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We propose a soft sensing method using local partial least squares models with adaptive process state partition,
referring to as the LPLS-APSP, which is capable of effectively handling time-varying characteristics and nonline-
arities of processes, the twomajor adverse effects of common industrial processes that cause low-performance of
soft sensors. In our proposed approach, statistical hypothesis testing is employed to adaptively partition the pro-
cess state into the unique local model regions each consisting of certain number of consecutive-time data sam-
ples, and partial least squares is adopted to construct local models. Advantages of this adaptive strategy are
that the number of localmodels does not need to bepre-defined and the localmodel set can be augmented online
without retraining from scratch. Moreover, to improve the prediction accuracy, a novel online model adaptation
criterion is proposed, which not only takes the current process dynamics into account, but also enables mining
the information contained in the neighborhood of the query sample. The guidelines for tuning themodel param-
eters are also presented. The LPLS-APSP scheme is applied to develop the dynamic soft sensors for a simulated
continuous stirred tank reactor and a real industrial debutanizer column, and the results obtained demonstrate
the effectiveness of this proposed approach, in comparison to several existing state-of-the-artmethods, for online
soft sensor design.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Hardware sensors are ubiquitous in industrial plants to measure
process variables in order to deliver data for process monitoring and
control [1,2]. Many important quality-related process variables, such
as product concentration and octane number, are very difficult to ob-
tain. Although hardware based analysers can provide online measure-
ments for these difficult-to-measure variables, they are expensive and
have several limitations, including long analyzing delay, inaccuracy
and difficult to maintain, which make them an unsatisfactory choice
for industrial process sensing applications [3,4]. Moreover, some key
process variables, for example, the melt index of polypropylene, can
be mostly obtained through laboratory analysis [4,5], which may take
hours to complete. Infrequent and inaccurate estimation of these key
process variables may result in poor control performances, huge
production losses and even cause safety hazards [6].

Fortunately, the above-mentioned problems may be eliminated by
applying soft sensors, which are easy to maintain and can deliver real-
m@upc.edu.cn (X. Tian),
m (X. Deng),
time estimates of those hard-to-measure primary process variables
with low cost. Compared to the first principle based modeling, a proce-
dure that is typically time-consuming and costly, data-driven soft sen-
sors are widely applied because they can be quickly developed
without the need to first gain the substantial insights into the complex
mechanisms of industrial plants. Therefore, a variety of algorithms
have been proposed to develop data-driven soft sensors for industrial
processes, such as multivariate statistical regression (MSR) techniques
that include principal component analysis (PCA) [7,8], partial least
squares (PLS) [9,10], artificial neural networks (ANN) [11,12], and
support vector machines (SVMs) [13,14]. However, the performance
of soft sensors often deteriorate over time due to a predominant
difficulty encountered in most industrial processes, namely, time-
varying characteristics caused for example by catalyst deactivation,
mechanical aging, etc. [4,15].

Consequently, onlineupdating soft sensormodels is essential in prac-
tice. Moving window and recursive methods are commonly adopted to
adapt soft sensors to new process dynamics [16–20]. But it is well
known that these adaptive methods have difficulty in coping with
abrupt changes such as change of set point value, unless sufficient sam-
ples from the new operational condition have been collected. Most re-
cursive methods belong to the category of fitting a single ‘global’
model, whichmay fail to performwell owing to the strong nonlinearities
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existed in most complex industrial processes [4,21], as a single global
model has the difficulties in adequately representing all the operating
points of an industrial process. Compared to the global model based
learning, local learning based soft sensors that employ the philosophy
of ‘divide and rule’ construct several local models, each of which serves
as the expert for one specific operating region of the process. The time-
varying characteristics, including abrupt changes, can also be handled
when the localmodels or their contributions to the query sample are up-
dated online.

The first key task in the development of soft sensors under the local
learning framework is to divide the process state into the local model
regions by partitioning the entire data set into an appropriate number
of the data subsets so that the local models can be constructed on the
corresponding local regions or data subsets. In the soft sensing field,
clustering based methods, such as fuzzy C-means (FCM) [22–25] and
expectation maximization (EM) based finite mixture models [10,
26–28], are commonly used solutions to this problem. However, appro-
priate number of clusters is not easy to determine and it is difficult to
add new clusters online for copingwith the time-varying characteristics
of a process. Although the latter issue can be alleviated by updating the
offline constructed local models using recursive or moving window
techniques [27,28], it is more desirable to construct a new local model
upon receiving the newly emerged data samples located in the previ-
ously unexploited region of the sample space. Besides, the EM based
methods may encounter difficulty when the dimensionality of the pro-
cess variables is very high, because in such a scenario accurate estima-
tion of probability density function demands considerable amount of
training samples. Just-in-time learning (JITL) [29–34] is another popular
technique for partitioning the process state into the local data subsets,
and it also has the potential to address both process nonlinearities and
time-varying characteristics. However, the performance of JITL based
methods is not always satisfactory because the correlation between
the process variables is ignored [21].

Recently, some approaches were proposed for identifying the local
models, each of which is constructed based on a data subset consisting
of some consecutive time samples. The advantages of these methods
are that the correlation between process variables is considered and
the number of local models does not need to be pre-defined. In [21,35,
36], the process state is partitioned by a moving window with a fixed
length. Normally, high prediction accuracy requires a small moving
windowwidth, leading to a great amount of localmodels and a large on-
line computational load. Thework [37,38] proposed to repeatedly parti-
tion the entire dataset whenever an adaptation is triggered as newly
measured samples are accumulated, and thus this approach may be
time consuming. In the incremental local learning soft sensing algo-
rithm (ILLSSA) [39], an adaptive waywas presented for splitting the en-
tire data set into the local consecutive-time-sample regions based on
the t-test. This method considers the relationship of modeling function
and process characteristics better than the above-mentioned other two
methods. However, the variance in the denominator of the T statistic
may cause negative effects on the performance of the ILLSSA, and as a
result, the null hypothesis may remain valid even when the process
characteristics have changed. It can be seen that adaptively and appro-
priately partitioning the process state into the local consecutive-time-
sample regions is a promising but challenging task.

The other critical part of developing local learning based soft sensors
is to formulate the estimated value of the target variable based on the
constructed local models. There are two strategies to fulfill such a task.
Thefirst strategy computes thefinalmodel output as theweighted com-
bination of all the local models' outputs. Theweights can be either equal
for all the local models [31] or different for different localmodels [22,23,
25–27,39]. The second strategy is to switch to different local models on-
line according to some model adaptation criteria, such as fuzzy mem-
bership [24] or posterior probability [10,40,41]. However, both the
fuzzymembership and the posterior probability are distance based sim-
ilarity metrics, and they are not very suitable for the local models built
from the consecutive-time-sample data. In the correlation-based just-
in-time learning (CoJIT) [21], the correlation indexes among the process
variables are utilized for local model adaptation, which improves the
prediction performance, and this ensures that the CoJIT often outper-
forms the conventional JITL. However, it neglects the mapping relation-
ship between the target variable and the secondary variables, which
may sometimes lead to inappropriate model adaptation. Moreover, it
requires the massive memory space for storing the loading matrices of
the PCA models, which may not be available in some applications [42].
In the works [35,36], a similarity measure, which is constructed by the
support vector data description (SVDD) and independent components
(ICs), was proposed as the model adaptation criterion. But the online
computational load of the quadratic programming introduced by the
SVDD can be large. In the localized adaptive recursive PLS (LARPLS)
[37] and the localized adaptive soft sensor (LASS) [38], the prediction
error for the newest one samplewas selected as the localmodel adapta-
tion criterion. Although this approach overcomes the shortcomings of
the CoJIT, the estimate produced may not be sufficiently accurate. The
reason is simply because it too greedily pursues the error minimization
for the single newest sample, while disregarding the information about
the query sample. This drawback severely limits the generalization abil-
ity of the adapted local models. It can be seen that although the second
strategy of computing the final model output is promising owing to its
potential ability to enhance the adaptive performance of soft sensor
models, many critical issues remain unsolved by the existing
techniques.

