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Abstract— In this contribution, we investigate the attainable per-
formance of quasi-cyclic (QC) protograph Low-Density Parity-Check
(LDPC) codes for transmission over both Additive White Gaussian Noise
(AWGN) and uncorrelated Rayleigh channels. The codes presented are
constructed using the Vandermonde matrix and benefit from both low-
complexity encoding and decoding, low memory requirements as well as
hardware-friendly implementations. Our simulation results demonstrate
that the advantages offered by this family of QC protograph LDPC codes
accrue without any compromise in the attainable Bit Error Ratio (BER)
and Block Error Ratio (BER) performance. In fact, it is also shown
that despite their implementational benefits, the proposed codes exhibit
slight BER/BLER gains when compared to some of their more complex
counterparts of the same length.

I. INTRODUCTION

Following more than three decades of neglect, Low Density Parity-
Check (LDPC) codes [1], [2] are nowadays in the center of attention
of the coding research community. This rekindled interest has been
motivated by the outstanding performance demonstrated by turbo
codes [3] which employ a similar soft-input soft-output iterative
decoding strategy [4].

In the context of LDPC codes, the relationship between the
information bits and the redundant parity-check bits is described by
a sparse parity-check matrix (PCM) or by the corresponding bipartite
Tanner graph [5]. The design of a LDPC code is characterized by a
range of contradictory design factors, such as their Bit Error Ratio
(BER), their mathematical construction attributes and their hardware
complexity. Of prime concern is the BER performance exhibited
by the code in both the ‘waterfall’ and ‘error-floor’ region. The
mathematical construction attributes are related to the specific design
of the PCM, which generally speaking, can be constructed in either a
pseudo-random [2] or a structured manner [6] (see also the references
in [6]). It has been shown that the former method [2], [7] exhibits
excellent error-correction capabilities and thus is capable of operating
close to the Shannon limit, especially for high codeword lengths.
However, such codes typically exhibit complex hardware implemen-
tations due to the high-complexity descriptions, and generally, their
encoding complexity grows quadratically (or slower [8]) with the
block length.

In this paper, we will pursue a more holistic LDPC code design
approach, and thus search for good LDPC codes, which strike
an attractive tradeoff between the range of contradictory design
factors. More explicitly, we investigate novel structured PCMs, which
are designed based on Vandermonde-like block matrices [9]. The
employment of Vandermonde block matrices was first proposed for
classic Reed-Solomon codes and was also adopted for array codes by
Fan [9]. Both Yang et al. [10] as well as Mittelholzer [11] investigated
the minimum distance bounds of array codes, whilst the rank of
various LDPC code constructions based on Vandermonde matrices
was analytically determined by Gabidulin et al. in [12]. In [13], the
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authors constructed variable rate codes using Vandermonde-matrix
based LDPC codes having rates compliant with the DVB-S2 standard.

The above-mentioned construction has the benefit of having a
quasi-cyclic (QC) form [14] and thus significantly reduces the non-
volatile memory-storage requirements. Additionally, the encoding
procedure can be implemented with the aid of shift-registers, thus
rendering the encoding complexity linear in the block length [15].
We further reduce the associated decoding complexity by invoking a
so-called projected graph construction, which is also referred to as a
‘protograph’ by Thorpe [16]. As a benefit of imposing a structural
regularity, these codes can be decoded by means of a semi-parallel
architecture, as suggested by Lee et al. in [17], thus facilitating high-
speed decoding.

Against this backdrop, the novel contribution of this paper is that
we propose a PCM construction, which is based on Vandermonde-like
block matrices for the first time in the context of protograph LDPC
arrangements. This results in the implementation-related advantages
of combining the benefits of having a low-complexity quasi-cyclic
encoder structure with a readily parallelizable protograph decoder
structure. More explicitly, the resultant quasi-cyclic protograph LDPC
codes exhibit a low encoding and decoding complexity as well as
reduced memory requirements, while facilitating hardware-friendly
parallel implementations. We will compare our performance results
to those attained by MacKay’s codes [18] and to the codes generated
using the Extended Bit-Filling (EBF) [19] as well as to the Pro-
gressive Edge-Growth (PEG) [20] algorithms. Simulation results are
provided for both AWGN and uncorrelated Rayleigh (UR) channels.
It is demonstrated that the achievable performance is comparable
to or slightly better than that exhibited by the higher-complexity
benchmarker codes of [2], [19], [20] having the same lengths.

