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Background

• Artificial neural networks have evolved from ‘shallow’ one-hidden-layer architecture,
such as RBF, to ‘deep’ architecture

– Deep learning has achieved breakthrough progress in many walks of life
– Deep neural networks have been applied to modeling of multi-output industrial

processes

• Deep learning’s success coincides with digital big data era

– With massive historical data, training of deep neural network models becomes
practical

– Enabling the exploitation of deep learning capability to capture complex
underlying nonlinear dynamic behaviours from data

• Many real-life processes are not only nonlinear but also highly nonstationary

– During online operation, system’s nonlinear dynamics can change significantly
– Deep neural network model must adapt fast to such change
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Motivations

• Sampling period of many industrial processes is small, and adaptation must be
sufficiently fast to be completed within a sampling period

– Impossible to adapt structure of deep neural network model, such as SAE,
within sampling period

– Instead, adaptation is taken place only on weights of output regression layer
– Insufficient for tracking significant and fast changes in system

• We have proposed an adaptive gradient radial basis function network

– Adapting structure of multi-output GRBF (MGRBF) is not only optimal but also
imposes litter online computation complexity

– Completely feasible to complete adaptation within a sample period
– MGRBF is a shallow neural network

• Combining deep learning capability of deep neural network, such as SAE, with
excellent adaptability of MGRBF? ⇒ Motivate this research
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System Model

• Multi-output nonlinear and nonstationary system

yt = fsys(xt; t) + ξt

– Output yt ∈ R
no with lag ny, Input ut ∈ R

ni with lag nu, Noise ξt
– Unknown nonlinear and nonstationary system map fsys(·; t)
– System ‘input’ embedding vector xt ∈ R

nony+ninu

xt =
[
yT
t−1 · · ·y

T
t−ny

uT
t−1 · · ·u

T
t−nu

]T

• This is one-step ahead predictor model.

– Extension to multi-step ahead predictor straightforward

• The task is to construct predictor: ŷt = f̂model

(
xt;Θt

)

– with model structure f̂model and parameter matrix Θt available at t
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Multi-output GRBF Network
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MGRBF – How It Works

• Differencing output variable to reduce nonstationarity: MGRBF input

x′
t =

[
yT
t−1 − yT

t−2 · · ·y
T
t−ny

− yT
t−ny−1 uT

t−1 · · ·
]T
∈ R

no(ny−1)+ninu

• Hidden node as local predictor of yt: MGRBF j-th node

ϕj,i(x
′
t) =

(
yt−1,i + δj,i) · e

−
‖x′t−cj‖

2

2σ2 , 1 ≤ j ≤M, 1 ≤ i ≤ no

• In training, if x′
tj

is selected as j-th center cj, local predictor scalar is set to
δj,i = ytj,i − ytj−1,i

– In training, ϕj,i(x
′
t) is perfect predictor of yt,i

– In prediction, if x′
t is close to jth center, ϕj,i(x

′
t) is very good predictor of yt,i

• Hidden nodes encode system states observed
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MGRBF – Training/Adaptation

• Given training data
{
xt,dt = yt − yt−1;yt

}N

t=1
, efficient two-stage training

– OLS selects subset model
{
ctj, δtj

}M

j=1
, hidden nodes’ centers and scalars

– Regularized LS estimates connection weight matrix

• During online operation, when current modeling ŷt is insufficient:

∥∥yt − ŷt

∣∣2/‖yt
2 ≥ threshold

– Worst (contributing smallest to output) node replaced with a new node:

node center cr ← x′
t node scalarδr ← yt − yt−1

• Adaptive MGRBF achieves balanced trade-off of stability and plasticity

– ability to retain acquired knowledge (stability) and ability to forget out-of-the-
date knowledge so as to learn new one as quickly as possible (plasticity)
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Proposed Deep Neural Network: Structure
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• MGRBF preliminary predictor module, provide preliminary output prediction

• Output-enhanced stacked autoencoder module, provide deep output-relevant
features

• MGRBF adaptive predictor module, provide final output prediction
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Proposed Deep Neural Network: Rationale

