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Abstract

The paper investigates blind finite-impulse-response (FIR) equalization schemes for qua
amplitude modulation signalling. We compare a bootstrap maximuma posteriori probability (MAP)
equalizer with a recently introduced concurrent constant modulus algorithm (CMA) and decis
rected (DD) equalizer (CMA+DD). Both equalizers are known to outperform the CMA conside
in the situations where carrier recovery is performed and the signal constellation is known. Th
current CMA+DD equalizer has a complexity that is slightly more than twice of the CMA, an
bootstrap MAP equalizer has computational requirements that are only slightly more comple
the CMA. Simulation results indicate that the bootstrap MAP blind FIR equalizer has a faster c
gence rate and better steady-state performance than the concurrent CMA+DD blind FIR eq
but tuning of the former is more complicated than the latter.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Blind equalization improves system bandwidth efficiency by avoiding the use of a
ing sequence. Furthermore, for multi-point communication systems, training is infe
and blind equalizer provides a practical means for combating the detrimental effe
channel intersymbol interference (ISI) in such systems. For communication system
ploying high bandwidth-efficiency quadrature amplitude modulation (QAM) signal
the constant modulus algorithm (CMA) based finite-impulse-response (FIR) equal
by far the most popular blind equalization scheme [1–4]. It has very simple computa
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requirements and readily meets the real-time computational constraint. The CMA i
very robust to imperfect carrier recovery. A particular problem of the CMA, howeve
that it only achieves a moderate level of mean square error (MSE) after convergence
may not be sufficiently low for the system to obtain adequate performance. A possib
lution is to switch to a decision directed (DD) adaptation which should be able to min
the residual CMA steady state MSE [5]. However, as pointed out in [6], in order for s
transfer to be successful, the CMA steady state MSE should be sufficiently low. In pra
such a low level of MSE may not always be achievable by the CMA.

De Castro et al. [6] have suggested an interesting solution to this problem. Rathe
switching to a DD adaptation after the CMA has converged, they have proposed to
ate a DD equalizer concurrently with a CMA equalizer. The weight adaptation of th
equalizer follows that of the CMA equalizer, and the DD adjustment only takes pla
the CMA has achieved a successful adjustment with high probability. At a small co
doubling complexity to that of the very simple CMA, this concurrent CMA+DD equ
izer is reported to obtain a dramatical improvement in equalization performance ov
CMA [6]. Many blind FIR equalizers have been reported before, which can common
referred to as Bussgang algorithms (e.g., [7–12]). A Bussgang-type blind equalizer
FIR filter structure and adjusts the filter coefficients by optimizing a non-convex crit
function using stochastic gradient. The CMA is obviously a Bussgang-type blind equ
In the lights of the results reported in [6], we revisit a Bussgang-type blind FIR equ
called the bootstrap maximuma posteriori probability (MAP) equalizer [11,12].

The bootstrap MAP equalizer was originally derived in [13] for 4-QAM constella
and extended toM-QAM (M > 4) communication channels in [11,12]. The basic ide
to maximize thea posteriori probability density function (PDF) of the equalizer outp
subject to the equalizer weights. To accomplish a fast and reliable convergence and
the complexity to a minimum, a multi-stage procedure is adopted. At the first sta
4-cluster PDF model is adopted as though the data constellation is an equivalent 4
one. The aim of this stage is to classify equalizer outputs correctly into one of the
quadrants in the complex plane with high probability. At the second stage, a 16-cluste
model is used and it is divided into 4 sub-sets, one for each quadrant. If the equalizer
appears in a particular quadrant, the corresponding 4-cluster sub-model is used to a
equalizer weights. After the stage two, the complex plane is divided into 16 square re
each containing a 4-cluster sub-model. The procedure is continuing until after thLth
stage, whereL is given by 2L = √

M, the correct data constellation is restored.
In this study, we compare the bootstrap MAP equalizer with the concurrent CMA

equalizer, with the standard CMA acting as a benchmark in terms of complexity
performance. Note that we assume carrier lock and constellation registration. Obv
the CMA does not actually need these assumptions. However, in normal commun
systems, the signal constellation is known to receiver and, typically, carrier recov
performed. The bootstrap MAP equalizer requires similar numbers of multiplication
additions as the CMA, with an additional need of evaluating 4 exponential function va
Even taking into account this additional requirement, the complexity of the bootstrap
equalizer is very simple and is less than that of the concurrent CMA+DD equalizer. A
bootstrap MAP equalizer requiresL-stage switching and each stage has a set of diffe
algorithm parameters, the tuning of the bootstrap MAP equalizer is more complicate
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the concurrent CMA+DD equalizer. Simulation confirms that both the bootstrap MAP
concurrent CMA+DD equalizers outperform the CMA considerably, and the results
that the bootstrap MAP equalizer achieves faster convergence and better steady-s
formance than the concurrent CMA+DD equalizer.