The structure of this paper is as follows. Sections II and III
introduce the basic principles of LDPC codes and the protograph
codes’ construction. Our discourse continues with a description of
the Vandermonde matrix construction. The original PEG algorithm
of [20] is then further developed in Section IV. Our simulation results
are presented in Section V. Finally, Section VI is devoted to our
conclusions.

II. PRELIMINARIES

We consider a binary LDPC code defined by the null space of a
low-density PCM matrix H constructed over GF(2). Then, assuming a
full-rank PCM composed of M rows and N columns, the rate of this
code becomes R = 1 - M /N . This can also be represented by means
of a bipartite Tanner graph [5] consisting of M check nodes and N
variable nodes. More explicitly, we consider a regular construction
code having a uniform degree of edges emerging from each check
and variable node. The variable and check nodes’ degrees will be
denoted by γ and ρ, which also correspond to the row and column
weight of the PCM, respectively.

LDPC codes are typically decoded using the sum-product algo-
rithm (SPA) [21], where messages are exchanged between the nodes
residing at both sides of the graph. The independence of these mes-
sages is characterized by the length of the shortest cycle on the graph,
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Fig. 1. (a) The base protograph is replicated by a factor J , in this case J = 3. (b) The construction of the derived graph is obtained by permuting the edges
between the check and variable nodes of the J copies of the base protograph. The permutations are performed in a way so as to maximize the girth, whilst
exhibiting a quasi-cyclic construction constrained by the Vandermonde-matrix based protograph.

which is typically referred to as the girth g. Specifically, Gallager
demonstrated in [1] that the number of independent iterations T , i.e.
the iterations that provide valuable extrinsic information and hence a
useful iteration gain, is bounded by T < g/4 ≤ T + 1. Clearly, for
the girth to be high, the block length also has to be sufficiently high1.
Furthermore, we only consider codes having γ ≥ 3 and hence the
resultant minimum distance grows linearly, instead of logarithmically,
with the block length [1].

III. PROTOGRAPH LDPC CODE CONSTRUCTION

The construction of a protograph code, illustrated in Fig. 1, can be
described in two main steps [16]:

1) Determine the base protograph, typically a graph with a rela-
tively low number of nodes, and replicate this graph J times.

2) Permute the edges of the nodes in the J replicas of the base
protograph in order to obtain the resultant graph.

Consider the base protograph, Gb, described by the set of check nodes
Cb =

{
cji : j = 1; i = 1, . . . , M b

}
, the set of variable nodes V b ={

vji : j = 1; i = 1, . . . , N b
}

and the set of edges Eb, where
∣∣Eb

∣∣ =
Mbρ = Nbγ. We denote the number of check and variable nodes on
the base protograph by Mb and V b, respectively. The value of j = 1
refers to the base protograph. The base protograph will therefore have
the corresponding base PCM of size (Mb×V b). After replicating Gb

by J times, we obtain the resultant graph of the protograph code, G′,
defined by the sets C′, V ′ and E′, where each set has a size, which is
J times larger than the corresponding sets in the base protograph. The
permutations of the nodes’ edges in the graph derived obey certain
constraints, which will be discussed in more detail in Section IV.

A. Vandermonde Matrix Based LDPC Code Construction

Since we want to impose a quasi-cyclic (QC) structure on our
protograph code, we opt for constructing the QC base protograph
from the Vandermonde matrix (VM) [9] construction. Let Iq represent
a (q×q) identity matrix where q is either larger than the row as well
as the column weight and it is a relative prime with respect to all the
numbers less than ρ, or else obeys q > (ρ - 1)(γ -1). We also construct
the permutation matrix Pq , having elements of pmn , 0 ≤ m < q
and 0 ≤ n < q, which is defined by [22]:

pmn =

{
1 if m = (n − 1) mod q,
0 otherwise,

(1)

1The loose lower bound on the required N was given by Gallager in [1].

where a mod b represents the modulus after division of a by b. For
the sake of simplifying our analysis, we consider the example of q=
4, where the permutation matrices Pq , P2

q and P3
q are given by:⎛

⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠

and

Px
q =

{
Iq if x mod q = 0,
Px mod q

q otherwise.
(2)

Then, the VM-based sparse PCM constructed for the base protograph
is formulated by [22]:

Hb =

⎛
⎜⎜⎜⎜⎜⎜⎝

Iq Iq Iq · · · Iq
Iq Pq P2

q · · · Pρ−1
q

Iq P2
q P4

q · · · P
2(ρ−1)
q

...
...

...
...

