWBS or NSGA-II from them. However,

armed with a priori knowledge regarding the true Pareto-optimal

region of the decision space, it may be possible to gain a

deeper understanding, and this is an interesting area for future

research.

Author's personal copy

S.F. Page et al. / Applied Soft Computing 12 (2012) 2740–2755 2753

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

18

20

J
1

J
2

Pareto Optimal Front in Objective Space

Fig. 18. Objective space performance comparison of the NSGA-II and Pareto-RWBS

on the multi-modal test problem (35), where red dot markers indicate the feasible

solutions generated by MC simulation, blue smaller asterisk markers indicate the

candidate solutions generated by the NSGA-II, and black larger asterisk markers are

the Pareto-RWBS candidate solutions. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of the article.)

5.3.4. Discontinuous function

The following two-dimensional test function is an example

where the Pareto-frontier is discontinuous [42]:


















J1(u) = u1,

g(u2) = 1 + 10u2,

J2(u) = g(u2)

(

1 −

(

J1(u)

g(u2)

)˛

−
J1(u)

g(u2)
sin(2�qJ1(u))

)

,

(36)

where, in this case, ̨ = 2, q = 4, u = [u1 u2]T, and the both decision

variables lie in the interval [0, 1]. The following settings were found

empirically to provide the best results for the Pareto-RWBS: Ps = 50,

Decision variable u
1

D
e

c
is

io
n

 v
a

ri
a

b
le

 u
2

Objective Functions as Contours in Decision Space

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 19. Decision variable space comparison of the NSGA-II and Pareto-RWBS on the

multi-modal test problem (35), where the overlaid contours represent the objective

functions, blue smaller asterisk markers indicate the candidate solutions generated

by the NSGA-II, and red larger asterisk markers are the Pareto-RWBS candidate solu-

tions. (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of the article.)

0 0.2 0.4 0.6 0.8 1
−2

0

2

4

6

8

10

12

J
1

J
2

Pareto Optimal Front in Objective Space

Fig. 20. Objective space performance comparison of the NSGA-II and Pareto-RWBS

on the discontinuous test problem (36), where red dot markers indicate the feasible

solutions generated by MC simulation, blue smaller asterisk markers indicate the

candidate solutions generated by the NSGA-II, and black larger asterisk markers are

the Pareto-RWBS candidate solutions. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of the article.)

NB = 20, Ng = 100, Pe/Ps = 0.8 and Pr = 10. For the Pareto-RWBS algo-

rithm, this particular problem required a larger population size and

a larger number of boosts per generation, most likely due to the

challenging nature of the problem. This two-objective optimisation

problem has a discontinuous Pareto-frontier, an attribute which

is known to challenge multiple-objective optimisation techniques.

The NSGA-II was applied using the same settings as in the previous

problems. The results obtained for this test function are illustrated

in Figs. 20 and 21.

It is observed from Fig. 20 that the Pareto-RWBS converges

towards four of the primary Pareto-optimal regions, while the

NSGA-II algorithm only identifies three of the regions in this

Decision variable u
1

D
e

c
is

io
n

 v
a

ri
a

b
le

 u
2

Objective Functions as Contours in Decision Space

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 21. Decision variable space comparison of the NSGA-II and Pareto-RWBS on

the discontinuous test problem (36), where the overlaid contours represent the

objective functions, blue smaller asterisk markers indicate the candidate solutions

generated by the NSGA-II, and red larger asterisk markers are the Pareto-RWBS

candidate solutions. (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of the article.)

Author's personal copy

2754 S.F. Page et al. / Applied Soft Computing 12 (2012) 2740–2755

particular simulation. The performance of the NSGA-II algorithm

within the three regions located by the algorithm is, however, supe-

rior to that of the Pareto-RWBS for these three regions, in terms

of solution distribution, similar to the previous test cases. Fig. 21

also offers some intuition regarding the performance of the two

algorithms. In this case, the Pareto-RWBS is observed to identify a

larger area of the Pareto-frontier, in the form of four modes com-

pared with the three modes identified by the NSGA-II, but the

solutions of the Pareto-RWBS are located further from the fron-

tier than the NSGA-II solutions. This also justifies the assertion that

the Pareto-RWBS exhibits promising general performance charac-

teristics, but the Pareto-ranking and cost mapping aspects of the

algorithm could be improved.

