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Abstract: Terahertz wireless communication has
been regarded as an emerging technology to satisfy the
ever-increasing demand of ultra-high-speed wireless
communications. However, affected by the imperfec-
tions of cheap and energy-efficient Terahertz devices,
Terahertz signals suffer from serve hybrid distortions,
including in-phase/quadrature imbalance, phase noise
and nonlinearity, which degrade the demodulation per-
formance significantly. To improve the robustness
against these hybrid distortions, an improved autoen-
coder is proposed, which includes coding the transmit-
ted symbols at the transmitter and decoding the corre-
sponding signals at the receiver. Moreover, due to the
lack of information of Terahertz channel during the
training of the autoencoder, a fitting network is pro-
posed to approximate the characteristics of Terahertz
channel, which provides an approximation of the gra-
dients of loss. Simulation results show that our pro-
posed autoencoder with fitting network can recover the
transmitted symbols under serious hybrid distortions,
and improves the demodulation performance signifi-
cantly.
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I. INTRODUCTION

With the exponential growth of data throughout de-
mand, new spectral bands attract much attention in fu-
ture wireless communications. Terahertz (THz) band
(0.1 to 10 THz) has been regarded as one of the
promising spectral bands to facilitate ultra-high-speed
communications, which is capable of improving the
throughput to Terabit-per-second (Tbps) [1–3]. There-
fore, THz communication is envisioned as a key tech-
nology for the upcoming sixth-generation (6G) mobile
communications and beyond [4, 5].

However, THz signals experience much more severe
path loss than their counterparts in the lower frequency
bands, which is induced by the spreading effect during
propagation, the atmospheric attenuation effect caused
by molecular absorption, and so on [3, 6]. In addi-
tion, ultra-high data rate leads to huge energy con-
sumption and hardware costs. The imperfections of
THz devices, including the in-phase/quadrature imbal-
ance of ratio-frequency (RF) branches, the nonlinear-
ity of power amplifier (PA), and the phase noise of
local oscillator (LO), cause severe hybrid distortions
to THz signals [7–9]. Furthermore, such distortions
in THz communications cannot be effectively handled
by the existing state-of-the-art techniques. For exam-
ple, the widely-adopted minimum mean squared er-
ror (MMSE) equalization focuses on eliminating the
influence of multi-path effects and inter-symbol in-
terference by linear operation, which could not han-
dle with the nonlinear imperfection in THz commu-
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nication effectively. Besides, the powerful digital
pre-distortion (DPD) methods require a high-rate and
high-resolution RF device to obtain the exact distor-
tion characteristics of the PA. These techniques may
not be suitable to THz communication systems [10].

To improve the performance of the end-to-end com-
munication system, deep learning based autoencoder
has been used to learn the implementation details
from both transmitter and receiver [11–13]. In [11],
an adaptive transmission scheme was proposed to in-
crease the transmission rate over an additive white
Gaussian noise (AWGN) channel, where the noisy
channel is treated as a noise layer and the transceiver is
modeled as an autoencoder. Nevertheless, this scheme
cannot handle the nonlinear distortions of hardware
efficiently. In [12], an alternating algorithm was uti-
lized to train the autoencoder-based system, which it-
erates between the training of the receiver by the ac-
tual gradients of loss and the training of the transmit-
ter with an approximation of the gradients of the loss
function. In [13], conditional generative adversarial
net (GAN) was applied to model the effects of the
unknown channel, which enables the gradients of the
transmitter to be back-propagated from the receiver.
With the aid of deep learning based autoencoder, re-
liable demodulation can be realized, revealing the po-
tential of autoencoder-based transmission in handling
the communications over complicated channels. How-
ever, for the THz channel, the channel model becomes
much more complicated, where the scheme in [11]
fails to design a proper autoencoder. Moreover, the
performance of the schemes in [12] and [13] are usu-
ally unstable during the training process, due to the
noise and complicated architectures.