...
Iq P

(γ−1)
q P

2(γ−1)
q · · · P

(γ−1)(ρ−1)
q

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3)

The PCM Hb of size (γq×ρq) will describe the null space for a base
protograph LDPC code defined by the block length Nb = ρ × q
and rate R ≥ 1 − γ/ρ. The permutation matrix Pq is essentially
constructed from an appropriate cyclic shift of the identity matrix Iq .
The restrictions imposed on the parameters q, ρ and γ ensure that no
permutation matrix Px

q , 0 ≤ x ≤ (γ − 1) (ρ − 1), is repeated in the
same row or column of the permutation matrices.

IV. MODIFICATIONS OF THE PROGRESSIVE EDGE GROWTH

ALGORITHM

The permutation pattern of the node’s edges in the derived graph
was determined using a modified version of the PEG algorithm.
Whilst we still maintain the elegant characteristics of the PEG as
regards to maximizing the girth of the graph and the minimum
distance of the code [20], we impose two additional constraints. The
first constraint ensures that the derived graph has the same structure
as the base protograph whilst the second ascertains that the derived
graph is also QC. The procedure that was used is summarized in
Algorithm 1.

It can be observed from Fig. 1(b) that the permutations of the
nodes’ edges follow a particular pattern, which is governed by the
PCM of the base protograph. For example, the edges emerging from
the variable nodes vj1, j = 1, . . . , 3, are only connected to the check



Algorithm 1: The modified PEG.

input : Mb, Nb, J , q, γ
output: C

′ji for j = 1,. . . ,J and i = 1, . . . , Mb, G′

Lines 2 - 21 determine the forbidden set of1
check nodes based on the VM PCM of the base
protograph (Constraint 1).
for kth variable node ← 1 to NbJ do2

k ← (kth variable node) mod Nb, n ← 0, C
′
tmp3 = ∅3

if k ≤ q then4

C
′ji =

{
cji : j = 1, ..., J ; i = k, k + q, k + 2q, . . . , Mb

}
5

else6
x ← (integer value of) [(k − 1)/q], r ← 17

C
′
tmp1 = {cji : j = 1, ..., J ; i = n + 1}8

for y ← x to x(γ − 1),9
(step : y ← 2 × previous value of y) do

C
′
tmp2 =10

{cji : j = 1, ..., J ; i = (rq + 1) + (n − y) mod q}
C

′
tmp3 = C

′
tmp2 ∪ (previous C

′
tmp3)11

r ← r + 112
end13

C
′ji = C

′
tmp1 ∪ C

′
tmp3, C

′ji = C
′ \C′ji14

if x > previous value of x then15
n ← 016

else17
n ← n + 118

end19

foreach cji ∈ C′ji do Store the number of connections20
under the current graph construction and then set their
number of connections to ρ

end21
if j > 1 then22

Set the number of connections of the check nodes23
connected with variable nodes vji, with 1 ≥ j ≤ (current j)
- 1 and i = k to ρ

end24
Starting the modified PEG algorithm.25
for connection ← 1 to γ do26

if connection = 1 then27

Similar to PEG [20] with the chosen cji ∈ C
′ji28

else29

Similar to PEG [20] but the chosen cji ∈ C
′ji must30

have the lowest degree (under the current graph
construction) and be the nearest to the selected cj(i−1)

for the same connection (Constraint 2).
end31

end32

foreach cji ∈ C
′

do Restore the original number of33
connections.

end34

nodes cji associated with i = 1, 2 and j = 1, . . . , 3. This effectively
imposes the structure of the base protograph on the graph derived.
For each variable node vji, j = 1, . . . , J and i = 1, . . . , N b, we
define the set of “allowed” checks C

′ji and the set of “forbidden”
checks by the complementary set C′ji = C

′\C′ji, i.e. the set of
elements in C

′
but not in C

′ji. It is only necessary to calculate Nb

different sets, since the sets repeat every Nb variable nodes. Then,
for each vji, the algorithm selects that check node in the specific
C

′ji set having the lowest number of edges emerging from it under
the current graph construction. On the other hand, we set the number
of edges of every check node in C′ji equal to ρ, which corresponds
to the maximum number of connections a check node is allowed to
have. In such manner, it is guaranteed that no connection between a
variable node and a check node in the corresponding set C′ji will
be established.

