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A Fast Adaptive Tunable RBF Network
For Nonstationary Systems
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Abstract—This paper describes a novel on-line learning
approach for radial basis function (RBF) neural network.
Based on an RBF network with individually tunable nodes and
a fixed small model size, the weight vector is adjusted using
the multi-innovation recursive least square algorithm on-line.
When the residual error of the RBF network becomes large
despite of the weight adaptation, an insignificant node with
little contribution to the overall system is replaced by a new
node. Structural parameters of the new node are optimized by
proposed fast algorithms in order to significantly improve the
modeling performance. The proposed scheme describes a novel,
flexible, and fast way for on-line system identification problems.
Simulation results show that the proposed approach can signif-
icantly outperform existing ones for nonstationary systems in
particular.

Index Terms—Multi-innovation recursive least square (MRLS),
nonlinear, nonstationary, on-line identification, radial basis
function (RBF).

I. INTRODUCTION

ADAPTIVE system identification whereby the system
model is computed recursively in time is central

for obtaining mathematical models for changing systems,
e.g., system control based on most recent models or elec-
troencephalogram time series prediction for time varying
signals [1]–[3]. These models can also be used in condition-
ing monitoring, e.g., fault detection. The adaptive modeling
of nonstationary systems is particularly challenging since the
conventional parameter updating may be insufficient to track
the data change; or the reestimating model structurally can
be computationally expensive for real time applications. This
paper is aimed at compromising both issues.
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Radial basis function (RBF) neural network has been widely
used as an on-line approach in nonlinear system identifica-
tion [4]–[7]. With a cluster of nonlinear “kernels” (or nodes)
imposed on the input data, the RBF network can approximate
any continuous function to an arbitrary degree of accuracy.
The RBF tracks the dynamic of the systems by constantly
updating the output layer weights with linear adaptive algo-
rithms such as the least mean square and recursive least
square (RLS). More recently a variant RLS, referred to as the
multi-innovation RLS (MRLS) has been proposed [8]. Unlike
the classic RLS algorithm which only considers the current
residual error, the MRLS adaptation is based on a number of
recent errors so that its performance is more robust to noise
variations.

The overall performance of the RBF network depends
on both the output layer weights and the structure of the
network. The RBF structure is determined by multiple param-
eters including the number of nodes (or the model size),
and the centers and variances of each node (or the posi-
tion and shape of each node, respectively). In a traditional
RBF network, the structure of the network is usually fixed
at some compromise settings or based on experience, and
only the output layer weights are updated with time. While
this describes a simple realization, it is often not sufficient
especially in nonstationary systems. In the resource allocat-
ing network (RAN), the RBF model starts from empty and
grows with the input data based on the nearest neighbor
method [9]. While the RAN algorithm can only grow the
model size, a number of variants have since been proposed.
Particularly the growing-and-pruning RBF (GAP-RBF) algo-
rithm describes a computational efficient approach to adjust
the RBF model size [10]. Alternatively, the on-line structure
adjustment may be avoided by using a large RBF model size
covering a wide dynamic range of data input [11]. Typical
examples are the extreme learning machine (ELM) and its
variant (see [12] and the reference therein), in which a large
number of kernel nodes are randomly generated at initializa-
tion stage and fixed during the learning process. The ELM
approach can achieve high accuracy with fast learning speed
in some applications, but the model size may have to be
very large especially in nonstationary systems and the model
generalization is not guaranteed.

A common drawback in both the RAN-like and the
ELM-like approaches is that none of them optimizes the
structure of the RBF nodes. The node centers are either deter-
mined by the input data such as in the k-means approach
(see [13]–[15]) or simply set as the input data (see [16]), and
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often a common variance is used for all nodes which is set by
the trial-and-error or cross-validation method [17]. As a result,
the constructed network structure only fits into the data rather
than the underlying model. This usually makes the model size
increase with the number of the sample data, ending up with a
very large model with high complexity and poor tracking per-
formance especially in nonstationary environment. Therefore,
it is highly necessary to optimize the node structure which is
in general a difficult NP problem. A tunable RBF model iden-
tification algorithm was proposed in [18], where each RBF
node has a tunable center vector and an adjustable diago-
nal covariance matrix which are optimized using the particle
swarm optimization (PSO) algorithm at each forward regres-
sion stage. While this provides an exceptionally flexible RBF
model with significantly reduced model size, the proposed
approach is for off-line (batch) learning which is inadequate
for on-line system identification. It is inspired by the tunable
RBF network in [18] that, if the structure (i.e., the centers and
variances) of the nodes is optimized, an efficient RBF net-
work with much smaller model size than a conventional RBF
network can be constructed. In [19], an on-line tunable RBF
network was proposed, in which the model size is fixed to a
small number, but the worst fit node is replaced with a new
node when necessary, and the structure of the new node is
optimized by the PSO algorithm to “fit” for the recent input
data. Although this PSO-based tunable network has excellent
performance in on-line modeling, it demands high complex-
ity due to the complicated PSO algorithm, deterring its use in
many practical on-line applications. This motivates us to inves-
tigate fast algorithm for on-line node structure optimization in
this paper.