In this paper, an autoencoder with fitting network for
the THz channel is investigated, whereby the autoen-
coder is utilized to encode the transmitted symbols at
the transmitter and recover these symbols at the re-
ceiver, respectively. Different from the existing state-
of-the-art autoencoder-based transmission schemes, a
fitting network, which is constructed from a deep feed-
forward neural network (DFNN), is utilized to approx-
imate the characteristics of the THz channel and the
hybrid distortions of THz devices, which provides the
gradients of loss during the training of autoencoder.
Simulation results demonstrate the superior perfor-
mance of our proposed autoencoder with fitting net-
work, compared to the conventional schemes and the

existing autoencoder-based counterparts.

II. SYSTEM MODEL

We consider a single-input single-output (SISO) THz
communication system, where both the transmitter
and the receiver are equipped with a single Cassegrain
antenna. Without loss of generality, an equivalent
baseband model is utilized to model the THz sys-
tem, and the complex transmitted symbol is expressed
as y = yI + j yQ, where yI and yQ are the corre-
sponding signals of the in-phase (I) and quadrature (Q)
branches, respectively.

2.1 Hybrid Distortions in THz Transmission

At the transmitter, due to the imperfections of the
quadrature modulator, the actual modulated signal can
be expressed as

s = µT y + vT y
∗, (1)

where (·)∗ denotes the complex conjugation operation,
µT and vT are the I/Q imbalance-related parameters at
transmitter, given by [7]

µT =cos
(
ϕT

)
− j ϵT sin

(
ϕT

)
, (2)

vT =ϵT cos
(
ϕT

)
− j sin

(
ϕT

)
, (3)

in which ϵT and ϕT are the amplitude and phase im-
balances between the I and Q branches, respectively.

Due to the severe nonlinearity of THz PA, the mod-
ulated signal suffers from both amplitude compression
and phase rotation. In this paper, the odd order memo-
ryless polynomial model, which is a general model of
PA, is adopted to model the nonlinear distortion of the
PA. The transmitted signal s̃ is therefore related to the
modulated signal s by [9]

s̃ =
K∑
k=1

α2k−1s|s|2(k−1), (4)

where 2K − 1 is the order of nonlinearity, α2k−1 are
the complex model parameters, and | · | represents the
absolute value of a complex scalar.

After propagated through the THz channel, the re-
ceived signal at the receiver can be expressed as r =
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Figure 1. The structure of our proposed autoencoder with fitting network.

Hs̃ + ω, where H = Ploss · ejκ denotes the chan-
nel response, and ω denotes the baseband-equivalent
AWGN with variance σ2

ω. Here, Ploss is the variation
of amplitude, and κ is phase shift [14].

Similar to the modulator, the imperfections of the
quadrature demodulator also distort the received signal
to

r̃ = µRr + vRr
∗, (5)

where µR and vR are the I/Q imbalance-related param-
eters at the receiver, given by

µR =cos
(
ϕR

)
− j ϵR sin

(
ϕR

)
, (6)

vR =ϵR cos
(
ϕR

)
− j sin

(
ϕR

)
, (7)

in which ϵR and ϕR are the amplitude and phase im-
balances between the I and Q branches at the receiver,
respectively.

Due to the instability of voltage-controlled oscilla-
tor (VCO), the phase noise, which increases with the
square of the center frequency, affects the received
symbols significantly, and the signal to be demodu-
lated can be expressed as

ỹ = r̃ej∆θ, (8)

where ∆θ denotes the phase noise.

2.2 Problem Statement

To acquire the information from the received signal
accurately, the distorted received signal ỹ needs to

be recovered to cancel the adverse effect of the THz
channel before demodulation. However, due to the ef-
fects of hybrid distortions and noise, the distorted re-
ceived signal cannot be recovered accurately when the
received symbols corresponding to different constel-
lation points overlap under the low signal noise ratio
(SNR) region. In addition, it is worth noting that the
gradients of the channel are unknown. Because the
hybrid distortions of the THz communication system
are highly complex, it is very challenging to directly
estimate these distortions’ parameters. Therefore, re-
ceiver and/or transmitter are blind to the specific pa-
rameters which they need to operate successfully.

To tackle this problem, as shown in Figure 1, an
autoencoder-based transmission and reception with fit-
ting network is proposed, which is capable of convey-
ing the information successfully under severe THz hy-
brid distortions.

