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Abstract— We propose a semi-blind adaptive beamforming
approach for wireless systems that employ high-throughput
quadrature amplitude modulation signalling schemes. A mini-
mum number of training symbols, equal to the number of receive
antenna-array’s elements, are first utilised to provide a rough
initial least squares estimate of the beamformer’s weight vector.
A concurrent constant modulus algorithm and soft decision-
directed scheme, originally developed for single-user blind chan-
nel equalisation, is then applied to adapt the beamformer. It is
demonstrated that this semi-blind adaptive beamforming scheme
is capable of converging fast to the minimum mean-square-error
beamforming solution.

I. INTRODUCTION

The ever-increasing demand for wireless communication
capacity has motivated the development of antenna array
assisted spatial processing techniques [1], [2], [3], [4], [5],
[6], [7] in order to further improve the achievable spectral
efficiency. In particular, adaptive beamforming with antenna
arrays [2], [5], [7] has shown real promise in achieving
substantial capacity enhancement. This is because adaptive
beamforming is capable of separating signals transmitted on
the same carrier frequency, and thus provides a practical means
of supporting multiusers in a space division multiple access
scenario. In order to further improve the achievable bandwidth
efficiency, high-throughput quadrature amplitude modulation
(QAM) schemes [8] has become popular in numerous wireless
network standards. For example, the 16-QAM and 64-QAM
schemes were adopted in the WiMax standard [9]. The clas-
sical beamforming design is the minimum mean square error
(MMSE) solution, which can be realised using the training-
based adaptive algorithms [5], [10], [11], [12]. Pure training-
based schemes however require a high propotion of training
symbols, which considerably reduces the achievable system
throughput. Pure blind beamforming [13], [14], [15], [16] does
not reduce the achievable system throughput at the expense of
high computational complexity and slow convergence. More-
over, blind beamforming results in unavoidable estimation and
decision ambiguities [17], [18].

An effective means of resolving the estimation and decision
ambiguities inherented in blind schemes is to employ a few
training symbols. Combining a very short training with blind
adaptive beamforming leads to attractive semi-blind adaptive
beamforming [19], [20], [21], [22]. This contribution proposes
a low-complexity semi-blind adaptive beamforming algorithm.

In particular, we consider adaptive beamforming assisted re-
ceiver for wireless systems that employ high-throughput QAM
signalling [8]. As we will consider the low-complexity MMSE
solution as the optimal design for beamforming, the number of
users supported by the system is assumed to be no more than
the number of receive antenna array’s elements. The proposed
adaptive beamforming method is semi-blind as we employ a
minimum number of pilots, which is equal to the number of
receiver array elements, to provide a rough initial least squares
(LS) estimate for the beamformer’s weight vector. In general,
this initialisation is not sufficiently accurate to achieve an
“opening-eye” and, therefore, it is unsafe to carry out decision-
directed (DD) adaptation for the beamformer. However, we
can apply a constant modulus algorithm (CMA) assisted soft
DD (SDD) blind adaptive algorithm to adapt the beamformer.
The concurrent CMA and SDD algorithm was originally de-
rived for blind equalisation of single-input single-output QAM
systems [23], and it was extended to single-input multiple-
output systems in [24]. This blind adaptive scheme has a
very low computational complexity. In the present semi-blind
beamforming application, owing to the initial information
provided by the training pilots, the algorithm converges much
faster than the pure blind adaptation case, and it is capable
of approaching the performance of the MMSE beamforming
solution based on the perfect channel knowledge, as will be
shown in our simulation study.

We adopt the following notational conventions throughout
this contribution. Boldface capitals and lower-case letters stand
for matrices and vectors, respectively, while IK denotes the
K × K identity matrix. Furthermore, (•)T and (•)H are the
transpose and Hermitian operators, respectively, while ‖•‖ and
| • | denote the norm and magnitude operators, respectively.
E [•] is the expectation operator, while (•)∗ denotes the
complex conjugate. Finally, j =

√−1.