In this paper, the RBF model size is also fixed to a small
number, and the worst performing node is replaced with a new
node when the current RBF model does not fit the current data.
Unlike our previous work in [19], the structure of the new
node in this paper is not optimized by the PSO algorithm,
or any other evolutionary algorithms [20]. Instead we pro-
pose a fast structure optimization approach based on iterative
adaptation, which can achieve excellent modeling performance
with a sparse model, yet keeps low complexity. This makes
the proposed RBF network particularly suitable for on-line
applications where the computation cost is often a key issue.
While the proposed approach can be used in a wide range of
nonlinear and nonstationary applications (where the conven-
tional RBF networks usually apply), in the simulation part, the
proposed approach is verified on two benchmark applications:
1) adaptive noise cancellation (ANC) and 2) Lorenz time series
prediction. In summary, the main contribution of this paper
is to propose a fast node structure optimization approach in
a sparse RBF network, which includes the following aspects
specifically.

1) Proposing an instantaneous error gradient descent
approach to fast optimize the node structural parameters.
Compared with our previous approach which uses
PSO approach for the structure adaptation, the gra-
dient descent approach not only has low complex-
ity but also is well known for its good stability in
implementation.

Fig. 1. RBF neural network.

2) Proposing a fast weight adaptation based on inverse
matrix lemma, so that the weight vector can be effi-
ciently updated with the newly optimized node structure.

3) Describing several ways to initialize the node structure
adaptation to ensure fast convergence.

The rest of this paper is organized as follows. Section II
describes the RBF network with tunable nodes. Section III
proposes fast approaches for the node optimization. Section IV
summarizes the proposed algorithm. Section V verifies the pro-
posed approach via numerical simulations. Finally, Section VI
concludes the paper.

II. RBF NETWORK WITH TUNABLE NODES

A. Adaptive RBF Network

The adaptive RBF neural network is shown in Fig. 1, where
there are M number of nodes. At time t, the input vector of
the RBF network is given by

xt = [xt(1), xt(2), . . . , xt(Nx)]
T (1)

where Nx is the model input dimension or the number of input
channels, and xt(i) is the input data from the ith input channel
at time t. The RBF network output is given by

f (xt) =
M∑

i=1

wt−1(i)gi(xt) (2)

where gi(xt) is the output of the ith node, wt−1(i) is the
weight coefficient for the ith node at time t − 1. Letting
wt−1 = [ωt−1(1), . . . , ωt−1(M)]T be the weight vector and
φt = [g1(xt), . . . , gM(xt)]T be the information vector, we can
rewrite (2) as

f (xt) = φT
t wt−1. (3)

The RBF residual error at time t is given by

et = yt − φT
t wt−1 (4)
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where yt is the observed system output at time t. In this
paper, we assume without losing generality that the RBF basis
function is Gaussian so that

gi(xt) = exp
(−(xt − ci)

THi(xt − ci)
)

(5)

where ci = [ci(1), . . . ci(Nx)]T which is the center vector of the
ith node, Hi = diag{σ 2

i (1), . . . , σ 2
i (Nx)} which is the diagonal

covariance matrix of the ith node, ci( j) and σ 2
i ( j) are the jth

center and variance of the ith RBF node, respectively.
For the Gaussian RBF network, the node structure parame-

ters include Nx pairs of centers and variances of each node, or
ci( j) and σ 2

i ( j) in (5), respectively. Because the input statistic
keeps varying in a nonstationary system, the “local charac-
teristic” of the input data is often more important than the
“global characteristic” [21]. This implies that the model size
needs not to be large since the modeling focuses more on the
recent data than the older ones. Based on this observation, we
propose to fix the RBF model size at a small number, where
each node has a tunable center vector and an adjustable diag-
onal covariance matrix which can be optimized on-line one
at a time. It will be shown later that fixing the model size
enables not only the MRLS to be seamlessly integrated with
the node structure adjustment, but also fast approaches for the
node optimization.