III. PROPOSED AUTOENCODER WITH
FITTING NETWORK

We now detail our proposed autoencoder with fitting
network shown in Figure 1. The proposed system con-
sists of three networks, encoding network, fitting net-
work, and decoding network, as well as two channels,
forward channel and backward channel. The forward
channel is the true THz channel that includes all the
effects of the nonlinearity and distortions.

In our proposed scheme, the encoding network is
added ahead the digital-to-analog converter (D/A) and
the decoding network is added after the analog-to-
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digital converter (A/D). The encoding network en-
codes the modulated symbol x = xI + jxQ into the
transmitted symbol y, where xI and xQ are the cor-
responding symbols of the I and Q branches, respec-
tively. The decoding network decodes the received
symbol ỹ into x̃ = x̃I + j x̃Q, which is the estimate
of x with x̃I and x̃Q as the estimates of xI and xQ, re-
spectively. Due to the nonlinearity of THz devices and
the complexity of the THz channel, the gradients of ỹ
with respect to y, which are also called the gradients
of the forward channel, are hard to be obtained, and
this makes the direct training of autoencoder impos-
sible. Therefore, a fitting network, which is regarded
as a backward channel, is introduced to facilitate the
training of autoencoder by fitting the gradients of the
forward channel.

3.1 System Architecture

As shown in Figure 1, all the networks in our proposed
system are feedforward networks. Let the indexes e,
f and d represent the encoding network, fitting net-
work and decoding network, respectively. For each
network, the number of hidden layers and the neurons
in each hidden layer are denoted as Li and Ni,j , for
i ∈ {e, f, d} and j ∈ {1, 2, · · · , Li}. In particular,
improper hyper-parameters of network, including the
number of hidden layers, the number of neurons and so
on, will lead to underfitting or overfitting, which will
deteriorate the performance of our proposed scheme.
Therefore, numerical experiments are utilized to find
the optimal hyper-parameters. Since all the inputs of
the neural network are real-valued, the real and imag-
inary parts of the transmitted symbol are the input of
the encoding network, and the real and imaginary parts
of the received symbol are the input of the decoding
network [15].

Each network has multiple hidden layers. The out-
put of one layer is the input of the subsequent layer.
Let the output vector of the j-th hidden layer in the
network i be expressed as

oi
j = f

(
U i

jo
i
j−1 + bij

)
, (9)

where U i
j and bij are the weight matrix and the bias

vector of the network’s j-th layer, respectively, while
f(·) denotes the activation function, which introduces
nonlinearity to the network. We denote W i

j =
[
U i

j b
i
j

]

as the parameter matrix in the j-th layer of the network
i. Since the output of each network should be normal-
ized to within the interval [−1, 1] to limit the power
of the symbol, the hardtanh function is selected as the
activation function, which can be expressed as

f(x) =


1, x > 1,

x, −1 ≤ x ≤ 1,

−1, x < −1.

(10)

It is evident that hardtanh function can provide nonlin-
earity and regularization to the network and it is bene-
ficial to training because its derivative is easy to obtain.

The training process of our autoencoder with fitting
network can be divided into two phases, training the
fitting network and training the autoencoder network,
where the mean square error (MSE) is used as the
performance metric during these two training phases.
Because the hybrid distortions of THz devices at re-
ceiver and the THz channel response H are unavail-
able to transmitter, the gradients of the loss function
during the back-propagation of the encoder network
are unavailable. Therefore, we train the fitting network
(backward channel) to imitates the actual channel, so
that we can use the gradients of the trained fitting net-
work to assist the training of the encoder. As a result,
the training of the fitting network must be prior to the
training of the autoencoder network.

3.2 Training Fitting Network

In the system of Figure 1, y = [yI yQ]
T is the output

of the encoding network and ỹ = [ỹI ỹQ]
T is the input

of the decoding network. We use y and ỹ as the input
and the desired output, respectively, to train the fitting
network.

Let h(y, ω) denote the response of the forward
channel, which represents the actual response of THz
devices and THz channel with the AWGN ω. That
is, ỹ = h(y, ω). Further denote g(y;Wf ) as
the response of the backward channel, which repre-
sents the mapping of the fitting network with Wf =[
W f

1 W f
2 · · ·W f

Lf

]
being the weight matrix of the

fitting network. In order to provide the response and
gradients of the forward channel during the training of
the autoencoder network, the loss function for training
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the fitting network training can be expressed as

Jc(Wf ) =Ey,ω

[∣∣h(y, ω)− g(y;Wf )
∣∣2

+
∣∣∇yh(y, ω)−∇yg(y;Wf )

∣∣2], (11)

where Ey,ω[·] denotes the expectation operator with re-
spect to (w.r.t.) y and ω, while ∇y denotes the deriva-
tive w.r.t. y.