Against the above background, in this paper, we propose an online
soft sensor design which is capable of dealing effectively with the
time-varying characteristics and nonlinearities encountered in most
real-life industrial processes. As our proposed soft sensing method
adopts the local learning framework that utilizes local partial least
squares models with adaptive process state partition, it is referred to
as the LPLS-APSP. Our soft sensor design also adopts the approach of
adaptive switching to different local models online. In comparison to
the existing adaptive soft sensing methods, however, our novel contri-
butions are as follows.

• We develop an adaptive process state partition based on effective sta-
tistical hypothesis testing. Specifically, local model regions are adap-
tively defined, while redundant local models are automatically
detected and discarded, both based on the χ2-test and t-test, which
account for the effects of the variance andmeanof the predicted resid-
uals, respectively.

• We propose a novel criterion for online model adaptation by
exploiting the predicted error for the newest measured sample as
well as mining the neighborhood information of the query sample,
which significantly enhances the online performance of our LPLS-
APSP based soft sensor.

• We conduct an extensive evaluation of the proposed LPLS-APSP soft
sensor design using a simulated continuous stirred tank reactor and
a real industrial debutanizer column, and demonstrate its superior
performance over several existing benchmark online soft sensor
designs.

This paper is structured as follows. Section 2 very briefly reviews the
local PLS model. In Section 3, our proposed online LPLS-APSP based soft
sensor design is detailed, which includes adaptive process state parti-
tion, online model adaptation and the design of the LPLS-APSP based
soft sensor. In Section 4, two chemical processes are employed to dem-
onstrate the superior performance of the LPLS-APSP soft sensor design
over several existing state-of-the-art designs. In addition, in this section,
how the design parameters of our proposed soft sensor influence the
online sensing performance is thoroughly investigated and the guide-
lines for tuning these parameters are presented. Our conclusions and re-
marks for future work are given in Section 5.
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2. Review of local partial least squares

Under the local learning framework, linear local models are normally
constructed to avoid huge computational complexity. However, process
data used for soft sensing are typically strongly co-linear which may be
caused for example by the partial redundancy in the sensor arrange-
ment, such as two adjacent temperature meters, and so on [1]. A com-
monly used way of eliminating data co-linearity is to transform the
secondary variables onto the latent space by means of PLS, which has
gained popularity and becomes a most preferable modeling method
by practical engineers [43].

Let xk=[x1,k x2,k ⋯ xm,k]T∈ℝm be the kth sample vector of them sec-
ondary variables and yk=[y1,k y2,k ⋯ yp,k]T∈ℝp be the kth sample vector
of the p primary variables, respectively, where (∙)T denotes the trans-
pose operator. Assume that the process state has been partitioned into
a number of local model regions, and each local model region is associ-
ated with a consecutive-time-sample time series data set {X, Y}, where
X = [x1 x2 ⋯ xN]T ∈ ℝN × m and Y = [y1 y2 ⋯ yN]T ∈ ℝN × p are the input
and output matrices with N samples, respectively. For notational sim-
plicity, we have omitted the local model index. For example, for the
lth local model, the associated data set is {X(l), Y(l)} with Nl samples
but the index l is dropped.

In PLSmodeling, the linear relationship betweenY andX is described
by Y = XCPLS + E, where all the data samples in X and Y have been
mean-centered, and CPLS ∈ ℝm × p is the regression coefficient matrix
defined by CPLS = (XTX)+XTY in which (∙)+ denotes the generalized in-
verse operator, while E ∈ ℝN × p is the residual matrix. Thus, the esti-
mate of Y is defined by Ŷ = XCPLS. PLS projects X and Y onto
respective latent variables according to

X ¼ TPT þ EX ; ð1Þ

Y ¼ UQ T þ EY ; ð2Þ

where T = [t1 t2 ⋯ tA] ∈ ℝN × A and U = [u1 u2 ⋯ uA] ∈ ℝN × A are the
score matrices, P = [p1 p2 ⋯ pA] ∈ ℝm × A and Q = [q1 q2 ⋯ qA] ∈ ℝp × A

are the loadingmatrices, of X and Y, respectively, while A is the number
of the latent variables, and EX∈ℝN × m and EY∈ℝN × p are the input and
output residual matrices. The columns of the score matrix T are usually
orthogonal to each other, but those of U are generally not.

Eqs. (1) and (2) represent the external relationship of the PLSmodel.
The linear internal relationship of the PLS model is given by

U ¼ TBþ F; ð3Þ

where B = diag{b1, b2, ⋯, bA} is a diagonal matrix, and the regression
weights {b1, b2, ⋯, bA} are determined by minimizing the residuals F.
The estimate of Y can alternatively be represented by Ŷ = TBQT.

A PLS model can be computed by either the nonlinear iterative PLS
(NIPALS) algorithm [44] or the kernel algorithm for PLS [45]. To improve
the prediction performance, a dynamic PLSmodel can also be formulat-
ed by augmenting the inputmatrixwith the past samples of the second-
ary variables. Moreover, in order to cope with time-varying
characteristics, the PLS model can be recursively updated by “merging”
the old model with the new data sample {xnew, ynew}. Specifically, the
new regression coefficient matrix is updated from CPLS according to

CPLS
new ¼ λPT

xnew

� �T
λPT

xnew

� � !þ
λPT

xnew

� �T
λBQ T

ynew

� �
; ð4Þ

where the forgetting factor 0 ≤ λ≤ 1 specifies the adaptation strength.
A necessary condition to perform this recursive updating is that the
number of the selected latent variables A is sufficiently large such that
‖EX‖F is sufficiently small [19], where ∥ ∥ F denotes the matrix Frobenius
norm.
3. Proposed online soft sensor design

The operations of the LPLS-APSP based online soft sensor can be
viewed as consisting of “offline” operations and online operations. At
the offline operation stage, the process state is adaptively partitioned
into local model regions using statistical hypothesis testing and a new
local PLS model is constructed upon the identified new local model re-
gion. Moreover, the newly added local model is checked with the
existing local models using statistical hypothesis test, and if an existing
local model is found to be very similar to this new local model, the
existing old localmodel is discarded. Note that during this adaptive pro-
cess state partitioning stage, the plant is operating online continuously
to provide consecutive-time samples of themeasured process variables.
The term “offline” really means that the computations for this stage can
be carried out offline. At the online operation stage, a query sample
arises and the online soft sensor must response. In this online stage,
model adaptation occurs based on some specific criterion and the se-
lected local model is responsible for predicting the output of the query
sample. Our proposed criterion for onlinemodel adaptation not only ex-
ploits the predicted error for the newest measured sample but also
mines the neighborhood information of the query sample We now de-
tail these two components of our proposed LPLS-APSP based online
soft sensor design.

3.1. Adaptive process state partition based on statistical hypothesis testing

For the sake of illustrating the basic concepts as well as for the pur-
pose of simplifying notations, we restrict the discussions to the single
output case, namely, p=1. A rational localmodel region should contain
a period of consecutive-time samples during which the model has the
same performance [39]. Our local model region partition approach is
depicted in Fig. 1, which considers the variances of both first-order
and second-order information in the measured process variables. Ini-
tially, a data window Wini is set with the W consecutive-time samples
denoted by Wini ¼ X ini;Y inif g, upon which a local expert or PLS model
fini has been constructed, where Xini ∈ ℝW × m, Yini ∈ ℝW × 1 and fini
maps Xini onto the predictions of Yini. It is assumed that at this point
the local model set consists of L local models { fl}l = 1

L with L ≥ 1,
which indicates that the process state has been partitioned into the L
local model regions which are represented by the L data subsets

W lf gLl¼1, each containing W consecutive-time samples. Without loss of
generality, the local model fL is identified at the previous local model
region extraction, and we have Wini ¼ WL and fini = fL.