B. Weight Adaptation With the MRLS Algorithm

The weight vector w can be updated by the MRLS algorithm
which is based on both current and past residual errors [8].
Putting p number of input vectors into an input matrix
gives

Xt = [
xt, xt−1, . . . , xt−p+1

]T ∈ R
p×Nx (6)

where p is the innovation length which determines the number
of past errors used for weight adaptation. In general, a larger
p has more potential in noise rejection with higher complexity
and slower convergence [22]. In the noise-free case, we can
have p = 1 so that the MRLS reduces to the classic RLS
algorithm.

Passing Xt through the RBF nodes gives the information
matrix as

�t = [
g1, g2, . . . , gM

] ∈ R
p×M (7)

where gi = [gi(xt), gi(xt−1), . . . , gi(xt−p+1)]T which is the ith
RBF regressor. Letting et = [et, et−1, . . . , et−p+1]T and yt =
[yt, yt−1, . . . , yt−p+1]T, we have the vector/matrix expression
of (4) as

et = yt − �twt−1. (8)

With �t and et, the MRLS adaption rules are given by the
following steps:

� t = Pt−1�
T
t

[
λIp + �t¶t−1�

T
t

]−1 (9)

Pt = (Pt−1 − � t�tPt−1)λ
−1 (10)

wt = wt−1 + � tet (11)

where � t ∈ R
M×p is the Kalman gain matrix, P ∈ R

M×M is
the inverse of the covariance matrix, Ip is the p × p identity

matrix, and λ is the forgetting factor. Pt is usually initialized
as P0 = δIM , where δ is a large constant.

C. Node Replacement

When the residual error becomes large no matter how we
adapt the weight vector using MRLS above, this indicates that
the current RBF structure is no longer suitable for the current
data and needs updating. An insignificant node with little con-
tribution to the overall system is replaced with a new node.
In order to prevent the node replacement from occurring too
frequently, the normalized “average” residual error is used to
measure the overall RBF performance as

ē2
t = 1

p
· ‖et‖2

‖yt‖2
(12)

where the multi-innovation error vector et(n) in (8) consists p
number of most recent errors. We have the following criterion:
⎧
⎨

⎩

if ē2
t < �1, the RBF structure remains unchanged

if ē2
t ≥ �1, an insignificant node is replaced with

a new node
(13)

where �1 is a constant threshold which is set according to
the performance requirement. In general, a small �1 leads to
small residual error and frequent node replacements.

When ē2
t ≥ �1, the most insignificant node with least con-

tribution to the overall system performance is replaced with
a new node. The “significance” of a node is revealed by the
weighted node-output variance (WNV) as

WNVi = ‖ ωt−1(i)gi ‖2 = ω2
t−1(i)g

T
i gi (14)

where gi is defined in (7) containing the recent p outputs from
node i. The WNV-s for all nodes are ordered as

WNV1′ ≤ WNV2′ ≤ · · · ≤ WNVM′ (15)

where WNVi′ is for node i′ with the ith smallest WNV. Then
from (15), the node 1′ with the smallest WNV is replaced with
a new node.

III. NODE OPTIMIZATION WITH ITERATIVE ADAPTATION

At each time step, the weight vector is adapted by the
MRLS algorithm. The residual error of the network out-
put is monitored. If the RBF network performs poorly, or
the residual error is large, an insignificant node with the
smallest WNV is replaced with a new node without chang-
ing the model size. The structure of the new node is then
optimized to fit for the current input data. At the same
time, the weight vector should also be updated as other-
wise it is only suitable for the old network before the node
replacement.

In this section, we describe fast algorithms for the node
structure and the weight vector adaptation. We assume without
losing generality that, at time t, the Mth node is replaced with
a new node. While the joint optimization of the structure of the
new node and the weight vector is too complicated, we propose
an iterative adaptation approach. At every iteration, either the
structure of the new node or the weight vector is fixed first, and
the other is updated, and vice versa. The iteration continues
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until the modeling residual error is sufficiently small or the
maximum iteration number is reached.