In summary, the Pareto-RWBS algorithm proposed in this paper

has demonstrated clear potential as a flexible, high-performance

multiple-objective optimisation technique. The algorithm has been

shown to converge reliably towards the Pareto-frontier in a range

of test problems with various challenging attributes. The algo-

rithm is observed to be capable of identifying a large area of the

Pareto-frontier in each case, comparable with the NSGA-II algo-

rithm which is a well-known state-of-the-art multiple-objective

GA. In particular, for the test case of discontinuous Pareto-frontier,

the Pareto-RWBS provides a superior performance, in terms of

locating more discontinuous regions of the Pareto-frontier. There

are scopes, however, to further improve the algorithm, both in

terms of the distribution of its solutions along the Pareto-frontier,

and the accuracy of the solutions in terms of their distances to the

Pareto-frontier. The convergence accuracy hinges on the Pareto-

ranking process used in this particular Pareto-RWBS algorithm,

and the impact it has on the performance of the convex combi-

nation operator. A method for improving the performance of the

Pareto-RWBS in this regard is outlined in the following.

5.4. Selective combination

As the RWBS algorithm generates new members through the

convex operator in Eq. (5), the standard approaches to Pareto-

ranking procedure, such as the one used in Section 5.2, may be

sub-optimal. For instance, ranking methods which simply assign

all non-dominated candidates a similar rank will usually work rea-

sonably well with a GA, as the combination operator will simply

select a number of members of the population to combine together

and the rank value is not used directly in the local search operator,

i.e. during crossover. The RWBS, however, weights the all candidates

according to their rankings and, therefore, all the members of the

same front will receive equal weighting in the combination (ignor-

ing any sharing or other distribution related mechanisms). Thus,

the efficiency of the convex operator may be reduced, which sug-

gests that a larger number of boosts have to be used per generation.

Additionally, the RWBS only generates a single new member (two

if the one generated by the reflection operator is also counted) in

each inner loop boosting stage, unlike a GA which can create several

new members at the local search stage. With orders of population

size required for many multiple-objective optimisation problems, a

large number of boosts may be needed. An alternative approach to

that outlined in Section 5.2, therefore, is to use a selection operator

to select which members are used in a set of convex combinations

at each stage (similar to the way a GA proceeds). This would create

a number of new individuals in each generation as well as reducing

the number of solutions in each boosting stage, thus reducing the

required number of boosts. It is hypothesised that this approach

would help to improve the algorithm’s performance in terms of

the accuracy to which the Pareto-frontier is located. Investigation

of this alternative Pareto-RWBS algorithm is the subject of future

work.

6. Conclusions and discussion for future work

This paper has proposed a number of extensions to the

repeated weighted boosting search optimisation algorithm in

order to facilitate its use in a wider class of optimisation prob-

lems. The extensions permit the use of the RWBS algorithm in

the problems which have discrete or mixed search spaces, deci-

sion variable constraints and multiple objectives. It has been

shown that a simple addition to the convex operator renders the

algorithm capable of successful optimisation in discrete search

spaces. Initial analysis with constraint handling techniques sug-

gest that the death penalty method may be unsuitable for the

application in this context, but that repair operator may pro-

vide a suitable method. Multiple-objective problems have been

dealt with by using a Pareto-ranking scheme combined with a

sharing process. The resulting Pareto-RWBS algorithm performs

on par with the NSGA-II algorithm, in terms of identifying the

Pareto-frontier. All the extensions proposed retain the attrac-

tive properties of the original RWBS algorithm proposed in [9],

namely, simplicity, ease of implementation and small number of

tuning parameters, while facilitating its use to a wider range of

optimisation problems. This makes the RWBS algorithm a pow-

erful tool for solving various complex optimisation problems,

arising from diverse applications, with minimal implementation

effort.