2. Blind equalization

Blind equalization with a fractionally-spaced equalizer (FSE) is investigated. For
plicity, we will consider theTs/2-spaced FSE, whereTs denotes the symbol period. Th
baseband discrete-time model of communication system with aTs/2-spaced FSE is de
picted in Fig. 1 (see [14]). For notational convenience, the indexk is reserved forTs -spaced
quantities and indexn for Ts/2-spaced quantities throughout the discussion. The tran
tedTs -spaced complex symbol sequences(k)= sR(k)+ jsI (k) is assumed to be indepe
dently identically distributed (i.i.d.) and the symbol constellation isM-QAM with the set
of all the symbol points defined by

S = {
sil = (2i −Q− 1)+ j (2l −Q− 1), 1 � i, l �Q

}
, (1)

whereQ= √
M = 2L, andL is an integer. The receivedTs/2-spaced signal sample is

r̄(n)=
2Nc−1∑
i=0

āi s̄(n− i)+ ē(n), (2)

where theTs/2-spaced sequence{s̄(n)} is a zero-filled version of the transmitted symb
sequence{s(k)} defined by

s̄(n)=
{
s(n/2), for evenn,
0, for oddn,

(3)

the channel is specified by theTs/2-spaced complex-valued channel impulse respo
(CIR) given by

ā = [ā0 ā1 ā2 ā3 . . . ā2Nc−1]T (4)

with Nc corresponding to theTs -spaced CIR length, and theTs/2-spaced samplēe(n) =
ēR(n)+ j ēI (n) is an i.i.d. complex Gaussian white noise with E[ē2

R(n)] = E[ē2
I (n)] = σ 2

e ,
and E[·] denotes the expectation operator.

Fig. 1. Multirate baseband model of communication system withTs/2-spaced equalizer, whereTs denotes symbo
period, indexk indicatesTs -spaced quantities, and indexn indicatesTs/2-spaced quantities.
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To remove the channel distortion, aTs/2-spaced equalizer is employed, which has
FIR structure defined by

ȳ(n)=
2m−1∑
i=0

�wi r̄(n− i)= �wT r̄(n), (5)

where 2m is the order or length of theTs/2-spaced equalizer,

�w = [�w0 �w1 . . . �w2m−1
]T (6)

is the equalizer complex-valued weight vector, and

r̄(n)= [
r̄(n) r̄(n− 1) . . . r̄(n− 2m+ 1)

]T (7)

is the equalizer input vector. To deal with non-minimum phase channels, the equ
should have a decision delay approximately tom. Before blind adaptation, the equaliz
weights are initialized to�wi = 1 + j0 for i = m − 1 andm, and�wi = 0 + j0 for all the
other values ofi. The FSE output̄y(n) is decimated by a factor of 2 to create theTs -spaced
outputy(k).

It can easily be shown [14] that the system model of Fig. 1 is equivalent to the m
depicted in Fig. 2 by defining

āe = [ā0 ā2 . . . ā2Nc−2]T , āo = [ā1 ā3 . . . ā2Nc−1]T ,
�w e = [�w0 �w2 . . . �w2m−2]T , �w o = [�w1 �w3 . . . �w2m−1]T , (8)

and

ee(k)= ē(2n), eo(k)= ē(2n+ 1),

re(k)= r̄(2n), ro(k)= r̄(2n+ 1). (9)

Further define

w = [w0 w1 . . . w2m−1]T = [
(�w o)T (�w e)T

]T (10)

Fig. 2. Multichannel model of communication system withTs/2-spaced equalizer, whereTs denotes symbo
period, and indexk indicatesTs -spaced quantities.
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r(k)= [
r(k) r(k − 1) . . . r(k − 2m+ 1)

]T = [
(re(k))T (ro(k))T

]T (11)

with re(k)= [re(k) re(k−1) . . . re(k−m+1)]T andro(k)= [ro(k) ro(k−1) . . . ro(k−
m+ 1)]T . Then theTs -spaced equalizer outputy(k) is given by

y(k)=
2m−1∑
i=0

wir(k − i)= wT r(k). (12)

The equalizer model (12) forms the basis for the discussion of the three blind ad
algorithms in the following subsections.