Adam method [16] is adopted to train the fitting
network by updating Wf until Jc(Wf ) is lower than
a predefined target. Moreover, batch algorithm is
adopted to train the network to avoid overfitting [15].
For notational simplification, we use g̃(y) to represent
the well-trained fitting network g(y;Wf ) in the se-
quel.

The following proposition proves the effectiveness
of training the autoencoder network based on the gra-
dients generated by the backward channel.

Proposition 1. The gradients generated by the back-
ward channel can achieve nearly the same training
performance as the actual gradients of the forward
channel.

Proof. See Appendix V.

To estimate the parameters of fitting network, the
training complexity is about O(N2

f ) with Nf denoting
the total number of training neurons in fitting network
[17]. Once the fitting network is well trained, it can be
utilized to aid the training of the autoencoder.

3.3 Training Autoencoder Network

The input and output of the encoding network are the
symbols x and y, respectively, while the input and out-
put of the decoding network are the symbols ỹ and x̃,
respectively, where x = [xI xQ]

T and x̃ = [x̃I x̃Q]
T.

Let y = Ψe

(
x;We

)
and x̃ = Ψd

(
ỹ;Wd) be the

mappings of the encoding network and decoding net-
work, respectively, where We =

[
W e

1 W e
2 · · ·W e

Le

]
denotes the weight matrix of the encoding network and
Wd =

[
W d

1 W d
2 · · ·W d

Ld

]
denotes the weight matrix

of the decoding network. It is evident that the map-
ping relationship between x̃ and x can be expressed
as x̃ = Ψd (h (Ψe(x;We), ω) ;Wd). To minimize the
difference between x̃ and x, the encoding network and
decoding network should be trained simultaneously.

Specifically, the MSE between x and x̃, defined as

J(We,Wd) =Ex [Ψd(h(Ψe(x;We), ω);Wd)−x]2 ,

(12)

is used as the loss function to train the autoencoder.
As the gradient of the forward channel is unknown,
during the training process, the fitting network is uti-
lized to generate the approximate gradient of the for-
ward channel. Adam method [16] and batch algorithm
are also utilized to train the encoding network and de-
coding network simultaneously by updating We and
Wd until J(We,Wd) is lower than a predefined target,
which are helpful to avoid underfitting or overfitting.

To estimate the parameters of encoding and decod-
ing network, the training complexity is about O((Ne+

Nd)
2) with Ne and Nd denoting the total number of

training neurons in encoding and decoding network,
respectively. In particular, once the encoding and de-
coding networks are well-trained, only finite calcula-
tions are required to obtain the output.

IV. SIMULATION RESULTS AND DISCUS-
SION

We present the simulation results to verify the effec-
tiveness of our proposed autoencoder with fitting net-
work. Due to the directionality of Gassegrain anten-
nas, a single path THz channel is considered. The
parameters of I/Q imbalance are ϵT = ϵR = 0.2

and ϕT = ϕR = 2◦, while the order of nonlinear-
ity of PA is 5 with α1 = 1.0108 + j0.0858, α3 =

0.0879 − j0.1583, and α5 = −1.099 − j0.89911.
The phase noise is generated according to ∆θk+1 =

∆θk + δθk, where ∆θk is the phase noise of the k-th
block and δθk is the change of phase noise between
adjacent blocks, which is a Gaussian random variable
with δθk ∼ N

(
0, (5◦)2

)
[18].

Three schemes compared in the simulation study
are:

1. MMSE: The transmitted signal is not processed at
the transmitter and the frequency-domain MMSE
equalization is executed to recover x̃ from ỹ.

2. AE-AL: The autoencoder with alternating algo-
rithm [12], where an approximate loss function’s
gradient is fed to the transmitter in each iteration
of training the encoding network.
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Table 1. Structures of encoding, decoding and fitting net-
works.