Subsequently, the window is shifted one sample step ahead and a
shifted window Ws ft is obtained with the data set Ws ft ¼ Xs ft;Y s ftf g.
For Yini and Ysft, the predicted residuals based on fini are calculated, re-
spectively, according to

Rini ¼ Y ini− f ini X inið Þ; ð5Þ

Rs ft ¼ Y s ft−f ini Xs ftð Þ: ð6Þ

If Rini and Rsft are not significantly different, the performance of fini
overWs ft can be regarded as the same as that overWini. Then, the sam-
ples in Rini and Rsft can both be regarded as coming from the same local
process state. Consequently, Ws ft is continuously shifted and the new
Rsft is calculated. OnceRsft significantly deviates fromRini, a local process
state is identified, which is different from the one represented by Wini,
and the shifting process is stopped. A new local mode fnew can then be
constructed based on Ws ft. Thus, how to judge whether Rsft evidently
differs fromRini is a critical issue for this adaptive process state partition.
In our previous work [46], this problem is converted into examining
whether the means and variances of the two residual sequences, Rini

and Rsft, are significantly different or not based on the t-test and χ2-
test, respectively. In this paper, we also adopt these two statistical tests.



Fig. 1. Schematic of adaptive process state partition based on statistical hypothesis testing.
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Under the assumption that both Rini and Rsft follow normal distribu-
tion, the T statistic and χ2 statistic can be constructed as follows

T ¼
ffiffiffiffiffiffi
W

p
Rs ft−Rini
� �

=σ s ft; ð7Þ

χ2 ¼ W−1ð Þσ2
s ft=σ

2
ini; ð8Þ

where Rini and σini are the mean and standard deviation of the distribu-
tion fromwhich the samples of Rini are drawn,whileRs ft andσsft are the
mean and standard deviation of Rsft. Rini and σini can be estimated using
the samples ofWini provided thatW is sufficiently large. Normally,Rini is
essentially 0. Similarly, Rs ft and σsft can be estimated based on the sam-
ples of Ws ft. According to the standard statistical theory, when the hy-
pothesis

Hmean : Rs ft ¼ Rini ð9Þ

is valid, the T statistic (Eq. (7)) follows the t distributionwith the degree
of freedomW− 1. Likewise, theχ2 statistic (Eq. (8)) follows theχ2 dis-
tribution with the degree of freedom W − 1, if the hypothesis

Hstd : σ s ft ¼ σ ini ð10Þ

holds. Consequently, the t-test andχ2-test can be utilized to testwheth-
er the above two hypotheses are valid or not. Specifically, if

Tj jb λt and χ2
b λχ ð11Þ
hypothesis (9) is valid by the t-test and hypothesis (10) is valid accord-
ing to the χ2-test, that is, the mean of Rsft does not deviate significantly
from that ofRini, and the variances ofRsft andRini are considered to be the
same. In Eq. (11), λt is the threshold value of the T statistic for the given
significance level αt, i.e., Prob{|T| b λt} = 1− αt, while λχ is the thresh-
old value of the χ2 statistic for the given significance level αχ, namely,
Prob{χ2 b λχ} = 1 − αχ.

Thus, Rsft does not differ significantly fromRini when both conditions
of Eq. (11) are fulfilled. Otherwise, Rsft is judged to deviate fromRini sig-
nificantly, and we have identified a local process state that is different
from the one represented by Wini; f inif g. Let us denote the newly con-
structed local model based on the newly identified data subset Ws ft ¼
Xs ft;Ys ftf g as fnew. In the previous work [46], Ws ft; f newf g is simply
added to the local model set, and the number of the local model regions
is increased by one. However, a potential problem associated with this
approach is that the number of local models is even increasing as the
plant is continuously operating. Simply removing the ‘oldest’ local
model may not be the correct way of avoiding this problem, as the
oldest localmodelmay actually be different from the newly constructed
one, and it represents a different local process state. The more serious
problem associatedwith the approach of [46] is however that the grow-
ing local model set may contain many similar local models, and there-
fore some of them are redundant.

Let us analyze the root of this problem.Whenwe identify a new local
process state Ws ft; f newf gbased on the t-test andχ2-test of Eq. (11), we
only show that it differs from Wini; f inif g ¼ WL; f Lf g in the existing old

local model set W l; f lf gLl¼1. If Ws ft; f newf g also differs from W l; f lf g for
1 ≤ l ≤ L − 1, then it represents a truly new local process state. In this
case, Ws ft; f newf g is added to the local model set and the number of
the local models is increased by 1, i.e., L = L + 1. However, if there
exists an old local model W l0 ; f l0

� �
which is similar to Ws ft; f newf g,

where l′ ∈ {1, 2, ⋯, L − 1}, then either Ws ft; f newf g or W l0 ; f l0
� �

can be
regarded as redundant. Since W l0 ; f l0

� �
is ‘older’ than Ws ft; f newf g ,

after adding Ws ft; f newf g to the local model set, we should discard
W l0 ; f l0
� �

and the number of the local models does not increase. In
this paper, we propose to use statistical hypothesis testing for
performing this task of detecting and discarding a redundant local
model during the adaptive process state partition.

The predicted residuals of {Xsft, Ysft} based on fnew and fl are defined
respectively by

Rnew ¼ Y s ft−f new Xs ftð Þ; ð12Þ

Rl ¼ Y s ft−f l Xs ftð Þ; 1≤ l≤ L−1: ð13Þ

Again, under the assumption that Rnew and Rl follow normal distri-
bution, the T statistic and χ2 statistic can be constructed according to

Tl ¼
ffiffiffiffiffiffi
W

p
Rl−Rnew
� �

=σ l; ð14Þ

χ2
l ¼ W−1ð Þσ2

l =σ
2
new; ð15Þ

where Rnew and σnew are the mean and standard deviation of Rnew,
which can be estimated using the samples of Rnew, while Rl and σl are
the mean and standard deviation of Rl, which can also be estimated. If
the following two hypotheses

Hmeanl
: Rl ¼ Rnew; ð16Þ

Hstdl
: σ l ¼ σnew; ð17Þ

are valid, Tl andχl
2 follow the t-distribution andχ2-distribution, respec-

tively. Therefore, if there exists an l ∈ {1, 2, ⋯, L− 1} such that

Tlj j b λt and χ2
l b λχ ; ð18Þ
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hypotheses (16) and (17) are both valid, andRnew andRl are regarded to
be identical. In this case, we discard W l; f lf g and add Ws ft; f newf g to the
local model set. Otherwise, we add Ws ft; f newf g to the local model set
and increase the number of the local models by 1.

In practice, the significance levels αt and αχ can be set to small
values, such as 0.05, and their effects can be compensated partly by
adjusting the window size W. It is worth pointing out again that al-
though new local model regions may be continuously extracted at the
plant is operating online continuously, all the operations involved at
this stage can be implemented ‘offline’. Therefore, the online computa-
tional efficiency is not really an issue here.

3.1.1. Offline stage
We are now ready to summarize the procedure of adaptively

extracting the unique local model regions through the proposed statis-
tical hypothesis testing, which constitutes the offline stage of our pro-
posed LPLS-APSP based online soft sensor.

3.1.2. Initialization
Collect an initial data setWini withW consecutive-time samples, and

build a PLSmodel fini uponWini. Then calculateRini, and estimateRini and
σini.

Set L=1 and WL; f Lf g ¼ Wini; f inif g. Then setWs ft ¼ WL, and go to
Step 1).

Step 1): Extract a new local model region.
Step 1a): Collect a new data sample from the plant1, shift Ws ft one

sample ahead to obtain the new Ws ft , calculate Rini of
Eq. (6) using fini, and estimate the corresponding Rs ft and
σsft.