II. BEAMFORMING MODEL

We consider a coherent communication system that sup-
ports nT users, where each user transmits a M -QAM signal
on the same angular carrier frequency of ω. In order to
achieve user separation in the angular domain [6], [25], the
receiver is equipped with a linear antenna array consisting
of nR uniformly spaced elements. Further assume that the
communication is over flat fading channels. Then the system
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is described by the following model

x(k) = Hs(k) + n(k), (1)

where k denotes the symbol index, x(k) =
[x1(k) x2(k) · · ·xnR

(k)]T is the received signal vector,
n(k) = [n1(k) n2(k) · · ·nnR

(k)]T is the complex-valued
Gaussian white noise vector associated with the system with
E

[
n(k)nH(k)

]
= 2σ2

nInR
, s(k) = [s1(k) s2(k) · · · snT

(k)]T

is the transmitted symbols vector of the nT users with the
symbol energy given by E

[|sm(k)|2] = σ2
s for 1 ≤ m ≤ nT ,

and H denotes the nR × nT complex-valued system channel
matrix.

More specifically, the system channel matrix H = [hl,m],
where 1 ≤ l ≤ nR and 1 ≤ m ≤ nT , is defined by

H = [h1 h2 · · ·hnT
] =

[
A1η1 A2η2 · · ·AnT

ηnT

]
, (2)

where Am denotes the non-dispersive complex-valued channel
coefficient for user m, and the steering vector for user m is
given by

ηm =
[
ejωt1(θm) ejωt2(θm) · · · ejωtnR

(θm)
]T

(3)

with θm being the angle of arrival for user m and tl(θm)
being the relative time delay at array element l for user m.
θm is uniformly distributed in [0, 2π) and the magnitude of
Am is a Rayleigh process. However, the fading is assumed
to be sufficiently slow, so that during the time period of a
transmission block or frame, all the related entries hl,m in the
system channel matrix H is deemed unchanged. From frame
to frame, hl,m are assumed to be uncorrelated complex-valued
Gaussian processes with zero mean and E

[|hl,m|2] = 1.
The modulation scheme is the M -QAM and, therefore, the

transmitted data symbols sm(k), 1 ≤ m ≤ nT , take the values
from the M -QAM symbol set defined by

S �
= {si,q = ui + juq, 1 ≤ i, q ≤

√
M} (4)

with the real-part symbol �[si,q] = ui = 2i − √
M − 1 and

the imaginary-part symbol �[si,q] = uq = 2q−√
M − 1. The

average signal-to-noise ratio (SNR) of the system is defined
as SNR = nT × σ2

s/2σ2
n. Without the loss of generality, user

one is assumed to be the desired user and the rest of the users
are interfering ones. A beamformer

y(k) = wHx(k) (5)

is used to detect the transmitted symbols s1(k) of the desired
user, where w = [w1 w2 · · ·wnR

]T is the complex-valued
weight vector of the beamformer. With the perfect channel
knowledge, the optimal MMSE solution that minimises the
mean square error criterion E[|s1(k) − y(k)|2] is given by

wMMSE =
(
HHH +

2σ2
n

σ2
s

InR

)−1

h1. (6)

III. THE PROPOSED SEMI-BLIND ALGORITHM

Let the number of available training symbols be K, and de-
note the available training data as XK = [x(1) x(2) · · ·x(K)]
and sK = [s1(1) s1(2) · · · s1(K)]T . The LS estimate of
the beamformer’s weight vector based on the training data
{XK , sK} is readily given as

w(0) =
(
XKXH

K

)−1
XKs∗K . (7)

In order to maintain throughput, the number of training pilots
should be as small as possible. To ensure that XKXH

K has
a full rank, we will choose K = nR as the minimum
number of training symbols. Because the training data with
K = nR are insufficient, the initial LS weight vector (7) may
not be sufficiently accurate to open the eye. Therefore, DD
adaptation is generally unsafe. However, we can apply the
concurrent CMA and SDD blind scheme [23], [24] to adapt
the beamformer (5) with w(0) of (7) as the initial weight
vector. Let the beamformer’s weight vector be split into two
parts, yielding w = wc + wd, and denote the beamformer’s
output at sample k as y(k) = wH(k)x(k). The initial wc and
wd are simply set to wc(0) = wd(0) = 0.5w(0).