Network Structures of hidden layers
Encoding Network (16, 128, 256, 256, 128, 16)

Decoding Network (16, 128, 256, 256, 128, 16)

Fitting Network (40, 40, 40)
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Figure 2. BER performance comparison of three schemes
with various modulations.

3. AE-FN: Our proposed autoencoder with fitting
network, as described in Section III.

Table 1 lists structures of the three neural networks
adopted in our scheme, where for example, the struc-
tures of hidden layers (40,40,40) for the fitting net-
work indicate that it has three hidden layers and each
hidden layer has 40 neurons. In addition, 104 training
examples are generated to train the neural networks,
and the same number of training examples are utilized
to train the MMSE estimator. In Figure 2, we plot
the bit error rate (BER) versus Es/N0 for different
schemes with different modulations, including QPSK,
8PSK and 16QAM, where Es is the average power of
the transmitted symbol, and N0 is the power of the
channel AWGN ω.

It can be seen from Figure 2 that the MMSE scheme
has the worst BER performance, and for the 16-QAM
and 8PSK modulations, it exhibits very high BER
floors owing to failing to handle the hybrid distortions
caused by the imperfections of THz devices. The AE-
AL scheme [12] is much better but it still exhibits
a high BER floor for the 16QAM modulation. Our
proposed scheme significantly outperforms both the
MMSE and AE-AL schemes, in terms of BER per-
formance. In particular, for the QPSK modulation and
at the BER level of 10−3, our proposed scheme attains
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AE-FN (Channel 2)
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AE-AL (Channel 2)

MMSE (Channel 1)

MMSE (Channel 2)

Figure 3. BER performance comparison of three schemes
experiencing various channels with QPSK modulation.

Table 2. I/Q imbalance parameters in different channels.

Channels ϵT ϵR ϕT ϕR

Channel 1 0.15 0.15 1◦ 1◦

Channel 2 0.30 0.30 5◦ 5◦

around the 4 dB and 7 dB gains in the SNR, compared
to the AE-AL [12] and MMSE, respectively. More-
over, the performance gain of our proposed scheme
over the benchmark schemes increases with the mod-
ulation order. For example, at the BER level of 10−3,
the SNR gain of our AE-FN over the AE-AL increases
to around 6 dB for the 8PSK modulation. For the
16QAM modulation, the AE-AL has the BER floor
of around 10−2, and the SNR gain of our proposed
scheme over the AE-AL scheme is infinitely large, at
the BER level of 10−3.

In order to illustrate the applicability of our pro-
posed AE-FN scheme, we study the performance of
all three schemes with different I/Q imbalance. In Fig-
ure 3, the BER performance of AE-FN, AE-AL and
MMSE experiencing different channels with different
I/Q imbalance are compared, where I/Q imbalance pa-
rameters have been shown table 2.

Figure 3 shows that our proposed AE-FN scheme
outperforms the other two schemes when the Es/N0

is high enough. With more serious distortions, the
AE-FN scheme shows a more obvious performance
gain compared to AE-AL and MMSE. For example, at
the BER level of 10−3, the SNR gain of AE-FN over
MMSE is around 1 dB for channel 1 but around 3 dB
for channel 2.

To examine the effectiveness of our proposed
scheme in multi-antenna system, the BER perfor-
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Figure 4. Performance comparison of AE-FN and MMSE
in MISO system with QPSK modulation.

mance of multiple inputs and single output (MISO)
scenario is presented in Figure 4. In detail, we con-
sider a MISO system with four transmit antennas and
QPSK modulation, the I/Q imbalance parameters of
the four RF chains are ϵT1 = 0.15, ϵT2 = 0.25, ϵT3 =

0.2, ϵT4 = 0.1, ϕT1 = 3◦, ϕT2 = 2◦, ϕT3 = 1◦, ϕT4 =

2.5◦, respectively. It can be seen from the Figure 4
that the performance of our proposed AE-FN is sig-
nificantly better than MMSE scheme. For example, at
the BER level of 10−3, the SNR gain of our AE-FN
compared to MMSE is about 3 dB, which shows the
superiority of our proposed scheme in MISO scenario.