A. Fast Structural Parameters Update Using Instantaneous
Error Gradient Descent

At every iteration, when the weight vector is fixed, the cen-
ter and the inverse of the variance for the new node are tuned
by minimizing the two-norm of the instantaneous error. The
instantaneous error at time t can be expressed as

et = yt −
M−1∑

i=1

wt−1(i)gi(xt) − wt−1(M)gM(xt). (16)

From (5), the kernel function for the new node gM(x(t)) is
obtained as

gM(xt) = exp

⎛

⎝−
Nx∑

j=1

ηM( j) · (xt( j) − cM( j))2

⎞

⎠ (17)

where ηM( j) = 1/σ 2
M( j) which is the inverse of the variance

for the jth input of the Mth node. While the model size and
the structure of the remaining nodes remain unchanged, the
structural vector for adaptation is defined as

� = [cM(1), . . . , cM(Nx), ηM(1), . . . , ηM(Nx)]
T. (18)

The objective is to find the optimum � which minimizes e2
t .

With the weight vector being fixed, the optimum � can be
found by the gradient descent search as

�l = �l−1 − ε
∇

‖∇‖et (19)

where subscript l represents the iteration step l, ε is a small
positive step size, ‖.‖ denotes Euclidian norm, and ∇ is the
gradient vector which is given by

∇ = ∂(et)

∂�

=
[

∂et

∂cM(1)
, . . . ,

∂et

∂cM(Nx)
,

∂et

∂ηM(1)
, . . . ,

∂et

∂ηM(Nx)

]T

. (20)

From (17), we can easily obtain that

∇ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2ηM(1)wt−1(M)gM(xt)[(xt(1) − cM(1))]
...

−2ηM(Nx)wt−1(M)gM(xt)[xt(Nx) − cM(Nx)]
wt−1(M)gM(xt)[xt(1) − cM(1)]2

...

wt−1(M)gM(xt)[xt(Nx) − cM(Nx)]2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (21)

We highlight that, because ηM( j) is the inverse of the variance
which must be positive, it should set to be a small positive
value whenever it appears negative during the iteration. The
computational cost of the above gradient descent search is in
the order of O(Nx) scaled by the iteration number.

B. Fast Weight Adaptation Using the Inverse of
Matrix Block Decomposition Lemma

At every iteration, when the node structure is fixed, the
weight vector is calculated by the least-square (LS) method

based on the recent input data. It is reasonable to use only
the recent input data for the LS weight estimation because,
when the node replacement occurs, the underlying system
varies significantly (otherwise no node is replaced), and the
previous data should be “forgotten” in order to capture the
“local” characteristic.

The LS estimate of wt based on recent q input vectors is
obtained by minimizing the least squares cost function as

Jt =
t−q+1∑

j=t

e2
t ( j) = eT

t et = (yt − �twt)
T(yt − �twt) (22)

where �t is a q × M matrix which is obtained similar to (7),
and yt consists of recent q number of observed system out-
put. In general, a large q has good LS estimation accuracy
but may loss the performance in tracking, and a small q is
used in highly nonstationary systems with, for example, abrupt
changes.

For a given gM(.), the LS solution of (22) is given by

wt = Pt�
T
t yt (23)

where Pt = (�T
t �t)

−1. For a given structure of the new node
gM(.), (23) is the closed loop solution for wt. This further
indicates that the structure (the centers and variances) of the
new node and the weight vector can be optimized iteratively.
We note that, in the iterative approach, (23) is performed
at every iteration with the same input data but for the lat-
est node structure. It is clear that the main computation cost
in the weight adaptation comes from the matrix inversion Pt.
Fortunately, in the proposed scheme, only one insignificant
node is replaced at a time without changing the model size.
This means that only the last column of �t is changed at every
iteration. Exploiting this property can significantly reduce the
calculation of Pt, which is accomplished by making use of
the inverse of matrix block decomposition lemma to avoid the
repetitive matrix inversions Pt at every iteration. To be specific,
we can rewrite �t and Pt in the forms of