Step 1b): Construct the T statistic and χ2 statistic of Eqs. (7) and (8),
respectively.

Step 1c): Check the conditions of (11).
If both the conditions hold

return to Step 1a);
otherwise

go to Step 1d).
Step 1d): Build a new PLS model fnew upon Ws ft , compute Rnew of

Eq. (12), and estimate the associated Rnew and σnew. Then
go to Step 2).

Step 2): Detect and discard redundant local model. for (l=1 to L− 1)
loop

Step 2a): Calculate Rl of Eq. (13), estimate Rl and σl.
Step 2b): Construct the Tl statistic and χl

2 statistic of Eqs. (14) and
(15), respectively.

Step 2c): Check the conditions of Eq. (18).
If both the conditions hold: i) discard W l; f lf g, renumber the re-
maining L − 1 old local models as 1, 2, ⋯, L − 1, and add
Ws ft; f newf g as WL; f Lf g. ii) Then break loop and go to Step 2d)
otherwise: continue until end of loop.
end of loop: Set L= L+ 1, add Ws ft; f newf g as WL; f Lf g, and go to
Step 2d).

Step 2d): SetWs ft ¼ WL, and return to Step 1).

3.2. Criterion for online model adaptation

For the LPLS-APSP based online soft sensor, a single localmodel is re-
sponsible for estimating unknown samples. Thus, an effectivemodel ad-
aptation criterion is of vital importance in selecting an appropriate local
1 If the plant operational data have already been collected and stored, simply shiftWs ft

one sample step ahead.
model to estimate the output of query sample. Before introducing our
proposed model selection criterion, we examine three existing ap-
proaches to learn from their strength and weakness. In the JITL model-
ing [29–34], the samples that are located within a neighborhood of
the query sample, represented by the dashed circle in Fig. 2a, are used
to train a temporal local model ftmp to estimate the output of the
query sample. In the case illustrated in Fig. 2a, the JITL criterion selects
neither localmodel 1 nor localmodel 2. Given thenewest input and out-
put measurement {x0, y0}2, the CoJIT modeling [21] calculates the Q-
statistics Ql of {x0, y0} to the input–output subspaces W l, 1 ≤ l ≤ L, and
selects the local model f l� , which has the minimum Q-statistic value
Ql� , to predict the output of query sample. However, the Q-statistic,
which is the square distance between {x0, y0} and the subspace of data
setW l, does not represent the prediction accuracy for y0. For the exam-
ple shown in Fig. 2b, Q1 is smaller than Q2, and thus, the model f1 is se-
lected. But the actual predicted error of f1 for {x0, y0}, e1= y0− f1(x0), is
larger than e2 = y0 − f2(x0) of the model f2. In the LARPLS [37] and the
LASS [38], the local model that minimizes the prediction error for the
newest measured sample {x0, y0} is selected to provide the estimate of
the output for query sample. For the case illustrated in Fig. 2c, the
local model f2 is selected as it provides a smaller prediction error e2
for {x0, y0} than e1 offered by the local model f1. However, the prediction
accuracy of f2 for the query sample is rather poor in this case. This is be-
cause x0 and the query samplemay not belong to the same local process
state.

In addition to capturing the latest process dynamics, the principle of
‘similar inputs resulting in similar outputs’ is also important, and thus
model adaptation should take into account the following factors:

1) The latest available process's operating condition, which is normally
contained in the newest labeledmeasurement sample, should not be
ignored.

2) An appropriate local model should also provide good estimates for
the neighbors of the query sample.

3) Furthermore, since the query sample is similar to its neighbors, for a
good local model, the estimates for the query sample and its neigh-
bors should not differ too much. In other words, the differences be-
tween the predicted error of the query sample and those of its
neighbors are expected to be small.

By taking into account the above three considerations, we propose
the following novel criterion for online local model adaptation, where
J(l) denotes the value of the proposed cost function for the lth local
model,

J lð Þ ¼ αe lð Þ
0 þ 1−αð Þ

XK
i¼1

sie
lð Þ
i =
XK
i¼1

si þ 1−βð Þ
XK
i¼1

siΔe
lð Þ
i =
XK
i¼1

si

 !

¼ α J lð Þ
1 þ 1−αð Þ J lð Þ

2 :

ð19Þ

In criterion (19), K is the neighborhood size of the query sample xq,
namely, the neighbors of xq are {xi(q), yi(q)} for 1 ≤ i ≤ K, 0 b α, β b 1
are the two weighting parameters, and

e lð Þ
0 ¼ f l x0ð Þ−y0j j; ð20Þ

e lð Þ
i ¼ jf l x qð Þ

i

	 

−y qð Þ

i

���; 1≤ i≤ K; ð21Þ

Δe lð Þ
i ¼ f l x qð Þ

i

	 

−f l xq

	 
��� ���; 1≤ i≤ K; ð22Þ
2 Aswe consider p=1, the single-output case, the scalar notation is used for the output.
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Fig. 2. Illustration of three existing approaches for selecting local model for estimating the output of query sample: (a) JITL, (b) CoJIT, and (c) LARPLS and LASS.
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while si defines the similarity of xi(q) and xq. Several similarity measures
are defined in [29,47,48]. The following commonly used, simple yet ef-
fective similarity measure is employed

si ¼ exp −ϕd x qð Þ
i ; xq

	 
	 

; ð23Þ

where d(⋅,⋅) denotes the Euclidean distance metric and ϕ N 0 is a scaling
factor.When0 bϕ b 1, the influence of distance is attenuated,whilewhen
ϕ N 1, the influence of distance is amplified. Later, we will discuss how
to determine an appropriate value of ϕ, which depends on application.

The first item in the right hand side of Eq. (19), J1
(l), considers the cur-

rent operating condition, while the second term J2
(l) enables the mining

of the information contained in the query sample and its neighbors.
These two components of the cost function together ensure that the se-
lected local model fel, where

el ¼ arg min
1≤ l ≤ L

J lð Þ
; ð24Þ

has the ability to generalize well for the query sample. For the case
shown in Fig. 2c, for example, the proposed model selection criterion
will select the local model f1, rather than f2. Note that if we set α = 1,
then J(l) = J1

(l), and the proposed model selection criterion degenerates
to the one that is used in the LARPLS [37] and the LASS [38]. We are
now ready to summarize the online stage of our proposed LPLS-APSP
based online soft sensor. Given a query sample xq:

Step 1): Search for the K nearest neighbors of xq according to
the Euclidean distance metric, and denote the results by
{xi(q), yi(q)}i = 1

K .
Step 2): Calculate the similarity of xq and xi(q) using Eq. (23) for

1 ≤ i ≤ K.
Step 3): According to Eqs. (20) to (22), calculate e0

(l), ei(l) and Δei(l)

with fl for 1 ≤ i ≤ K and 1 ≤ l ≤ L.
Step 4): Calculate J(l) according to Eq. (19) for 1 ≤ l ≤ L.
Step 5): Find the optimal local model fel according to Eq. (24), and es-

timate the output of xq using fel.
It is worth pointing out that compared to the JITL based online soft

sensor, online constructing local models is avoided in our LPLS-APSP
based online soft sensor, since all the local models have been prepared
‘offline’. Therefore, our LPLS-APSP is computationally more efficient
than the JITL at the online operation stage.