Specifically the weight vector wc is updated using the
classical CMA [26], [27]

ε(k) = y(k)
(
Δ − |y(k)|2) ,

wc(k + 1) = wc(k) + μCMAε∗(k)x(k),

}
(8)

where Δ = E
[|s1(k)|4] /E

[|s1(k)|2] and μCMA is the step
size of the CMA. The weight vector wd by contrast is updated
using the SDD scheme [23], [24], which has its root in the
blind equalisation scheme of [28]. The complex phasor plane
is divided into the M/4 rectangular regions, and each region
Si,l contains four symbol points as defined in the following

Si,l = {sp,q, p = 2i − 1, 2i, q = 2l − 1, 2l}, (9)

where 1 ≤ i, l ≤ √
M/2. An illustration of this local decision

region is illustrated in Fig. 1. If the beamformer’s output
y(k) ∈ Si,l, a local approximation of the marginal probability
density function (PDF) of y(k) is given by [23], [24]

p̂(w, y(k)) ≈
2i∑

p=2i−1

2l∑
q=2l−1

1
8πρ

e−
|y(k)−sp,q|2

2ρ , (10)

Si,l

Im

Re

beamformer
output

symbol point

Si,l decision
region

Fig. 1. Illustration of local decision regions for the soft decision-directed
adaptation procedure for QAM constellation.



where ρ defines the cluster width associated with the four
clusters of each region Si,l. The SDD algorithm is de-
signed to maximise the log of the local marginal PDF
criterion E[JLMAP(w, y(k))], where JLMAP(w, y(k)) =
ρ log (p̂(w, y(k))), via a stochastic gradient optimisation.
Specifically, wd is updated according to [23], [24]

wd(k + 1) = wd(k) + μSDD
∂JLMAP(w(k), y(k))

∂wd
, (11)

where μSDD is the step size of the SDD, and

∂JLMAP(w, y(k))
∂wd

=

1
ZN

2i∑
p=2i−1

2l∑
q=2l−1

e−
|y(k)−sp,q|2

2ρ (sp,q − y(k))∗x(k), (12)

with the normalisation factor

ZN =
2i∑

p=2i−1

2l∑
q=2l−1

e−
|y(k)−sp,q|2

2ρ . (13)

The choice of the cluster width ρ, defined in the context
of the local PDF (10), should ensure a proper separation of
the four clusters of Si,l. As the minimum distance between
the two neighbouring constellation points is 2, ρ is typically
chosen to be less than 1. If the value of ρ is too large, a
desired degree of separation may not be achieved. On the other
hand, if too small a ρ value is used, the algorithm attempts
to impose an overly tight control on the size of clusters and
hence may fail to achieve its goal. Apart from these two
extreme situations, the performance of the algorithm is not
overly sensitive to the value of ρ employed and an appropriate
ρ can easily be chosen from a large range of values. More
specifically, when the objective of removing interference is
accomplished, y(k) ≈ s1(k) + e(k), where e(k) is Gaussian
distributed with zero mean. Therefore, the value of ρ is related
to the variance of e(k), which is 2σ2

nwHw. Thus, for high
SNR situations, small ρ is desired, while for low SNR cases,
large ρ is preferred. Because of the information provided by
the training pilots in the form of the initial weight vector
(7), smaller ρ can be used, compared with the case of pure
blind adaptation in [23], [24], which leads to better steady-
state performance. Soft decision nature becomes explicit in
(12), because rather than committing to a single hard decision
Q[y(k)], where Q[•] denotes the quantisation operator, as
the hard DD scheme would, alternative decisions are also
considered in the local region Si,l that includes Q[y(k)],
and each tentative decision is weighted by an exponential
term e{•}, which is a function of the distance between the
equaliser’s soft output y(k) and the tentative decision sp,q .
This soft decision nature substantially reduces the risk of error
propagation and achieves faster convergence, compared with
the hard DD scheme [23], [24].
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Fig. 2. Desired user-one symbol error rate performance comparison of the
proposed semi-blind adaptive beamforming given K = 4 training symbols,
the training-based adaptive beamforming given different numbers of training
symbols, and the true MMSE beamforming given perfect channel knowledge,
for the stationary system of four-element array supporting four 16-QAM users.