2.1. Constant modulus algorithm

The CMA adjusts the equalizer weights by minimizing the non-convex cost functi

J̄CMA(w)= E
[(|y(k)|2 −�2

)2] (13)

using a stochastic gradient algorithm, where�2 is a real positive constant defined by

�2 = E
[|s(k)|4]/E

[|s(k)|2]. (14)

At Ts -spaced samplek, giveny(k)= wT (k)r(k), the CMA adaptsw according to [1,2]{
ε(k)= y(k)(�2 − |y(k)|2),
w(k+ 1)= w(k)+µε(k)r∗(k),

(15)

whereµ is a small positive adaptive gain andr∗(k) is the complex conjugate ofr(k).
The CMA is by far the most popular blind equalizer for high-order QAM signal con

lation. It has a very simple computational complexity, as summarized in Table 1. Alth
M-QAM symbols do not fall on the circle of radius

√
�2, it is known that the cost functio

J̄CMA(w) is minimized at the equalizer weight solution which restores the signal con
lation. Under certain conditions, the CMA converges to this solution subject to a po
phase shift. Letwopt be the solution of the adaptive equalizer based on the cost
tion (13) that yields the correct signal constellation. All the weight vectors

ws = exp(jφ)wopt, 0 � φ < 2π, (16)

produces the same cost asJ̄CMA(wopt). In practice, the adaptive equalizer may converg
any of the solutions defined in (16). This undesired phase shift cannot be resolved
CMA and must be eliminated by other means. Typically, a very small adaptive gainµ has
to be used to ensure convergence.

Table 1
Comparison of computational complexity per weight update. The equalizer order is 2m

Equalizer Multiplications Additions Exp(·) evaluations

CMA 8 × (2m)+ 6 8× (2m) –
CMA+DD 16× (2m)+ 8 20× (2m) –
MAP 8× (2m)+ 23 8× (2m)+ 19 4
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2.2. Concurrent CMA and decision directed equalizer

De Castro et al. [6] proposed a blind equalization scheme that consists of a CMA
izer and a DD equalizer operating concurrently. Specifically, let

w = wc + wd, (17)

wherewc is the weight vector of the CMA equalizer which is designed to minimize
CMA cost functionJ̄CMA(wc) andwd is the weight vector of the DD equalizer which
designed to minimize the decision based MSE

J̄DD(wd )= 1

2
E
[∣∣Q[

y(k)
] − y(k)

∣∣2] (18)

with Q[y(k)] denoting the quantized equalizer output defined by

Q
[
y(k)

] = arg min
sil∈S

∣∣y(k)− sil
∣∣2. (19)

More precisely, atk, giveny(k) = wT
c (k)r(k)+ wT

d (k)r(k), the CMA part adaptswc ac-
cording to the rule (15) by substitutingwc in the place ofw with an adaptive gainµc. The
DD adaptation follows immediately after the CMA adaptation and it only takes place
CMA adjustment is viewed to be a successful one. Let

ỹ(k)= wT
c (k + 1)r(k)+ wT

d (k)r(k). (20)

Then the DD part adjustswd according to [6]

wd (k+ 1)= wd (k)+µdδ
(
Q

[
ỹ(k)

] −Q
[
y(k)

])(
Q

[
y(k)

] − y(k)
)
r∗(k), (21)

whereµd is the adaptive gain of the DD equalizer and the indicator function

δ(x)=
{

1, x = 0+ j0,
0, x �= 0+ j0.

(22)

It can be seen thatwd is updated only if the equalizer hard decisions before and afte
CMA adaptation are the same.