There are many avenues of future work to be investigated,

regarding the further development of the RWBS algorithm. In

particular, a rigorous theoretical analysis of the convergence prop-

erties, along with the interactions between the tuning parameters

would prove very useful. It may also be possible to improve the

performance of the algorithm in discrete search spaces by utilis-

ing other notions of discrete convex hulls, such as those detailed

in [32] in order to expand the search space that is captured by the

convex operator. Other future work includes detailed quantitative

convergence analysis of the Pareto-RWBS algorithm, and modifi-

cations to improve the spread of the identified Pareto-solutions.

Recently, bio-inspired computational intelligence methods, such

as ant colony optimisation [45,46] and particle swarm optimisa-

tion [47,48] as well as the differential evolution algorithm [49,50],

have attracted wide interests from all walks of science and engi-

neering. A comprehensive performance comparison between the

RWBS algorithm and these bio-inspired optimisation techniques in

benchmark application problems would be an interesting subject

of future work. Initial results in the context of wireless communi-

cation application are reported in [51].

References

[1] J.H. Holland, Adaptation in Natural and Artificial Systems, University of Michi-
gan Press, Ann Arbor, MI, 1975.

[2] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learn-
ing, Addison-Wesley, Reading, MA, 1989.

[3] L. Davis (Ed.), Handbook of Genetic Algorithms, Van Nostrand Reinhold, New
York, 1991.

[4] K.F. Man, K.S. Tang, S. Kwong, Genetic Algorithms: Concepts and Design,
Springer-Verlag, London, 1998.

[5] A. Corana, M. Marchesi, C. Martini, S. Ridella, Minimizing multimodal func-
tions of continuous variables with the simulated annealing algorithm, ACM
Transactions on Mathematical Software 13 (3) (1987) 262–280.

[6] L. Ingber, B. Rosen, Genetic algorithms and very fast simulated reannealing: a
comparison, Mathematical and Computer Modelling 16 (11) (1992) 87–100.

[7] L. Ingber, Simulated annealing: practice versus theory, Mathematical and Com-
puter Modelling 18 (11) (1993) 29–57.

[8] S. Chen, B.L. Luk, Adaptive simulated annealing for optimization in signal pro-
cessing applications, Signal Processing 79 (1) (1999) 117–128.

[9] S. Chen, X.X. Wang, C.J. Harris, Experiments with repeating weighted boosting
search for optimization in signal processing applications, IEEE Transactions on
Systems, Man and Cybernetics, Part B 35 (4) (2005) 682–693.

[10] F. Schoen, Stochastic techniques for global optimization: a survey of recent
advances, Journal of Global Optimization 1 (3) (1991) 207–228.

Author's personal copy

S.F. Page et al. / Applied Soft Computing 12 (2012) 2740–2755 2755

[11] Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning
and an application to boosting, Journal of Computer and System Sciences 55
(1) (1997) 119–139.

[12] S. Chen, X.X. Wang, D.J. Brown, Orthogonal least squares regression with tun-
able kernels, Electronics Letters 41 (8) (2005) 484–486.

[13] X.P. Zong, Y. Xu, L. Hao, X.L. Huai, Camera calibration based on the RBF neu-
ral network with tunable nodes for visual serving in robotics, in: Proc. 2006
IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Beijing, China, October 9–15,
2006, 2006, pp. 5708–5712.

[14] S. Chen, X.X. Wang, X. Hong, C.J. Harris, Kernel classifier construction using
orthogonal forward selection and boosting with Fisher ratio class separability
measure, IEEE Transactions on Neural Networks 17 (6) (2006) 1652–1656.

[15] X.X. Wang, S. Chen, D. Lowe, C.J. Harris, Sparse support vector regression based
on orthogonal forward selection for the generalised kernel model, Neurocom-
puting 70 (1–3) (2006) 462–474.

[16] J.X. Yu, H.Q. Cao, Y.B. He, A new tree structure code for equivalent circuit and
evolutionary estimation of parameters, Chemometrics and Intelligent Labora-
tory Systems 85 (1) (2007) 27–39.