IV. SIMULATION STUDY

A simulation study was carried out to investigate the pro-
posed semi-blind adaptive beamforming scheme based on the
concurrent CMA and SDD algorithm. The achievable perfor-
mance was assessed in the simulation using the symbol error
rate (SER). The analytical SER PE(w) for the beamformer
(5) with the weight vector w is given in Appendix.
Stationary system. A linear antenna array with nR = 4 ele-
ments and a half-wavelength element spacing was employed
to support nT = 4 16-QAM users. The angles of arrival for the
four users were 10◦, 40◦, −15◦ and −45◦, respectively. The
simulated stationary channels were Am = 1+ j0, 1 ≤ m ≤ 4.
The number of pilot symbols for the semi-blind scheme was
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Fig. 3. Learning curves of the concurrent CMA and SDD scheme in terms
of the SER average over ten different runs for the stationary system of four-
element array supporting four 16-QAM users, given the SNR of 18 dB,
μCMA = 4×10−6, μSDD = 4×10−4 and three values of cluster width ρ.



K = 4. Fig. 2 compares the desired-user SER performance
of the proposed semi-blind beamforming scheme with those
of the training-based beamforming given different numbers of
training symbols, using the MMSE beamforming computed
with the perfect channel knowledge as the benchmark. In
the training-based adaptive beamforming, given K training
symbols, the LS estimate of the beamformer’s weight vector
was obtained according to (7), and the resulting desired-user
SER was calculated. The performance of the training-based
beamforming with K = 64 training symbols, not shown in
Fig. 2, was similar to that of the semi-blind combined CMA
and SDD beamforming. It can be seen from Fig. 2 that the
semi-blind scheme with four training symbols can closely
match the performance of the true MMSE beamforming, while
the pure training-based scheme requires at least 64 training
symbols to achieve a similar performance.

The convergence performance of the proposed semi-blind
scheme was investigated. Given the SNR of 18 dB, K = 4
training pilots were first used to provide the initial beamform-
ing weight vector according to (7). The appropriate values
for the step size of the CMA as well as the step size of
the SDD were found empirically, and they were chosen to
be μCMA = 4 × 10−6 and μSDD = 4 × 10−4, respectively.
Fig. 3 plots the learning curves of the combined CMA and
SDD adaptive algorithm in terms of the SER averaged over
ten different runs, given three values of ρ. It is observed from
Fig. 3 that, aiding by the four training pilots, the convergence
rate of the concurrent CMA and SDD algorithm was much
faster than the pure blind adaptive counterpart of [23], [24].
Furthermore, the proposed semi-blind scheme is capable of
approaching the optimal MMSE solution, as can be seen in
Fig. 3. Given the SNR of 18 dB, K = 4 training symbols
were insufficient for the training-based beamformer, and the
eye diagram of the beamformer’s output constellation before
the blind adaptation, i.e. with the weight vector w(0) of (7),
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Fig. 4. The beamformer’s output constellation after blind adaptation given
SNR of 18 dB for the stationary system of four-element array supporting four
16-QAM users, shown with 6000 data points.
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Fig. 5. Average symbol error rate performance of the proposed semi-blind
beamforming scheme with five training symbols, in comparison with the
cases of training only based on different numbers of training symbols and
the MMSE beamforming with the perfect channel knowledge, averaged over
100 realisations of the flat-fading 5 × 4 16-QAM beamforming system.

was completely closed. By contrast, the beamformer’s output
constellation after blind adaptation is illustrated in Fig. 4,
clearly showing that the eye was opened.
Flat fading system. A beamforming system with nT = 4,
nR = 5 and the 16-QAM modulation scheme was simulated.
The system’s channel impulse response taps hl,m, 1 ≤ l ≤ 5
and 1 ≤ m ≤ 4, were uncorrelated complex-valued Gaussian
processes with zero mean and E