However, by imposing only this constraint on the original PEG, the

resultant graph will be acyclic (AC). This is due to the fact that the
PEG [20] will randomly select the check nodes, if multiple choices
are available. Therefore, we further restrict the algorithm to choose
a check node cji ∈ C

′ji, which is the nearest to the previously
selected cj(i−1), for the same connection. Since the base protograph
was chosen to be QC, the algorithm is always capable of choosing
that check node, which still retains the structural characteristics of
the base, and so, the resulting protograph code will also be QC.
This modification will lead to similar results to those attained by
the QC-PEG proposed by Li et al. in [23], where in our case the
‘QC-constraint’ [23] is imposed by the base protograph PCM. When
compared to the PEG algorithm, as originally proposed by Hu et
al. [20], the modified algorithm is capable of reducing the size of the
set of allowed checks from being governed by the binomial coefficient(

N
γ

)
, N = JMb, to

(
Jγ
γ

)
.

V. RESULTS AND DISCUSSION

The results presented in this section were obtained using Binary
Phase Shift Keying (BPSK) modulation, when transmitting over the
AWGN and uncorrelated Rayleigh channel and using a maximum of I
= 100 decoding iterations of the SPA. We will consider codes having
γ = 3, a block length N ranging from 200 to 3060 and code rates
R spanning from 0.4 to 0.82. We compare both the achievable Block
Error Ratio (BLER) and the BER performance for transmission over
both AWGN and UR channels for four different code constructions,
namely those of MacKay [18], the EBF [19], of the PEG [20] as
well as of the proposed QC protograph codes. We will appropriately
distinguish between the codes using the notation (N , K), where K
represents the number of original information bits. The error bars
shown on the BLER curves are associated with a 95% confidence
level, and it was ensured that at least 100 block errors were collected
at each point on the simulation curve.

The BLER and BER performance results over the AWGN channel
recorded for the (504, 252) and (1008, 504) codes are illustrated
in Figs. 2(a) and 2(b), respectively. The (504, 252) protograph
codes were constructed from 12 replicas of Vandermonde matrix
based protographs using q = 7. In a similar manner, 14 replicas of
Vandermonde matrix based protographs having permutation matrix
of size (12 × 12) were used for the protograph LDPC codes having
a length of N = 1008.

It can be observed from Figure 2(b) that the proposed half-rate
code having a block length of N = 1008, as well as parameters
of γ = 3 and ρ = 6 attains a BER of 10−6 at 2.831 dB with
a maximum of 100 decoder iterations, and therefore is only 2.643
dB away from the Shannon limit of 0.188 dB. At this BER, the
performance of the QC protograph code is superior to that of the
randomly generated MacKay code by about 0.2 dB. There is only
0.06 dB loss in the performance of the QC protograph code when
compared to the significantly more complex, unstructured PEG code,
which is deemed to have the best performance for transmission of
short blocks over the AWGN channel, at the time of writing. This
QC protograph code also exhibits a gain of about 0.157 dB over
the corresponding QC half-rate code based on the Euclidean sub-
geometry EG*(2,24) (cf. Table I in [14]) having a block length of
N = 1020, and parameters γ = 4 and ρ = 8. Furthermore, this
superior error correction performance is achieved at a lower decoding
complexity due to the lower logic depth. The logic depth is defined
by the value of ρ as well as γ and is directly related to the depth of
the graph tree spreading from a variable node vji, j = 1, . . . , J and
i = 1, . . . , N b.

2The row weights of the LDPC codes having rates 0.4, 0.5, 0.625 and 0.8
are 5, 6, 8 and 15, respectively.
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Fig. 2. A BER and BLER performance comparison of R = 0.5 LDPC codes with N = 504 and N = 1008 and a maximum of I = 100 decoder iterations
when transmitting over the AWGN and UR channels using BPSK modulation. Error bars shown on the BLER curves are associated with a 95% confidence
level.

Similar BLER and BER performance trends were observed for the
UR channel, as demonstrated in Figs. 2(c) and 2(d). For the sake of
completeness, we also investigated the performance of QC protograph
codes having rates of 0.4, 0.625 and 0.8 as well as both shorter and
longer blocklengths. Our simulation results, which are not shown in
this paper owing to space limitations, showed that the performance
of the protograph codes is always comparable to that exhibited by
the other benchmarker codes. A slight degradation was manifested
by the QC protograph codes for high code rates and very short block
lengths, because the constraints described in Section III-A could not
be satisfied.