[17] M. Zhang, J.G. Zhou, L.H. Fu, T.T. He, Hybrid wavelet model construction using
orthogonal forward selection with boosting search, in: Proc. 4th Int. Conf. Fuzzy
Systems and Knowledge Discovery, Haikou, China, August 24–27, 2007, 2007,
pp. 341–345.

[18] S. Chen, X.X. Wang, C.J. Harris, NARX-based nonlinear system identification
using orthogonal least squares basis hunting, IEEE Transactions on Control
Systems Technology 16 (1) (2008) 78–84.

[19] M. Abuthinien, S. Chen, L. Hanzo, Semi-blind joint maximum likelihood channel
estimation and data detection for MIMO systems, IEEE Signal Processing Letters
15 (2008) 202–205.

[20] M. Zhang, L. Fu, G. Wang, T. He, Improved orthogonal least-squares regres-
sion with tunable kernels using a tree structure search algorithm, IEEE Signal
Processing Letters 15 (2008) 653–656.

[21] S.A. Hoseini, R.P. Torghabeh, M. Kaveh, H. Khaloozadeh, Designing stabiliz-
ing regulators for chaotic systems using repeated weighted boosting search
method, in: Proc. 2nd Int. Conf. Computer, Control and Communication,
Karachi, February 17–18, 2009, 2009, pp. 1–6.

[22] M. Zhang, J. Zhou, L. Fu, T. He, Hybrid wavelet model construction using orthog-
onal forward selection with boosting search, International Journal of Business
Intelligence and Data Mining 3 (4) (2009) 437–450.

[23] S. Chen, X. Hong, B.L. Luk, C.J. Harris, Construction of tunable radial basis
function networks using orthogonal forward selection, IEEE Transactions on
Systems, Man, and Cybernetics, Part B 39 (2) (2009) 457–466.

[24] J. Jiang, X.-P. Zhang, A new player-enabled rapid video navigation method using
temporal quantization and repeated weighted boosting search, in: Proc. 2010
IEEE Computer Society Conf. Computer Vision and Pattern Recognition Work-
shops (CVPRW), San Francisco, CA, June 13–18, 2010, 2010, pp. 64–71.

[25] L.H. Fu, M. Zhang, H.W. Li, Sparse RBF networks with multi-kernels, Neural
Processing Letters 32 (3) (2010) 235–247.

[26] J. Zhang, S. Chen, X. Mu, L. Hanzo, Joint channel estimation and multi-user
detection for SDMA/OFDM based on dual repeated weighted boosting search,
IEEE Transactions on Vehicular Technology 60 (7) (2011) 3265–3275.

[27] S. Wang, S. Chen, A.H. Wang, J.P. An, L. Hanzo, Joint timing and channel
estimation for bandlimited long-code-based MC-DS-CDMA: a low-complexity
near-optimal algorithm and the CRLB, under review.

[28] S.F. Page, A.N. Dolia, C.J. Harris, N.M. White, Multiple objective optimization for
active sensor management, in: Proc. SPIE: Multisensor, Multisource Informa-
tion Fusion – Architectures, Algorithms, and Application, Orlando, FL, March
30, 2005, vol. 5813, no. 269, 2005, pp. 269–280.

[29] K. Deb, A. Pratap, S. Agarwa, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: NGSA-II, IEEE Transactions on Evolutionary Computation 6
(2) (2002) 182–197.

[30] The MathWorks Inc., MATLAB Optimization Toolbox User Guide, 3rd edition,
September 2006.

[31] K.A. De Jong, An Analysis of the Behavior of a Class of Genetic Adaptive Systems,
Ph.D. Dissertation, University of Michigan, 1975.

[32] A. Roy, J.G. Stell, Convexity in discrete space, in: W. Kuhn, M.F. Worboys, S.
Timpf (Eds.), Proc. Conf. Spatial Information Theory (Ittingen, Switzerland),
September 24–28, 2003, Lecture Notes in Computer Science, vol. 2825,
Springer-Verlag, 2003, pp. 268–285.