�t = [�t,−M gM] (24)

and

Pt =
[

�T
t,−M�t,−M �T

t,−MgM

gT
M�t,−M gT

MgM

]−1

(25)

respectively. Letting Pt,−M = (�T
t,−M�t,−M)−1, and applying

the inverse of matrix block decomposition lemma, we obtain

Pt =
[

A b
bT c

]
(26)

where
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A = Pt,−M + 1

κ
Pt,−M�T

t,−MgMgT
M�t,−MPt,−M

b = − 1

κ
Pt,−M�T

t,−MgM

c = 1

κ

(27)

where κ = gT
MgM−gT

M�t,−MPt,−M�T
t,−MgM . Because only the

structure of the Mth node is adapted and the structures for all
others nodes remain unchanged, for every node replacement,
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Pt,−M needs only be calculated once with complexity in the
order of O((M − 1)3). On the other hand, gM needs to be
iteratively calculated for the node optimization, so the com-
putation cost for the LS weight calculation is O(p) scaled by
the number of iterations.

C. Structure Initialization of the New Node

The convergence of the iterative node structure and the
weight vector adaptation well depends on the initialization.
It is important to initialize the centers and variances of the
new node for the iterative adaption process.

1) Center Initialization: In the RBF structure, the nodes
should well cover the input data to ensure good generalization.
It is likely that the optimum centers are around the input data.
There are several possible ways to initialize the centers of
new node.

1) The simplest way is to initialize the centers as the
current data

c(0)
M ( j) = xt( j), j = 1, . . . , Nx (28)

where superscript (0) is used to represent the initial
iteration.

2) Since the new node optimization depends on the recent q
input data, the centers can also be initialized as the center
of the previous data input which is given by

c(0)
M ( j) = 1

q

t∑

i=t−q+1

xi( j), j = 1, . . . , Nx. (29)

3) Alternatively a more robust way is to randomly initialize
the centers based on the Gaussian process as

c(0)
M ( j) = N(mt( j), st( j)), j = 1, . . . , Nx (30)

where N(mt( j), σt( j)) represents one realization of
the Gaussian process with mean mt( j) and standard-
deviation st( j), mt( j) is center of the previous data
input which is given by (29), and st( j) is set as the
standard-derivation of the samples as

st( j) =
√√√√1

q

t∑

i=t−q+1

|xi( j) − mt( j)|2, j = 1, . . . , Nx.

(31)

2) Variance Initialization: Once the centers of the new
nodes are initialized as above, the initial standard-derivations
are determined by how far the corresponding centers are away
from the nearest center of other nodes. To be specific, if
the jth center of the new node is initialized as c(0)

M ( j), the
corresponding standard-derivation is initialized as

σ
(0)
M ( j) = ρ ·

∣∣∣c(0)
M ( j) − cnearest( j)

∣∣∣, j = 1, . . . , Nx (32)

where ρ is a constant scaling factor, and cnearest( j) is the jth
center of the remaining nodes with nearest distance to c(0)

M ( j).
Finally we have

η
(0)
M ( j) = 1

(
σ

(0)
M ( j)

)2
, j = 1, . . . , Nx. (33)

IV. ALGORITHM SUMMARY

The proposed approach operates at two modes: 1) weight
adaptation mode and 2) node optimization mode. When the
underlying system varies little, the RBF works in the weight
adaptation mode, where the RBF structure remains fixed and
the weight vector is adapted by the MRLS algorithm to track
the variation of the input data. When the input data varies so
large that the MRLS weight adaption fails to track, the RBF
network switches to the node optimization mode, where an
insignificant node is replaced by a new node without chang-
ing the model size. The structure of the new node and the
weight vector are iteratively optimized by the gradient descent
search and LS estimation, respectively. Because both the
MRLS and the gradient descent search approaches are guaran-
teed to be stable, the convergence of the proposed algorithm
(which switches between the two modes) is also stable.

Because now both the weight coefficients and node struc-
ture of the RBF structure are adapted on-line, the proposed
scheme can well track the nonstationary processes with a very
sparse model and yet maintains a low level of computation.
The proposed algorithm is summarized in “Algorithm 1: fast
tunable RBF networks.”

The proposed approach requires fixing the model size M
which depends on dynamic state of the system. In practice,
some a priori knowledge of the system is usually available,
and the model size is determined empirically. Or the model
size can be set as a small value at the beginning and grad-
ually increased until there is no significant performance gain
observed. We point out that, the error functions e2

t is gen-
erally multimodel with respect to the structure vector. Rather
than finding the global optimal with whole data set as in many
off-line approaches, the proposed approach achieves the best
possible solution within the sampling time. The proposed ini-
tialization method is also helpful for the new node structure
from trapping in the same local minimum.