A. Encoder and Decoder Complexity

In this sub-section, we provide a more comprehensive comparison
of the different code constructions that were considered by taking
into account the encoder and decoder complexity. We employ a
similar benchmarking technique to that used in [24], where the
metrics used for comparison are based on an amalgam of the
desirable encoder and decoder characteristics. The former include a
low complexity description due to structured row-column connections

and simple memory address generation (MAG), the linear dependence
of the encoding complexity on the codeword length, and a hardware
implementation based on simple components. As regards to attractive
decoder characteristics, we are concerned with the reduction of MAG
and on-chip wire interconnections, the reduced logic depth and the
ability to use parallel decoding architectures for systolic-array type
implementations. We also evaluate the decoder’s computational com-
plexity expressed in terms of the number of message-passing updates
per decoded bit, which is given by Δ = i|E′|/K [24], where
i represents the average number of iterations required for finding
a legitimate codeword at a particular Eb/N0 value. A summary of
these measures recorded for each code considered are summarized in
Table I. It can be observed in Table I, that the encoder structure is
quite complex for the majority of the five codes considered. Only
the PEG and the QC protograph codes have linearly increasing
encoding complexity as a function of the codeword length3. The
QC protograph’s encoder can also be implemented using a simple

3The PEG codes that were simulated cannot be decoded in linear-time,
however, linear-time encoding for PEG codes is possible using “zigzag” [20]
connections.



TABLE I
SUMMARY OF THE CHARACTERISTICS OF THE CODES CONSIDERED.

Complexity/Performance Criteria MacKay PEG EBF Proto QC
Desirable
Encoder
Characteristics

Simple description and MAG �
Complexity linear with N � �
Simple Hardware Implementation �

Desirable
Decoder
Characteristics

Reduced Logic Depth � � � �
Simple parallel architecture �
Simple MAG and on-chip interconn. �

Δ† AWGN at Eb/N0 = 3 dB with I = 50 40 39 41 39
UR at Eb/N0 = 4.5 dB with I = 50 58 56 59 57

† The computational decoding complexity Δ (message updates/decoded bit) is measured for the (1008, 504) codes.

linear shift-register circuit of length K and therefore the encoder only
requires r(N−K) binary operations, where r is one less than the row
weight of the generator matrix. By contrast, the remaining codes must
be encoded by means of sparse matrix multiplications which require
(N − K)(2K − 1) binary operations [25]. As far as the decoder’s
complexity is concerned, all the five code constructions score at least
one point due to their low logic depth which accrues from using small
values of ρ and γ. However, the lowest decoding complexity can only
be attained using QC protographs codes. All the benchmarker codes
suffer from having a high-complexity description due to the pseudo-
random permutations. Therefore, their implementation still relies on
inflexible hard-wired connections or on lookup tables that require a
large amount of memory. By contrast, memory shifts corresponding to
the QC PCM structure can be used to address the messages exchanged
between the nodes of QC protograph. Several decoders for QC codes
have been proposed, in particular that of Chen and Parhi [26], which
is capable of doubling the decoding throughput (assuming a dual port
memory), when compared to the decoding of randomly constructed
codes, by overlapping the variable and check node updates.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have proposed the construction of protograph
LDPC codes based on QC Vandermonde matrices. These codes bene-
fit from low-complexity encoding and decoding implementations due
to their semi-parallel architectures. We investigated their BLER and
BER performance for transmission over both AWGN and UR chan-
nels, for various rates and block lengths. Explicitly, our experimental
results demonstrate that the performance of these protograph codes
is similar to that exhibited by the higher complexity benchmarker
codes. Therefore, it can be concluded that the advantages offered
by the family of QC protograph LDPC codes accrue without any
compromise in the attainable BLER and BER performance.

REFERENCES

[1] R. G. Gallager, “Low-density parity-check codes,” IRE Transactions
Information Theory, vol. 45, no. 2, pp. 21–28, Jan. 1962.

[2] D. J. C. MacKay, “Good error-correcting codes based on very sparse
matrices,” IEEE Transactions on Information Theory, vol. 45, no. 2, pp.
399–431, Mar. 1999.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding:turbo-codes. 1,” in Proc. Inter-
national Conference on Communications, Geneva Technical Program,
vol. 2, Geneva, Switzerland, May 23–26, 1993, pp. 1064–1070.

[4] R. J. McEliece, D. J. C. MacKay, and J.-F. Cheng, “Turbo decoding as
an instance of Pearl’s belief propagation algorithm,” IEEE Journal on
Selected Areas in Commununications, vol. 16, no. 2, pp. 140–152, Feb.
1998.

[5] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE
Transactions on Information Theory, vol. 27, no. 5, pp. 533–547, Sept.
1981.