The complexity of this CMA+DD blind equalizer, summarized in Table 1, is obvio
linear in the equalizer order 2m. Let wdopt be the solution of the DD equalizer based on
cost function (18) that yields the correct signal constellation. The weight vectors

wds = exp(jφ)wdopt, φ = 0,
π

2
,π,

3π

2
, (23)

produces the same cost asJ̄DD(wdopt). As with any blind equalization scheme, this a
biguity needs to be resolved by other means. However, the DD adaptation does no
from a serious phase shift problem. Note that the CMA is very robust and is capa
opening “initially closed eye.” The decision-directed adaptation, when is safe to per
has a much faster convergence speed and is capable of lowering the steady stat
compared with the CMA. Obviously, this CMA+DD blind equalizer combines the ad
tages of both the CMA and decision-directed adaptation. The adaptive gainµd for the DD
equalizer can often be chosen much larger thanµc used for the CMA.
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2.3. Bootstrap MAP equalizer

After the equalization is accomplished, the equalizer output can approximately b
pressed in two terms

y(k)≈ x(k)+ v(k), (24)

wherex(k) = s(k − kd), kd is an integer, andv(k) = vR(k) + jvI (k) is approximately a
Gaussian white noise. Thus, if the equalizer weights have correctly been chosen, the
izer output can be modelled approximately byM Gaussian clusters. The cluster means

yil = sil , 1 � i, l �Q, (25)

and all the clusters have an approximate covariance[
E[v2

R(k)] E[vR(k)vI (k)]
E[vI (k)vR(k)] E[v2

I (k)]
]

≈
[
ρ 0
0 ρ

]
. (26)

Under the above conditions, thea posteriori PDF ofy(k) is approximately

p
(
w, y(k)

) ≈
Q∑
q=1

Q∑
l=1

pql

2πρ
exp

(
−|y(k)− yql |2

2ρ

)
, (27)

wherepql are thea priori probabilities ofyql , 1 � q , l � Q, and they are all equal. Th
bootstrap MAP equalizer is designed to maximize log of thea posteriori PDF criterion

J̄MAP(w)= E
[
JMAP

(
w, y(k)

)]
(28)

with

JMAP
(
w, y(k)

) = ρ log
(
p
(
w, y(k)

))
. (29)

At k, giveny(k)= wT (k)r(k), the equalizer weights can be adapted according to the
chastic gradient algorithm

w(k + 1)= w(k)+µ
∂JMAP(w(k), y(k))

∂w
(30)

with the adaptive gainµ and the stochastic gradient

∂JMAP(w(k), y(k))
∂w

=
∑Q

q=1

∑Q
l=1 exp

(−|y(k)−yql|2
2ρ

)
(yql − y(k))

∑Q
q=1

∑Q
l=1 exp

(−|y(k)−yql|2
2ρ

) r∗(k). (31)

Karaoguz and Ardalan [13] first suggested this algorithm for 4-QAM (Q= 2) channels. In
order to speed up convergence rate and to keep the complexity to a minimum, a mult
implementation was proposed [11,12] for high-oder QAM signalling.

In the 16-QAM case, the equalization objective is decomposed into a two-stage pr
In the first stage, a 4-cluster PDF model is adopted with the 4 cluster means being{±2+
j ± 2}. The equalizer weights are adjusted using this equivalent “4-QAM” model thr
the gradient algorithm (30). The objective of this stage is to achieve a roughly c
classification of equalizer outputs into the 4 quadrants in the complex plane, and th
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can easily be accomplished. At the second stage, the 16-cluster PDF model is a
with the 16 cluster means being the correct symbol points{sql , 1� q , l � 4}. This cluster
model is divided into 4 sub-models, one for each quadrant. If the equalizer output
particular quadrant, the corresponding 4-cluster sub-model is used to adapt the eq
weights via the gradient algorithm (30). The equalizer adaptation is done correctly
high probability at this stage owing to the primary clustering of the previous stage.
the overall equalization objective can be achieved faster and more reliably.

For the 64-QAM case, a three-stage process is adopted. This multi-stage proces
wardly extendable. In general, the task ofM-QAM equalization, whereM = 22L, can be
achieved using theL-stage process. Because the sub-task of each stage can be a
plished easily and reliably, the overall convergence of the equalizer is achieved fas
more reliably. The soft-decision directed nature of this bootstrap MAP means that a
large adaptive gain can be used, which otherwise would cause the CMA to diverg
choice ofρ for each adaptation stage should ensure a proper separation of the clus
the value ofρ is too large, a desired degree of separation among the clusters may
achieved. On the other hand, if a too smallρ is used, the algorithm attempts to impos
very tight control in the size of clusters and may fail to do so. Apart from these two ext
cases, the performance of the algorithm does not critically depend on the value ofρ, and
there exists a wide range of values forρ at each stage of the adaptation.