We also highlight that, the weight vector is updated by the
MRLS based on the p recent errors in the weight adaptation
mode, and by the LS estimation based on the q recent errors
in the node optimization mode, where it is not necessary to
have p = q. In both modes, we need to update Pt which is a
M × M matrix, where M is the number of nodes in the RBF
network. In order to achieve smooth transition from the node
optimization mode to the weight adaptation mode, Pt from the
last iteration in the node optimization is copied into the MRLS
adaptation.

V. SIMULATIONS

In this section, computer simulations are given to compare
the proposed algorithm with typical approaches including the
RAN, GAP-RBF, and ELM algorithms. All these approaches
(including the proposed one) apply Gaussian nodes. For fair
comparison, in the RAN [9], GAP-RBF [10], and ELM algo-
rithms [23], the controlling parameters are carefully chosen
based on trial-and-error to achieve the best performance.

We consider two benchmark applications below: 1) ANC
and 2) on-line time series prediction. The performance
for different approaches are compared based on the
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Algorithm 1: Fast tunable RBF networks
Initialization

Initialize the structure of the RBF nodes
Initialize the weight vector as w0 = [0, . . . , 0]T

Initialize P0 = δI for the MRLS, where δ is a large number.
For every observation pair {xt, yt}, t = 1, 2, 3, . . .

Form the input matrix Xt and information matrix �t as
in (6) and (7) respectively.
Obtain the error vector et and the average error power ē2

t
in (8) and (12) respectively.
If ē2

t < �1, weight adaptation mode
Adapt the weight vector with the MRLS algorithm as
in (8), (9), (10) and (11)

Else if ē2
t ≥ �1, node optimization mode

Calculate the WNV for each node as in (14) and order
them as WNV1′ ≤ · · · ≤ WNVM′
Replace the node 1′ with a new node.
Initialize the centers and inverse of variances of the new
node
With the structure of other nodes unchanged, calculate
Pt,−M = (�T

t,−M�t,−M)−1

For l = 1, . . . , L, iteratively adapt the node structure and
weight vector

Given the current node structure, calculate the LS
estimate of the weight vector

Update the information matrix as �t =
[�t,−M gM]
Update Pt in a fast way as in (26).
Obtain the LS estimation as wt = Pt�

T
t yt

Given the current weight vector wt, adapt the
structure of the new node

Calculate the gradient vector ∇ as in (21).
Adapt the structural vector as �l = �l−1 −
ε ∇

‖∇‖ et

If a variance inverse η( j) < 0, then it is reset to
a small positive value.

If the network residual is small enough that Jt/ ‖ yt ‖2≤
�2, iteration stops.
Else go to the next iteration.

End of the iteration.
Copy Pt from the last iteration into the MRLS adaptation
for the next input data.

End

mean square error (MSE) which, at time t, is defined as

MSE(t) = 1

t

t∑

i=1

(yi − f (xi))
2. (34)

In all simulations, the model size is set as M = 10, the iter-
ation number L = 10, the step size in gradient descent search
for the structure vector [defined in (19)] is set as ε = 0.2, the
innovation length and forgetting factor for the MRLS weight
adaptation are set as p = 1 and λ = 0.98, respectively. Other
parameters are set individually for the ANC and time series
prediction applications as will be shown later.

A. Adaptive Noise Cancellation

The ANC is used to extract signals buried in noise [24].
The ANC can be equivalent to the system identification shown
in Fig. 2, where x(t) is the regarded system input which is
generated by feeding the uncorrelated noise n(t) through the
secondary channel with unknown transfer function T(.), and

Fig. 2. System identification equivalent to the ANC.

Fig. 3. Simulation A.1: desired signal s(t).

d(t − l) is the measured system output with a delay l which
is set as l = 1 in this simulation. The task of ANC can be
viewed as adjusting F(.) to approximate the inverse of the
unknown transfer function T−1(.). Because T−1(.) is normally
highly nonlinear and may vary with time, Fig. 2 describes
a typical on-line system identification problem in nonlinear
nonstationary environment.