V. CONCLUSIONS

In this paper, an improved autoencoder with fitting net-
work has been proposed, which utilizes a deep learn-
ing based autoencoder to design transmitter and re-
ceiver for overcoming the hybrid distortions caused
by the THz devices and the THz channel. To enable
the training of the autoencoder, a deep feedforward
neural network based fitting network has been intro-
duced to approximate the characteristics of the THz
devices and THz channel, which can generate the re-
quired gradient of the loss function for the back prop-
agation of training the autoencoder. Simulation results
have demonstrated that our proposed autoencoder with
fitting network improves the BER performance con-
siderably, compared with an existing state-of-the-art
autoencoder counterpart.
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NOTES

1Here, more moderate I/Q imbalance is considered
compared to [19].

APPENDIX

Proof of Proposition 1

We assume that the actual channel has the second-
order derivative and its first-order derivative is
bounded. When the fitting network is well trained, the
loss function (11) is minimized. In particular, when
the training set is sufficiently large, the following con-
ditions are satisfied

∣∣g̃(y)− Eω

[
h(y, ω)

]∣∣ < ϵ1, (13)∣∣∣∣∂g̃(y)∂y
− Eω

[
∂h(y, ω)

∂y

]∣∣∣∣ < ϵ2, (14)

where ϵ1 and ϵ2 are any positive values.
For the decoding network, its training does not de-

pend on the gradients of the forward channel, and the
weight of the decoder Wd can be updated directly.

For the encoding network, the actual gradient of the
loss function J(We,Wd), given in (12), w.r.t. We,
denoted as G(We), can be expressed as

G(We) =Ex

[
Eω

[
∇WeJ(We,Wd)

]]
=Ex

[
Eω

[
∂(x− x̃)2

∂x̃

∂x̃

∂ỹ

∂ỹ

∂y

∂y

∂We

]]
.

(15)

But ∂ỹ
∂y is unavailable, and we use ∂g̃(y)

∂y ≈

Eω

[
∂ỹ
∂y

]
to substitute for ∂ỹ

∂y in the back propagation.
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Hence, the approximated gradient of the loss function
J(We,Wd) w.r.t. We, denoted as Ĝ(We), can be ex-
pressed as

Ĝ(We) =Ex

[
Eω

[
∂(x− x̃)2

∂x̃

∂x̃

∂ỹ
Eω

[
∂ỹ

∂y

]
∂y

∂We

]]
.

(16)

The difference between G(We) and Ĝ(We) is given
by∣∣∣G(We)− Ĝ(We)

∣∣∣
=

∣∣∣∣Ex

[
Eω

[
∂(x− x̃)2

∂x̃

∂x̃

∂ỹ

(
∂ỹ

∂y
−Eω

[
∂ỹ

∂y

])
∂y

∂We

]]∣∣∣∣
≤ Ex

[
Eω

[∣∣∣∣∂(x−x̃)2

∂x̃

∂x̃

∂ỹ

(
∂ỹ

∂y
−Eω

[
∂ỹ

∂y

])
∂y

∂We

∣∣∣∣]].
(17)

Since all the partial derivatives are bounded, the esti-
mated gradient Ĝ(We) and actual gradient G(We) are
sufficiently close once the difference

∣∣∣∂ỹ∂y − Eω

[
∂ỹ
∂y

]∣∣∣
is sufficiently small. Therefore, to prove Propo-
sition 1, we need to show that the difference∣∣∣∂ỹ∂y − Eω

[
∂ỹ
∂y

]∣∣∣ is sufficiently small when the SNR is
sufficiently large or the noise ω is very small. First we
have the following obvious lemma.

Lemma 1. Let X be a Gaussian random variable
following the distribution X ∼ N (0, σ2), and Y =

y(X) be a continue and bounded function of X .
Clearly, X converges to 0 in probability, as σ → 0.
Due to the continuity of y(·), Y = y(X) converges to
y(0) in probability, and E[Y ] also converges to y(0)

because of the continuity and boundedness of y(·). As
a result, Y − E[Y ] converge to 0 in probability.

Based on Lemma 1,
∣∣∣∂ỹ∂y − Eω

[
∂ỹ
∂y

]∣∣∣ is sufficiently
small when the SNR is sufficiently large. This com-
pletes the proof.
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