4. Two case studies

The performance of our LPLS-APSP based online soft sensor was in-
vestigated using a simulated continuous stirred tank reactor (CSTR)
and a real industrial debutanizer column process. For comparison pur-
pose, the results of several state-of-the-art methods for online soft sen-
sor designwere also provided and analyzed. These benchmarkmethods
included the least squares SVM (LSSVM) based design [49], the conven-
tional distance based JITL PLS (JITLPLS) [47], the recursive PLS (RPLS)
[19], the moving window PLS (MWPLS) [18] and the CoJIT [21]. Except
for the LSSVM based designwhich is a global nonlinearmodelingmeth-
od, the other ones investigated are all adaptive and employ a linear PLS
algorithm to construct the soft sensor model. The estimation accuracy
was evaluated by the root mean squares error (RMSE), the relative
RMSE (RR) and themaximum absolute error (MAE) defined respective-
ly by

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNT

t¼1

yt−ŷtð Þ2=NT

vuut ; ð25Þ

RR ¼ 100%�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNT

t¼1

yt−ŷtð Þ=ytð Þ2=NT

vuut ; ð26Þ

MAE ¼ max yt−ŷtj j; t ¼ 1;2; ⋯;NTf g; ð27Þ

where yt and ŷt denote the true output value and its predicted value
of the tth test sample, respectively, while NT is the number of test
samples. Additionally, assuming that each element of matrix oc-
cupies one byte's memory space, the local model number (MN) and
the occupied memory space (MS) were also employed to measure
the requirements on storage devices. Furthermore, the online con-
sumed CPU time (CPTonline), averaged over 10 independent simula-
tions, was utilized to evaluate the online computational efficiency
of a soft sensor. The computations of all the experiments were
carried out on a Core i5 (2.6 GHz × 2) with 4 GB RAM, and with
Windows 7 and MATLAB version R2010a.

4.1. Continuously stirred tank reactor

The schematic structure of an exothermic irreversible first-order
CSTR, which are widely used for testing soft sensors' performance [27,
40], is shown in Fig. 3. In the CSTR, an irreversible reaction A → B
takes place, which transforms cyclopentadiene A to the product
cyclopentenol B. This reaction can be described by

dCA tð Þ
dt

¼ Fi
V

CAi−CA tð Þð Þ−k0CA tð Þ exp − E
RTr tð Þ

� 
; ð28Þ

dTr tð Þ
dt

¼ Fi
V

Ti−Tr tð Þð Þ−ΔHk0CA tð Þ
ρCp

exp − E
RTr tð Þ

� 

þ ρcCpc

ρCpV
Fc tð Þ 1− exp − hA

Fc tð ÞρCp

 ! !
Tci−Tr tð Þð Þ:

ð29Þ

The detailed description of this CSTR's nonlinearity and its steady
state operating conditions as well as the model parameters can be



Fig. 3. Schematic diagram of the CSTR with its control structure.
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found in [27]. The residual concentration of A, denoted as CA(t), was the
target variable for soft sensing. The flow rate of the cooling water, Fc(t),
and the reactor temperature, Tr(t), were chosen as the secondary
variables.

Throughout the entire simulation process, we periodically alter the
set point of Tr(t) to ±2 (K) every 60 h. The sampling interval was set
to 1 min. But we assumed that CA(t) was analyzed in the laboratory
every 2 h and the analyzed value was referred to as the ‘analytical
value’. Thus the sampling period for collecting the ‘labeled’ samples
was 2 h, and between the two labeled samples, there were 119 ‘unla-
beled’ samples with the sampling period of 1 min. To capture the pro-
cess dynamics, the input vector was augmented with the samples at
the previous sampling instant, and therefore themodel structure for de-
veloping soft sensors was set to

CA kð Þ ¼ f Fc k−1ð Þ; Fc k−2ð Þ; Tr k−1ð Þ; Tr k−2ð Þð Þ: ð30Þ

To simulate the periodical decrease and recovery of catalyst activa-
tion, the frequency factor k0 was changing as shown in Fig. 4, which
made this CSTR process time-varying and highly nonlinear. The whole
simulation period was 1800 h containing 900 analytical (labeled) sam-
ples, among which the 600 analytical samples of the first 1200 h were
used as the training dataset for model construction and the rest 300 an-
alytical samples in the test period of 600 hwere employed as the valida-
tion data set for determining the algorithmic or design parameters of
the soft sensor by cross validation. During the test period, there were
large number of ‘unlabeled’ samples (35,700) obtained at the sampling
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Fig. 4. Periodical change of the frequency factor.
period of 1 min, for which the corresponding output values of CA were
actually known. These unlabeled data samples together with their actu-
al output values formed the test dataset for evaluating the performance
of an online soft sensor. In the simulations, all the process variables,
CA(k), Fc(k) and Fr(k), were corrupted by Gaussian noises. Additionally,
all the variables were scaled to within the range of [0.0, 1.0].

4.1.1. Online soft sensor designs
Thenumber of localmodels found by the CoJITwasMN=881,while

the number of local models determined by the APSP procedure of our
proposed soft sensor was MN = 98, which was much smaller than
that of the CoJIT. The design parameters of all the methods investigated
were optimized by a particle swarm optimization (PSO) technique to
minimize the predicted RMSE over the validation dataset. Appendix A
explains how the search ranges for the parameters of each soft sensor
were determined for th PSO algorithm, which produced the following
optimized algorithmic parameters for each soft sensor design.

a) LSSVM: the Gaussian kernel width was 0.28, and the regularization
parameter was 998.5.

b) JITLPLS: 8 nearest samples were used as the query sample's neigh-
bors, and the number of latent variables in the PLS model, LVPLS,
was LVPLS = 1.

c) RPLS: the forgetting factor was 0.965 and LVPLS = 3.
d) MWPLS: the moving window length was 10 and LVPLS = 2
e) CoJIT: thewindow sizewas 20with thewindowmovingwidth set to

1, and the coefficient for constructing the 7.14 × 10−5, while
LVPLS = 3 and the number of latent variables in the PCA model,
LVPCA, was LVPCA = 3.

f) LPLS-APSP: the window size was W = 13, LVPLS = 1, K = 15, ϕ =
47.1, α = 0.216, and β = 0.483. Both the significance levels for the
t-test and χ2-test, namely, αt and αχ, were set to 0.05, as suggested
in [39].

As an example, we illustrate why the obtained design parameters of
the LPLS-APSP are appropriate. Fig. 5a to d shows the predicted RMSE
over the test data set as the function of thewindowwidthW, the neigh-
borhood size K, the scaling factor ϕ, and the two weighting parameters
α and β, respectively, where in each case, the rest of the algorithmic pa-
rameters were set to the designed values given above, obtained by op-
timizing the predicted RMSE over the validation data set using the
PSO. It can be seen from Fig. 5a that the true optimal value of W = 12
for the best test performance is close to the optimized W = 13 based
on the validation data set. Fig. 5b shows that when K is greater than
10, small test RMSE can be obtained and, therefore, the optimized
K = 15 obtained based on the validation set is also a good choice.
Fig. 5c indicates that the test RMSE is a uni-modal function of ϕ and
the optimal value of ϕ is about 30 with the minimum test RMSE value
of 0.208. Note that the test RMSE for the designed ϕ = 47.1 is 0.0210,
which is very close to the optimal value of 0.0208, and therefore the op-
timized ϕ=47.1 based on cross validation is appropriate. Lastly, Fig. 5d
provides a three dimensional plot to illustrate the influence of α and β
on the test RMSE, which reveals that the optimized value (α = 0.216,
β = 0.483) based on cross validation is located within the ‘acceptable
area’ of high test performance, where the test RMSE is less than
0.0215. The results of Fig. 5 confirm that the algorithmic parameters ob-
tained by minimizing the predicted RMSE over the validation data set
achieve a good generalization performance for the unseen test data
set and, therefore, are appropriate. Space limitation precludes us from
detailing the procedure of optimizing the algorithmic parameters by
using the PSO to minimize the predicted RMSE over the validation
data set, which is basically a standard cross-validation approach.