In this simulation, the nonlinear channel T(.) is des-
cribed as

x(t) = a1x(t − 1) + a2x(t − 2) + b1n(t − 1) + b2n(t − 2)

+ b3n(t − 3) + c1n2(t − 2) + c2n(t − 2)x(t − 1) (35)

where ai, bj, and ck are some coefficients which will be set
below. The modeling input vector to F(.) is given by

u(t) = [
x(t), x(t − 1), x(t − 2), ŷ(t − 1), ŷ(t − 2)

]T
. (36)

The proposed algorithm is compared with the RAN and
GAP-RBF algorithms, where the threshold to trigger node
replacement is set as �1 = 20, the threshold to stop the itera-
tive adaptation �2 = 2 and the LS length for the fast weight
adaptation q = 1000.



CHEN et al.: FAST ADAPTIVE TUNABLE RBF NETWORK FOR NONSTATIONARY SYSTEMS 2689

(a)

(b)

Fig. 4. Simulation A.1: noisy versus recovered signals in the stationary ANC
model. (a) Corrupted signals. (b) Recovered signals.

Fig. 5. Simulation A.1: MSE learning curves for the stationary ANC model.

1) Simulation A.1—Stationary ANC Model: First we con-
sider a stationary ANC model, where the parameters of the
nonlinear channel in (35) are fixed as a1 = 0.25, a2 = 0.1,
b1 = 0.5, b2 = 0.1, b3 = −0.2, c1 = 0.2, and c2 = 0.08.

The desired signal is a sawtooth signal of unit magnitude
with period of 50 samples, as is shown in Fig. 3.

Fig. 4(a) and (b) shows the corrupted signal d(t) and the
recovered signal ε(t) during the last 500 samples for the pro-
posed approach, respectively, where it is clearly shown that
the noise has been significantly canceled.

Fig. 5 compares the MSE learning curves for different
approaches. The GAP-RBF has clearly better MSE perfor-
mance than the RAN, and it also requires much fewer nodes.
This is because the GAP-RBF can both grow and prune the
model size, while the RAN can only increase the model.
It is clear that the proposed approach has the best MSE
performance with only ten nodes.

2) Simulation A.2—ANC with Time Varying T(.): In this
simulation, we let the nonlinear channel T(.) be vary with

(a)

(b)

Fig. 6. Simulation A.2: noisy versus recovered signals in the ANC with time
varying T(.). (a) Corrupted signals. (b) Recovered signals.

Fig. 7. Simulation A.2: MSE learning curves for the ANC with time
varying T(.).

time so this becomes a nonstationary system modeling. To be
specific, the first coefficient in (35) is set varying with time as

a1 = 0.2 +
∣∣∣0.5 · sin

( t

1000π

)∣∣∣ (37)

and other coefficients are the same as those in Simulation A.1.
The desired signal is also the sawtooth signal as is shown in
Fig. 3.

Fig. 6(a) and (b) shows the corrupted signal d(t) and the
recovered signal ε(t) during the last 500 samples for the pro-
posed approach, respectively. It is clearly shown that the signal
can still be well extracted from buried noise when the noise
model is time varying.

Fig. 7 compares the MSE leaning curves for different
approaches. While the proposed approach has clearly the best
performance, it is interesting to observe that both the RAN and
GAP-RBF use significantly more nodes in this nonstationary
case than in the stationary case, where particularly, the RAN
algorithm ends up with a model size of 331.
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(a) (b)

Fig. 8. Simulation B.1: Lorenz series with fixed parameters. (a) MSE learning curves. (b) Model size learning curves.

(a) (b)

Fig. 9. Simulation B.2: Lorenz series with time varying parameters. (a) MSE learning curves. (b) Model size learning curves.

B. On-line Time Series Prediction

In the second experiment, we consider the on-line time
series prediction, where the Lorenz chaotic time series is
chosen as it is often used as a benchmark in many applica-
tions (see [25], [26]). As a 3-D and highly nonlinear system,
the Lorenz system is governed by three differential equations
as dx(t)/dt = ay(t) − ax(t), dy(t)/dt = cx(t) − x(t)z(t) −
y(t), and dz(t)/dt = x(t)y(t) − bz(t), where a, b, and c
are the parameters that control the behavior of the Lorenz
system. In the simulations, the fourth order Runge–Kutta
approach with the step size of 0.01 is used to generate the
Lorenz samples, and only the Y-dimension samples, y(t),
are used for the time series prediction. In all simulations,
there are 15 000 data samples generated in y(t). Because
the Lorenz system is very sensitive to the initial condition,
only the last 10 000 stable samples of y(t) are used in the
simulations.