[33] K. Deb, A. Pratap, T. Meyarivan, Constrained test problems for multi-objective
evolutionary optimization, in: E. Zitzler, K. Deb, L. Thiele, C.A.C. Coello, D. Corne
(Eds.), Proc. 1st Int. Conf. Evolutionary Multi-Criterion Optimization (Zurich,
Switzerland), March 7–9, 2001, Lecture Notes in Computer Science, vol. 1993,
Springer-Verlag, 2001, pp. 284–298.

[34] B.W. Wah, Y.X. Chen, Constrained genetic algorithms and their applications in
nonlinear constrained optimization, in: Proc. 12th IEEE Int. Conf. Tools with
Artificial Intelligence, Vancouver, Canada, November 13–15, 2000, 2000, pp.
286–293.

[35] C.M. Fonseca, P.J. Fleming, Multiobjective optimization and multiple con-
straint handling with evolutionary algorithms. Part I. A unified formulation,
IEEE Transactions on Systems, Man, and Cybernetics, Part A 28 (1) (1998)
26–37.

[36] C.M. Fonseca, P.J. Fleming, An overview of evolutionary algorithms in multiob-
jective optimization, Evolutionary Computation 3 (1) (1995) 1–16.

[37] E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach, IEEE Transactions on Evolutionary
Computation 3 (4) (1999) 257–271.

[38] M. Laumanns, L. Thiele, E. Zitzler, K. Deb, Archiving with guaranteed con-
vergence and diversity in multi-objective optimization, in: Proc. Genetic
and Evolutionary Computation Conf., New York, July 9–13, 2002, 2002,
pp. 439–447.

[39] E. Zitzler, L. Thiele, M. Laumanns, C.M. Fonseca, V.G. da Fonseca, Performance
assessment of multiobjective optimizers: an analysis and review, IEEE Trans-
actions on Evolutionary Computation 7 (2) (2003) 117–132.

[40] C.A. Coello Coello, Evolutionary multi-objective optimization: a historical
view of the field, IEEE Computational Intelligence Magazine 1 (1) (2006)
28–36.

[41] C.M. Fonseca, Multiobjective Genetic Algorithms with Application to Control
Engineering Problems, Ph.D. Dissertation, Department of Automatic Control
and Systems Engineering, University of Sheffield, Sheffield, UK, September
1995.

[42] K. Deb, Multi-objective genetic algorithms – problem difficulties and construc-
tion of test problems, Evolutionary Computation 7 (3) (1999) 205–230.

[43] C.M. Fonseca, P.J. Fleming, Multiobjective genetic algorithms made easy: selec-
tion sharing and mating restriction, in: Proc. 1st Int. Conf. Genetic Algorithms in
Engineering Systems: Innovations and Applications, Sheffield, UK, September
12–14, 1995, 1995, pp. 45–52.

[44] E. Parzen, On the estimation of a probability density function and mode, Annals
of Mathematical Statistics 33 (3) (1962) 1065–1076.

[45] M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by a colony of
cooperating agents, IEEE Transactions on Systems, Man, and Cybernetics, Part
B 26 (1) (1996) 29–41.

[46] M. Dorigo, T. Stützle, Ant Colony Optimization, MIT Press, 2004.
[47] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proc. 1995 IEEE Int.

Conf. Neural Networks, Perth, Australia, November 27–December 1, 1995, vol.
4, 1995, pp. 1942–1948.

[48] J. Kennedy, R. Eberhart, Swarm Intelligence, Morgan Kaufmann, 2001.
[49] K.V. Price, R.M. Storn, J.A. Lampinen, Differential Evolution: A Practical

Approach to Global Optimization, Springer-Verlag, Berlin, 2005.
[50] A.K. Qin, V.L. Huang, P.N. Suganthan, Differential evolution algorithm with

strategy adaptation for global numerical optimization, IEEE Transactions on
Evolutionary Computation 13 (2) (2009) 398–417.

[51] J. Zhang, S. Chen, X. Mu, L. Hanzo, Stochastic optimization assisted joint channel
and multi-user detection for OFDM/SDMA, in: Proc. VTC 2012-Fall (Québec,
Canada), September 3–6, 2012, 5 pp.