[6] J. M. F. Moura, J. Lu, and H. Zhang, “Structured low-density parity-
check codes,” IEEE Signal Processing Magazine, vol. 21, no. 1, pp.
42–55, Jan. 2004.

[7] S.-Y. Chung, G. D. J. Forney, T. J. Richardson, and R. Urbanke, “On
the design of low-density parity-check codes within 0.0045 db of the
Shannon limit,” IEEE Communications Letters, vol. 5, no. 2, pp. 58–60,
Feb. 2001.

[8] T. Richardson and R. Urbanke, “Efficient encoding of low-density parity
check codes,” IEEE Transactions on Communications, vol. 47, no. 6, pp.
808–821, Feb. 2001.

[9] J. L. Fan, “Array codes as low density parity check codes,” in Proc. 2nd

International Symposium on Turbo Codes, vol. 3, Brest, France, 2000,
pp. 543–546.

[10] K. Yang and T. Helleseth, “On the minimum distance of array codes
as LDPC codes,” IEEE Transactions on Information Theory, vol. 49,
no. 12, pp. 3268–3271, Dec. 2003.

[11] T. Mittelholzer, “Efficient encoding and minimum distance bounds of
Reed-solomon-type array codes,” in Proc. IEEE International Sympo-
sium on Information Theory, 2002.

[12] E. M. Gabidulin and M. Bossert, “On the rank of LDPC matrices
constructed by Vandermonde matrices and RS codes,” in Proc. IEEE
International Symposium on Information Theory, Seattle, WA, July 2006,
pp. 861–865.

[13] N. Pandya and B. Honary, “Variable-rate LDPC codes based on struc-
tured matrices for DVB-S2 applications,” in Proc. 8th Internation
Symposium on Communication Theory and Applications, Ambleside,
UK, 2005, pp. 368–373.

[14] L. Chen, J. Xu, I. Djurdjevic, and S. Lin, “Near-shannon-limit quasi-
cyclic low-density parity-check codes,” IEEE Transactions on Commu-
nications, vol. 52, no. 7, pp. 1038–1042, July 2004.

[15] Z. Li, L. Chen, L. Zeng, S. Lin, and W. H. Fong, “Efficient encoding
of quasi-cyclic low-density parity-check codes,” IEEE Transactions on
Communications, vol. 54, no. 1, pp. 71–81, Jan. 2006.

[16] J. Thorpe, “Low-density parity-check LDPC codes constructed from
protographs,” IPN Progress Report 42-154, Aug. 2003.

[17] J. K. S. Lee, B. Lee, J. Thorpe, K. Andrews, S. Dolinar, and J. Hamkins,
“A scalable architecture of a structured LDPC decoder,” in Proc. IEEE
International Symposium on Information Theory, June 27–July 2, 2004.

[18] D. MacKay, “Online database of low-density parity-check codes,” Avail-
able from wol.ra.phy.cam.ac.uk/mackay/codes/data.html.

[19] J. Campello and D. S. Modha, “Extended bit-filling and LDPC code
design,” in Proc. IEEE Global Telecommunications Conference, vol. 2,
San Antonio, TX, Nov. 25–29, 2001, pp. 985–989.

[20] X.-Y. Hu, E. Eleftheriou, and D. M. Arnold, “Regular and irregular pro-
gressive edge-growth tanner graphs,” IEEE Transactions on Information
Theory, vol. 51, no. 1, pp. 386–398, Jan. 2005.

[21] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Transactions on Information Theory,
vol. 47, no. 2, pp. 498–519, Feb. 2001.

[22] B. Ammar, “Error protection and security for data transmission,” PhD
thesis, University of Lancaster, 2004.

[23] Z. Li and B. V. K. V. Kumar, “A class of good quasi-cyclic low-density
parity check codes based on progressive edge growth graph,” in Proc. of
38th Asilomar Conference on Signals, Systems and Computers, vol. 2,
Nov. 7–10, 2004, pp. 1990–1994.

[24] D. D. K. Andrews, S. Dolinar and J.Thorpe, “Design of low-density
parity-check LDPC codes for deep-space applications,” IPN Progress
Report 42-159, Nov. 2004.

[25] S. J. Johnson and S. R. Weller, “A family of irregular LDPC codes with
low encoding complexity,” IEEE Communication Letters, vol. 7, no. 2,
pp. 79–81, Feb. 2003.

[26] Y. Chen and K. K. Parhi, “Overlapped message passing for quasi-cyclic
low-density parity check codes,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 51, no. 6, pp. 1106–1113, June 2004.


	Select a link below
	Return to Proceedings
	Return to Main Menu