We consider a 60-steps forward prediction, where the
prediction task is to use the past four samples

xt = [
yt, yt−6, yt−12, yt−18

]T (38)

to estimate the sample yt+60.
In this simulation, the proposed algorithm is compared

with the RAN, GAP-RBF, and ELM algorithms, where the

threshold to trigger node replacement is set as �1 = 10−4,
the threshold to stop the iterative adaptation �2 = 10−5, and
the LS length for the fast weight adaptation q = 10.

1) Simulation B.1—Lorenz Time Series With Fixed
Parameters: First we fix the parameters of the Lorenz system
as a = 10, b = 8/3, and c = 28.

Fig. 8(a) and (b) shows the MSE and model size learning
curves, respectively. It is shown that the RAN and GAP-
RBF achieve comparable prediction performance. While the
GAP-RBF has a more compact model than the RAN, its
model size is still very large compared to the proposed
approach. In the ELM approach, the model size is fixed at
a large value. In Fig. 8(a), the MSE performance for the
ELM with model sizes of 1000, 2000, and 3000 are all
shown, which are denoted as ELM(1000), ELM(2000), and
ELM(3000), respectively. It is clear that the MSE perfor-
mance of the ELM improves with more nodes. While the
ELM algorithm has significantly better performance than the
RAN or GAP-RBF algorithm, it uses a lot more nodes.
Among all of the approaches, the proposed algorithm with
only ten nodes has the best performance. It is also shown in
Fig. 8(a) that the ELM requires as many as 3000 nodes to
achieve comparable prediction performance as the proposed
approach.
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2) Simulation B.2—Lorenz Time Series With Time Varying
Parameters: In this simulation, we let the Lorenz parameters
vary with time to obtain a nonstationary system. Specifically,
we set a = 10 and

b = 4 + 3(1 + sin(0.1t))

3
(39)

c = 25 + 3
(

1 + cos
(

20.001t
))

. (40)

Fig. 9(a) and (b) compares the MSE and model size learn-
ing curves for different approaches, respectively. It is shown
that the RAN performs better than the GAP-RBF, but it uses
more nodes. As is shown in Fig. 9(b), for both RAN and
GAP-RBF algorithms, the model sizes keep increasing with
the number of data input. For the ELM approach, both the
model sizes of 1000 and 5000 are tested. It is clear that the
proposed algorithm is the only approach here that can well
track this nonstationary Lorenz time series. Particularly, the
performance of the ELM with model size as large as 5000 is
still not comparable with the proposed approach which only
use ten nodes.

VI. CONCLUSION

In this paper, we proposed a novel RBF structure with adap-
tive tunable nodes for on-line system identification problems
in nonlinear and nonstationary environment. The model size
of the RBF network is fixed at a small number in order to
capture the local characteristic of the nonstationary systems.
The weight vector is normally adapted by the MRLS algorithm
while the modeling performance is monitored every time step.
If the modeling residual becomes high, an insignificant node
is replaced with a new node, of which the structural parame-
ters and weights are optimized using proposed fast iterative
algorithms including the gradient decent algorithm and LS
estimator. The novelty in the proposed algorithm is that matrix
algebra and model structural properties are exploited in order
to achieve real time tracking capability. The proposed algo-
rithm describes a novel on-line identification approach which
is fundamentally different from existing approaches. The pro-
posed approach is verified by numerical simulations on two
benchmark applications: 1) ANC and 2) on-line Lorenz time
series prediction. The results show that the proposed approach
significantly outperforms existing approaches. This is because
the proposed approach keeps a compact model size to capture
the local statistics of the underlying system, while in existing
approaches the model size is often too large for time varying
system modeling. Finally, we point out that, although the pro-
posed on-line modeling approaches use tunable Gaussian RBF
network with fixed model size, it can be easily extended to
many other associative networks with linear-in-the-parameter
structure, e.g., thin-plate-spline and B-spline networks. In
the future, we are interested in improving the flexibility of
the model. This can be achieved by adding a simultaneous
model size adaptation mechanism or using multiple kernel
models.
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