In addition, some other useful information can be extracted from
Fig. 5. For example, it can be seen from Fig. 5a that large window size
W results in poor test performance while small window size is
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Fig. 5. Predicted RMSE over the test data set as a function of the LPLS-APSP design parameters: (a)W, (b)K, (c)ϕ, and (d)α and β. In each case, the rest of the algorithmic parameterswere
set to the designed values.
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preferable. This is because the largerW is, the lower the ‘localization de-
gree’ is, i.e., the weaker the ability of handling the process nonlinearity
by local linear models is, and vice versa. However, too small window
sizemay causemodel instability and incorrect estimation of the predict-
ed residuals' mean value and variance, which are required in calculating
the T and χ2 statistics of Eqs. (7) and (8) as well as Eqs. (14) and (15).
Thus the value of W should be set to achieve a satisfactory cross-
validation performance.

The effect of the query sample's neighbors, depicted in Fig. 5b, indi-
cates that the test RMSE decreases as K increases. However, when K is
larger than 10, the test RMSE remains almost constant. This is because
the influence of distant neighbors abates sharply to nearly zero through
theweighting strategy given in Eq. (23) for the given scaling parameter
of ϕ=47.1. When ϕ is set to 0, all the neighbors have the same impor-
tance and the test accuracy is poor as can be seen from Fig. 5c. This con-
firms that differentiating the influence of neighbors is necessary,
meaning we should choose ϕ N 0. But if ϕ is excessively large, only the
first neighbor of the query sample counts, which is equivalent to setting
K = 1 and is not appropriate either. Thus, the influences of K and ϕ
should be considered jointly, and we suggest setting K to a relative
large value together with a carefully selected scaling parameter value ϕ.

Additionally, when α is set to 1, the model adaptation criterion J(l)

defined by Eq. (19) degenerates to the one used in the LARPLS [37]
and the LASS [38], and the test RMSE is very large as can be seen from
Fig. 5d, which indicates incorrect model adaptation. By contrast, as
soon as α decreases away from 1, meaning that the neighbors of the
query sample start to take effect, the test RMSE decreases. Therefore,
mining neighborhood information of query samples to form a model
adaptation criterion is necessary and effective.

4.1.2. Test performance comparison
Wearenow ready to compare the performance of various online soft

sensor designs. Fig. 6a to f depicts the predicted values for CA over the
test data set obtained by the various online soft sensor designs based
on the LSSVM, the JITLPLS, the RPLS, the MWPLS, the CoJIT and the pro-
posed LPLS-APSP, respectively, where the actual values as well as the
analytical values of CA are also shown for comparison. Table 1 quantita-
tively compares the test performance of these online soft sensor designs
over the test data set with several performance measures. Note that the
historical data set, i.e., the training data set,was augmentedwith the an-
alytical values every two hours at the online operation stage.

Fig. 6a indicates that the global modeling based LSSVM design does
not behave well for this CSTR process with strong time-varying nonlin-
earity, and its predictions of CA are visually biased over the time inter-
vals of 1300 h to 1350 h, 1400 h to 1450 h, and 1650 h to 1700 h. As a
local learning strategy, the JITLPLS design can improve the estimation
accuracy to some extent compared to the LSSVM, but its performance
is still unsatisfactory because its prediction errors are still large and
the biases in the time intervals of 1300 h to 1350 h, 1400 h to 1450 h,
and 1650 h to 1700 h are still visible, as can be seen from Fig. 6b. The
prediction accuracy of the RPLS design is very poor, particularly from
the time period of 1200 h to 1550 h, as clearly shown in Fig. 6c, where
the RPLS struggles to track the process dynamics in time when the set
point value of the reaction temperature changes, leading to large
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Fig. 6.Comparison of the prediction results over the test data set for the CSTR achieved by various online soft sensors based on: (a) the LSSVM, (b) the JITLPLS, (c) the RPLS, (d) theMWPLS,
(e) the CoJIT and (f) the LPLS-APSP.
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prediction errors. The MWPLS based design achieves much higher
prediction accuracy, particularly in the relative steady-state operating
conditions. As can be seen from Fig. 6d, however, its performance
deteriorates significantly when the operation condition changes
Table 1
Performance comparison of various online soft sensors over the test data set for the CSTR.

Soft sensor RMSE RR (%) MAE MN MS (byte) CPTonline (s) CPTopt (s)

LSSVM 0.0294 6.53 0.280 1 – 5.72 329.2
JITLPLS 0.0245 5.91 0.206 1 – 27.91 247.1
RPLS 0.0386 10.5 0.217 1 – 1.11 266.7
MWPLS 0.0335 8.03 0.491 1 – 1.15 292.6
CoJIT 0.0327 7.94 0.214 881 20,263 1.14 14,556.5
LPLS-APSP 0.0210 5.26 0.159 98 490 13.57 2273.7
sharply. For example in the enlarged plot shown in Fig. 6d, when the ac-
tual plant state is undergoing a step change, the prediction of the
MWPLS based soft sensor goes wild. This is because the query sample
is strange to the current PLS model under such a circumstance. Only
after a few labeled analytical samples have been accumulated for the
new operational state, can the newly updated PLS model recovers
from such a catastrophe. Similar problem also appears in Fig. 6e, be-
cause the CoJIT does not switch localmodel unless the labeled analytical
value is available [21]. Besides, it can be seen from Fig. 6e that when the
local model is selected properly, for example at the time period around
1680 h showing in the enlarged plot, the estimation performance of the
CoJIT is excellent, but in many time periods, the estimation variances of
the CoJIT are large, which indicates that inappropriate model adapta-
tions occur.
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By contrast, it can be seen from Fig. 6f that the overall prediction per-
formance of the proposed LPLS-APSP is the best. To bemore specific, al-
though the prediction variance of the LPLS-APSP design is slightly larger
than that of the MWPLS in relative steady states, its prediction accuracy
is consistently very good over all the states. In particular, the proposed
LPLS-APSP based soft sensor is highly effective to prevent large predic-
tion error when the process state undergoes abrupt changes, such as
the change of the set point value of the reaction temperature and the re-
covery of catalyst activity. In fact, theMWPLSmodelmay approximately
be regarded as the ‘optimal’ localmodel for the newest 10 ‘labeled’ sam-
ples, and mining neighborhood information in the LPLS-APSP is similar
to that of the JITL. Therefore, the proposed method, in a sense, performs
a tradeoff between the MWPLS and the JITLPLS, but it is capable of alle-
viating the negative effects of both the MWPLS and JITLPLS. The predic-
tion accuracymeasures listed in Table 1 also confirm that the LPLS-APSP
based soft sensor attains the overall best performance. This demon-
strates that the proposed model adaptation criterion defined in
Eq. (19) is highly effective. However, like the JITLPLS, online model
switching occurs in the proposed soft sensor each time a query sample
is produced, which may result in high model adaptation frequency too.

The selected localmodel for the LPLS-APSP soft sensor during the on-
line operation stage is illustrated in Fig. 7. It can be seen that the latest
model is only selected for about 16% of all the queries, and for about
84% of all the queries other models are selected. This is simply because
the latest model may not be optimal for minimizing the objective de-
fined in Eq. (19), especially when abrupt changes occur, as the latest
model does not take the query sample's information into consideration.
Actually, if the latest model were always selected, the proposedmethod
would degrade into the MWPLS, whose performance is far inferior to
the proposed method, as shown in Fig. 6d and Table 1.