• SAE is a deep neural network finding its way to regression application

– Layers of stacked autoencoders extract deep features from input
– Given information of output yt, SAE can extract much better-quality features

• Impossible to provide yt as input to SAE - We do next best thing, provide a
perdition of yt as input to SAE by MGRBF preliminary predictor

• Instead of usual linear output regression layer on top of SAE to provide prediction
of yt, we replace it by a much stronger MGRBF adaptive predictor

• Training of proposed deep neural network

– OLS based two-stage for MGRBF preliminary predictor
– Standard optimization procedure for SAE
– OLS based two-stage for MGRBF adaptive predictor
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Proposed Deep Neural Network: Operation

• Proposed DNN: SAE enhanced by MGRBF preliminary predictor maps process
input space onto deep feature space, and MGRBF adaptive predictor then maps
feature space onto process output space

• During online operation, MGRBF preliminary predictor and SAE are fixed
(impossible to adapt whole SAE structure online anyway)

• MGRBF adaptive predictor is adapted online to track process’s changing dynamics

– When underlying system dynamics change significant, feature space changes
accordingly

– MGRBF adaptive predictor capable of fast adapting to changing process dynamics
– while imposing very low online computational complexity, capable of meeting

real-time constraint of small sampling period

• Proposed deep neural network integrates deep learning capability of SAE with
excellent adaptability of MGRBF
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Experiment Setup

• Proposed DNN is compared with following benchmarks

– Partial least square (PLS): fixed during online operation
– Multi-output long short-term memory (LSTM): fixed during online operation
– Adaptive multi-output SAE (SAERLS): during online operation, only weights of

output regression layer are adapted by RLS
– Fast tunable multi-output RBF (TRBF): during online operation, RBF hidden

layer is adaptive
– Multi-output selective ensemble regression with growing and pruning (GAP-SER):

during online operation, grow and prune local model set
– Adaptive multi-output GRBF (AGRBF): during online operation, GRBF hidden

layer is adaptive

• Performance measures: determinant of test error covariance log(det(Cov(E)))
and coefficient of determination (R2)

• Online computational complexity: measured by averaged computation time per
sample (ACTpS) in [ms]

11



Next Generation Wireless S Chen

Penicillin Fermentation Process

• Penicillin concentration, biomass concentration and substrate concentration are three process

outputs, while 10 other process variables are process inputs

Method log(det(Cov(E))) (dB) averaged R2 ACTpS (ms)
PLS -8.8180 0.9292 NA
TRBF -11.1485 0.9943 0.0780
AGRBF -12.2161 0.9983 0.0296
GAP-SER -15.3111 0.9936 4.3732
LSTM -9.3079±0.2651 0.9696±0.0169 NA
SAERLS -10.6432±1.4741 0.9359±0.1174 0.0036
Proposed -17.1598±0.8739 0.9998±0.0002 0.0221

• SAERLS, LSTM, and proposed DNN depend on initialization, average and standard
deviation over 10 independent runs are given

• SAERLS has smallest ACTpS, as it only adapts output weights

• Proposed DNN has best test performance with ACTpS smaller than AGRBF

– Dimension of deep feature space is much smaller than that of input space
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Test log(det(Cov(E))) learning curves
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Box Plots
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Test MSE for Individual Outputs

• Three best methods in terms of test MSE for individual outputs

Method
MSE (dB)

y1 y2 y3
AGRBF -39.8615 -37.9934 -35.2746
GAP-SER -28.7491 -81.2151 -30.7240
Proposed -46.9541±3.5820 -49.9950±4.6632 -53.0888±7.7268
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Output One Prediction Performance
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Output Two Prediction Performance
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Output Three Prediction Performance
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Conclusions

• Deep neural networks, such as stacked autoencoder, has deep nonlinear learning
capability, but it is impossible to adapt network structure online in real time

• Shallow gradient RBF network has excellent adaptability

• We have shown how to integrate deep nonlinear learning capability of SAE with
excellent adaptability of adaptive multi-output GRBF

• Proposed deep neural network architecture is capable of adapting to changing
underlying system dynamics in real-time

– Particularly suitable for online modeling of highly nonlinear and nonstationary
multi-output industrial processes
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