[|hl,m|2] = 1, and the
performance was averaged over 100 system realisations. The
number of pilot symbols used for the semi-blind scheme
was K = 5. The average SER performance for the purely
training based scheme with 5, 15 and 40 training symbols,
respectively, as well as the proposed semi-blind beamforming
scheme with aid of 5 training symbols are shown in Fig. 5,
in comparison with the achievable performance of the MMSE
beamforming given the perfect channel knowledge. The step
size of the CMA as well as the step size and cluster width
of the SDD were empirically set to μCMA = 1 × 10−7,
μSDD = 2×10−4 and ρ = 0.4. The blind adaptive process was
observed to achieve convergence typically within 200 to 400
samples. It can be seen from Fig. 5 that to achieve a similar
performance as the semi-blind CMA-SDD scheme the training
based scheme required 40 training symbols.

V. CONCLUSIONS

A low-complexity semi-blind adaptive beamforming scheme
has been proposed for wireless systems that employ high
throughput QAM signalling. A minimum number of training
symbols, equal to the number of receiver antenna-array’s
elements, is used to provide a rough LS estimate of the
beamformer’s weight vector for initialisation. The CMA aided



SDD blind adaptive scheme is then adopted to adapt the
beamformer. Our simulation study has confirmed that this
semi-blind concurrent CMA and SDD algorithm converges
much faster than its pure blind counterpart and the proposed
semi-blind adaptive beamformer is capable of approaching the
performance of the optimal MMSE beamforming solution.

APPENDIX

The analytical SER for the beamformer (5) with the weight
vector w is given in [29]. Define the combined system re-
sponse as wHH = [c1 c2 · · · cnT

], and assume that c1 = cR1 +
jcI1 satisfies cR1 > 0 and cI1 = 0. The MMSE beamforming
solution (6) meets this condition. For our proposed semi-blind
beamformer, this condition is generally met, as it approaches
the MMSE solution. If this condition is not satisfied, a rotation
operation can always be performed on the weight vector to
guarantee this condition [29]. The SER is expressed as

PE(w) = PER
(w) + PEI

(w) − PER
(w)PEI

(w), (14)

where PER
(w) and PEI

(w) are the real-part and imaginary-
part SERs, respectively. Note x(k) = x̄(k)+n(k) and y(k) =
ȳ(k)+e(k), where e(k) is Gaussian distributed with zero mean
and E[|e(k)|2] = 2σ2

nwHw. The noise-free part ȳ(k) takes
values from the set Y that contains Ns = MnT points. Y can
be divided into the M subsets conditioned on s1(k) as

Y(l,q) �
= {ȳ(l,q)

i ∈ Y, 1 ≤ i ≤ Nsb : s1(k) = sl,q}, (15)

for 1 ≤ l, q ≤ √
M , where the size of Y(l,q) is Nsb =

Ns/M . The subset Y(l,q) is completely specified by the system
channel matrix H. The SER PE(w) can be calculated based on
a single subset Y(l,q) [29]. Expressing ȳ

(l,q)
i = ȳ

(l,q)
Ri

+ jȳ
(l,q)
Ii

,
it can be shown that [29]

PER
(w) = γ

1
Nsb

Nsb∑
i=1

Q(g(l,q)
Ri

(w)), (16)

PEI
(w) = γ

1
Nsb

Nsb∑
i=1

Q(g(l,q)
Ii

(w)), (17)

where γ = 2
√

M−2√
M

, Q(u) = 1√
2π

∫ ∞
u

e−
z2
2 dz,

g
(l,q)
Ri

(w) =
ȳ
(l,q)
Ri

− cR1 (ul − 1)

σn

√
wHw

, (18)

g
(l,q)
Ii

(w) =
ȳ
(l,q)
Ii

− cR1 (uq − 1)

σn

√
wHw

. (19)
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