In terms of MN, the LSSVM adopts a global nonlinear model, while
the JITLPLS, RPLS and MWPLS adapt a single linear PLS model. By con-
trast, as can be seen from Table 1, the LPLS-APSP adapts among 98
local models, among which 28 local models are actually identified dur-
ing the online operation stage. This clearly shows that the proposed soft
sensor is capable of handling the plant's time-varying dynamics. Fur-
thermore, theMN of the LPLS-APSP is only 11% of the total local models
employed by the CoJIT, and the window size of the LPLS-APSP is also
smaller than that of the CoJIT. Consequently, the required MS of the
LPLS-APSP is significantly smaller than that needed by the CoJIT. More
specifically, for the CoJIT, the Q and T2 statistics of all the local PCA
models need to be calculated in each adaptation and thus the loading
matrices and eigenvalues of all the PCA models have to be stored. For
this CSTR process, a total of MN × (m + 2) × LVPCA byte memory
space are required for storing the local PCA models' parameters,
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Fig. 7. The selected local model for the LPLS-APSP soft sensor during the online operation
stage.
where m is the dimension of the input vector. Furthermore, the local
PLS models' regression coefficients need to be stored too, and this re-
quires the additional MN × (m + 1) byte memory space. Thus, the
CoJIT requires a total of 20,263 byte MS. By contrast, the LPLS-APSP de-
sign only needs the MN × (m + 1) = 490 byte MS for storing its local
PLS models' regression coefficients. Since the LSSVM, JITLPLS, RPLS and
MWPLS designs just need to store a single model for online operation,
their MS requirements are negligible, which are indicated in Table 1
by the symbol ‘–’.

In terms of online computational complexity, Table 1 shows that the
RPLS, MWPLS and CoJIT all consume very little online CPTonline. This is
because these three soft sensors require neither online modeling nor
searching for the query sample's nearest neighbors. By comparison,
the online CPTonline consumed by the LPLS-APSP soft sensor is signifi-
cantly larger, as it requires us to perform a model adaptation to choose
a most appropriate local model. However, the online CPTonline con-
sumed by the LPLS-APSP is only half of the online CPTonline required by
the JITLPLS,which need to online construct a localmodel. The advantage
of the LPLS-APSP over the JITLPLS by avoiding online constructing a local
model is particular significant in the scenario where the PLS model re-
quires a large number of latent variables.

The computational complexity of off-line soft sensor designwas also
investigated, and the last column of Table 1 lists the CPU time spent by
each soft sensor design on the offline parameter optimization, denoted
by CPTopt, using the PSO algorithm which iterated 50 times with the
number of particles set to ten times of the number of the parameters
to be optimized. It can be seen that the LPLS-APSP requires considerably
more offline CPTopt than the first four methods in offline parameter op-
timization. This is owing to the following two aspects. Firstly, the APSP
continuously identifies newly emerged local model regions and detect
redundant local models. As explained previously, this APSP does not re-
quire real-time implementation. Although it does not affect the online
computational efficiency, it does increase offline computational require-
ments. Secondly, the number of parameters to be optimized is six, larger
than those of thefirst fourmethods. However, the offline computational
complexity of the proposed LPLS-APSP design is significantly lower than
that of the CoJIT design. For the CoJITmethod, in order to sufficiently lo-
calize the process, thewindowmoving width is set to 1, and this results
in a huge amount of local models. Note that in terms of real-time oper-
ation of a soft sensor, it is the online computational complexity,
represented by CPTonline, that really matters. The offline computational
complexity of CPTopt is only of secondary importance.

4.2. Industrial debutanizer column process

The debutanizer distillation column is a part of the desulfuring and
naphtha splitter plant where propane and butane are removed as over-
heads from the naphtha steam [2] as shown in Fig. 8. Thus, one of its
main tasks is to minimize butane content at the bottom of the column,
and the butane content measurement is normally obtained by the gas
chromatographywith a large measurement delay. Therefore, a soft sen-
sor for online estimating the concentration of butane is desirable. Sever-
al hardware sensors are installed in the debutanizer column for
obtaining secondary variables, which are indicated with yellow circles
in Fig. 8. The detailed descriptions of these input variables are given in
Table 2.

The debutanizer column dataset containing 2394 samples, which is
available at [50], came from a real industrial chemical process, and it
has become a benchmark dataset for evaluating the performance of
adaptive soft sensors [15]. We selected 600 samples evenly from the
first half of the entire data set to form the historical training data set,
while the second half of the data set was evenly divided into two
parts, with one part served as the validation data set and the other as
the test data set. The samples of the validation data set were also served
as the measured samples at the online operation stage and added into
the historical data set to simulate the real-life operation situation. The



Fig. 8. Block diagram of the debutanizer column.
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PLS model structure was determined by the expert knowledge and the
consideration of process dynamics [2], and can be expressed as

ŷ t−kð Þ ¼ f ðu1 tð Þ;u2 tð Þ; ⋯;u5 tð Þ;u5 t−1ð Þ;u5 t−2ð Þ;
u5 t−3ð Þ; u6 tð Þ þ u7 tð Þð Þ2; y t−4ð Þ; y t−5ð Þ; y t−6ð Þ;

ð31Þ

where ŷ(t) represents the predicted value of the butane concentration
at time t, and y(t− k) denotes the analytical value of the butane concen-
tration measured by the gas chromatography at time t− kwith k being
a positive integer.

The PSO was again utilized to optimize the algorithmic parameters
of all the soft sensors based on the validation data set. With the search
ranges for the parameters of each soft sensor as given in Appendix A,
the obtained design parameters are as follows.

a) LSSVM: the Gaussian kernel width was 13.97, and the regularization
parameter was 1.2 × 105.

b) JITLPLS: 150 nearest samples were chosen as the query sample's
neighbors and the number of latent variables LVPLS was 12.

c) RPLS: the forgetting factor was 0.963 and LVPLS = 12.
d) MWPLS: the moving window length was 240 and LVPLS = 12.
e) CoJIT: the window moving width was set to 1, the window size was

250, and the coefficient for constructing the correlation index was
9.38×10−7. In addition, LVPLS and LVPCAwere 12 and 10, respectively.

f) LPLS-APSP:W=90, LVPLS=10,K=16,ϕ=69.9,α=0.691 andβ=
0.235. Additionally, αt and αχ were set to 0.05 in advance.
Table 2
Detailed descriptions of the input variables for soft sensing of the
debutanizer column.

Variable Description

u1 Top temperature
u2 Top pressure
u3 Reflux flow
u4 Flow to next process
u5 6th tray temperature
u6 Bottom temperature
u7 Bottom temperature
Performance comparisons in terms of scatter plots between the
LPLS-APSP and the other methods are illustrated in Fig. 9, while
Table 3 quantitatively compares the performance of all the online soft
sensors. From Fig. 9a, it can be seen that the prediction results of the
LSSVM are biased when the target variable is less than 0.2 and greater
than 0.6, due to the time-varying nonlinear characteristics of the
debutanizer column process. By contrast, the data points of the LPLS-
APSP are locatedmore tightly and evenly along the diagonal line within
the whole operating range, implying no estimation bias and a smaller
estimation variance. Like the LPLS-APSP, the JITLPLS, RPLS, MWPLS
and CoJIT are capable of avoiding the estimation bias, as can be seen
from Fig. 9b to e. The scatter plots of Fig. 9b to e together with the pre-
diction accuracy measures listed in Table 3 also show the advantage of
the LPLS-APSP design over these other online soft sensors, in terms of
prediction accuracy. In addition, Table 3 indicates that the proposed
LPLS-APSP design constructs a total of 36 local models. Among these
36 local models, 10 are identified at the online operation stage. For
this debutanizer column process, again the LPLS-APSP design requires
a significantly smaller number of local models as well as considerably
lower memory cost than the CoJIT based design.

As discussed in Section 3.1, in the proposed APSP strategy, we deter-
mine whether two predicted residuals are significantly different or not
by considering both the mean and variance information based on the
t-test and χ2-test, which is different from the way of using only the
mean value information proposed in [39]. We now illustrate why
employing both the t-test and χ2-test is better than only adopting the
t-test. For this purpose, we denote the proposed LPLS-APSP considering
both the mean and variance information as the LPLS-APSP1, while a
similar LPLS-APSP strategy only considering the mean information is
denoted as the LPLS-APSP2. With the significance levels fixed to 0.05,
Fig. 10a andb investigate the influence of thewindow size to the achiev-
able predicted RMSE on the test data set and the number of localmodels
identified, respectively, for the both design strategies. Note that when
thewindow size changes, other design parameters arefixed to their cor-
responding values optimized by the PSO based on the validation data
set. Observe from Fig. 10a that the predicted RMSE performance over
the test data set based on the LPLS-APSP1 design is consistently smaller
than that obtained by the LPLS-APSP2 design across the whole range of
window sizes investigated. As can be seen from Fig. 10b, for the design
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Fig. 9. Scatter plot comparison over the test data set of the debutanizer columnprocess by the online soft sensors: (a) the LSSVMandLPLS-APSP, (b) the JITLPLS and LPLS-APSP, (c) theRPLS
and LPLS-APSP, (d) the MWPLS and LPLS-APSP, and (e) the CoJIT and LPLS-APSP.

119W. Shao et al. / Chemometrics and Intelligent Laboratory Systems 144 (2015) 108–121
considering only themean information, the window size has little influ-
ence to the number of local models needed. In addition, the local model
size of the LPLS-APSP2 is always smaller than that of the LPLS-APSP1.
This phenomena together with the predicted RMSE performance of
Table 3
Performance comparison of various online soft sensors over the test data set of the
debutanizer column process.

Soft sensor RMSE RR (%) MAE MN MS (byte)

LLSVM 0.0215 23.4 0.163 1 –

JITLPLS 0.0175 13.5 0.067 1 –

RPLS 0.0163 19.1 0.091 1 –

MWPLS 0.180 23.8 0.081 1 –

CoJIT 0.0170 21.6 0.105 945 144,585
LPLS-APSP 0.0120 14.9 0.069 36 468
Fig. 10a indicate that using only the mean value information is insuffi-
cient for detecting the deterioration of a model, since the hypothesis
of Hmean may remain valid even thought the hypothesis Hstd is already
invalid. The results of Fig. 10 thus confirm that our APSP scheme of uti-
lizing both the t-test and χ2-test is more reliable and accurate in identi-
fying the actual local models required.
5. Conclusions

We have developed a novel adaptive soft sensing method under the
generic local learning framework, referred to as the LPLS-APSP, which is
capable of reliably and effectively handling highly nonlinear and time-
varying industrial processes. Our original contribution has been twofold.
Firstly, we have proposed a new APSP strategy based on both the t-test
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andχ2-test by utilizing both themean and variance information together,
which is capable of reliably and efficiently identifying and updating the
local PLS model set. Secondly, we have derived a novel model adaptation
criterion for online local model switching, which effectively and efficient-
ly exploits theprediction error information for thenewestmeasured sam-
ple as well as mines the neighborhood information of the query sample.
In the extensive simulation investigation involving two chemical process-
es, our proposed LPLS-APSP based soft sensor has been shown to signifi-
cantly enhance prediction accuracy, while improving the online
computational efficiency and maintaining low memory cost, in compari-
son to several existing adaptive soft sensors.
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Appendix A. Search ranges for the parameters of each soft sensor

We determine the parameters of each soft sensor using the PSO to
minimize the predicted RMSE over the validation dataset. Hence the
search range of each parameter needs to be set properly for the PSO al-
gorithm. Search ranges of some parameters can be directly obtained ac-
cording to their physical meanings or interpretations. For example,
according to Eq. (30), we know that the dimension of the input vector
is 4 for the CSTR process, while through Eq. (31)we see that the dimen-
sion of the input vector is 12 for the debutanizer column process. There-
fore, the search ranges for the numbers of the latent variables of the PLS
model are obviously {1, 2, 3, 4} and {1, 2, ⋯, 12} for the CSTR process and
the debutanizer column process, respectively. Search ranges of many
parameters however are difficult to set properly just according to their
physical meanings. We then set the search ranges of these parameters
by trial-and-error. We now explain what we meant by trial-and-error.
For example, consider setting the search range of the scaling factor
ϕ N 0 for our LPLS-APSP in the case of the CSTR.We initially set its search
range to (0, 10], and run a tentative optimization process by the PSO
with a few iterations. When the tentative optimization process is
finished, we find that the ‘optimized’ value of ϕ is 10, which reaches
the upper bound of its search range. So we enlarge the search range to
(0 100] and repeat the above tentative optimization process. This time
the ‘optimized’ value of ϕ is inside the search range. Therefore, we set
the search range for ϕ to be (0 100]. We now detail how the search
ranges for the parameters of each soft sensor are determined, specifical-
ly, by physical interpretation or by trial-and-error.

a) LSSVM: the search ranges for the Gaussian kernelwidth and regular-
ization parameter are determined by trial-and-error.

b) JITPLS: the search range for the neighborhood size is determined by
trial-and-error, while the search range for the number of latent vari-
ables in the PLSmodel, LVPLS, is determinedbyphysical interpretation.

c) RPLS: the search ranges for the forgetting factor and LVPLS are deter-
mined by physical interpretation.

d) MWPLS: the search range for the window size is determined by trial-
and-error, while the search range for LVPLS is determined by physical
interpretation.

e) CoJIT: the search range for the window size is determined by trial-
and-error, while the search ranges for the other three parameters,
the coefficient for constructing the correlation index, LVPCA and the
number of latent variables in the PCA model, LVPCA, are determined
by physical interpretation.

f) LPLS-APSP: the search ranges for the window sizeW, the neighbor-
hood size of query sample K and the scaling factor ϕ are determined
by trial-and-error, while the search ranges for the two weighting pa-
rameters, α and β, are determined by physical explanation.

The resulting search ranges for the parameters of each soft sensor
are listed below. For the CSTR process:

a) LSSVM: the search ranges for the Gaussian kernelwidth and regular-
ization parameter are [0.05, 5] and [1, 5000], respectively.

b) JITPLS: the search range for the neighborhood size is {6, 7, ⋯, 50} and
LVPLS ∈ {1, 2, 3, 4}.

c) RPLS: the search range for the forgetting factor is (0, 1], while
LVPLS ∈ {1, 2, 3, 4}.

d) MWPLS: the search range for the window size is {8, 9, ⋯, 50}, while
LVPLS ∈ {1, 2, 3, 4}.

e) CoJIT: the search ranges for the window size and correlation index
coefficient are {8, 9, ⋯, 50} and [0, 1], respectively, while
LVPLS ∈ {1, 2, 3, 4} and LVPCA ∈ {1, 2, 3}.

f) LPLS-APSP: W ∈ {8, 9, ⋯, 50}, LVPLS ∈ {1, 2, 3, 4}, K ∈ {1, 2, ⋯, 50},
ϕ ∈ (0, 100], α ∈ [0, 1], and β ∈ [0, 1].

For the debutanizer column process:

a) LSSVM: the search ranges for the Gaussian kernelwidth and regular-
ization parameter are [0.05, 50] and [1, 2 × 105], respectively.

b) JITPLS: the search range for the neighborhood size is {20, 21, ⋯, 200},
while LVPLS ∈ {1, 2, ⋯, 12}.
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c) RPLS: the search range for the forgetting factor is (0, 1], while
LVPLS ∈ {1, 2, ⋯, 12}.

d) MWPLS: the search range for the window size is {20, 21, ⋯, 250},
while LVPLS ∈ {1, 2, ⋯, 12}.

e) CoJIT: the search ranges for the window size and correlation index
coefficient are {20, 21, ⋯, 300} and [0, 1], respectively, while
LVPLS ∈ {1, 2, ⋯, 12} and LVPCA ∈ {1, 2, ⋯, 11}.

f) LPLS-APSP:W∈ {20, 21, ⋯, 150}, LVPLS∈ {1, 2, ⋯, 12}, K∈ {1, 2, ⋯, 50},
ϕ ∈ (0, 100], α ∈ [0, 1], and β ∈ [0, 1].
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