It is obvious that the criterion (28) is maximized when the equalizer output prod
the correctly signal constellation. Letwopt be the solution of the adaptive equalizer ba
on the criterion (28) that yields the correct signal constellation. Then the weight ve
which produce the same function value asJ̄MAP(wopt) are given by

ws = exp(jφ)wopt, φ = 0,
π

2
,π,

3π

2
. (32)

It can be seen that the bootstrap MAP equalizer does not suffer from a serious pha
problem as the CMA does. Since the equalizer weights are always adapted using a 4
sub-model at each sample via the gradient algorithm (30), the complexity is always
patible to the minimum complexity of the 4-QAM case, and is only slightly more than
CMA, as can be seen from Table 1. The 4 exp(·) evaluations can be implemented throu
look up table in practice. Because each stage of the bootstrap MAP equalizer req
different set of algorithm parameters, the tuning of the bootstrap MAP equalizer is
complicated than the concurrent CMA+DD one.

3. Simulation study

The performance of the concurrent CMA+DD and bootstrap MAP blind equal
were evaluated in a computer simulation using the standard CMA blind equalize
benchmark. Two performance criteria were used to assess the convergence rate o
equalizer. The first one was an estimated MSE at each adaptation sample based on
of NMSE Ts -spaced data samples

MSE= 1

NMSE

NMSE∑ ∣∣Q[
y(k)

] − y(k)
∣∣2. (33)
k=1
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Note that this is the decision based MSE, not the true MSE achievable by an equaliz
second one was the maximum distortion (MD) measure defined by

MD =
∑Nf −1

i=0 |fi | − |fimax|
|fimax|

, (34)

where{fi}Nf−1
i=0 was the combined impulse response of the channel and equalizer d

by �w o , āe + �w e , āo with , denoting convolution andNf =Nc +m− 1 being the length
of theTs -spaced combined impulse response, and

fimax = max{fi, 0 � i �Nf − 1}. (35)

The equalizer output signal constellation after convergence was also shown usingNtest=
6000Ts -spaced testing data samples not used in adaptation.

TheTs/2-spaced equalizer order 2m should be chosen sufficiently long to ensure the
pability of opening closed eye and good steady-state performance, but not too long
can cause the problems of seriously enhancing noise and slow convergence rate. Th
value of 2m used in the simulation was found empirically. The values for various ada
algorithm parameters, namely adaptive gains for the CMA, DD and MAP, and width
different stages of the MAP equalizer, were also chosen empirically to ensure fast c
gence speed and good steady-state performance.

Example 1

The CIR, listed in Table 2, was a simulatedTs/2-spaced 6-tap channel and the data s
bols were 16-QAM. The noise power wasσ 2

e = 0.0435, giving rise to a channel signal
noise ratio (SNR) of 20 dB. The blind equalizer had 18Ts/2-spaced taps, and the length
data samples for estimating the MSE at each adaptation sample wasNMSE = 250. A length
of 2m= 18 for theTs/2-spaced blind equalizer was found to be sufficient to achieve a
fect reconstruction in the noise-free case. The adaptive gain for the CMA wasµ= 0.00001,
and the two adaptive gains of the concurrent CMA+DD equalizer were set toµc = 0.00001
andµd = 0.0005. For the bootstrap MAP equalizer, 1000Ts -spaced samples were used
the first stage withµ = 0.0005 andρ = 1.6, while in the second stage the adaptive g
wasµ= 0.0005 with the cluster widthρ = 0.6. Notice that the adaptive gain for the CM
had to be chosen so small to avoid divergence.

Table 2
A simulatedTs/2-spaced 6-tap channel impulse
response, whereTs denotes symbol period

Tap no. Real Imaginary

0 −0.2 0.3
1 −0.5 0.4
2 0.7 −0.6
3 0.4 0.3
4 0.2 0.1
5 −0.1 0.2
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Fig. 3. Comparison of convergence performance in terms of (a) estimated MSE and (b) MD measure fo
ple 1.

The learning curves of the three blind equalizers, the CMA, the CMA+DD and
bootstrap MAP, are compared in Fig. 3. The equalizer output signal constellations
convergence are shown in Fig. 4. The results confirm the founding of [6] that the conc
CMA+DD equalizer has superior performance over the pure CMA. It can also be
that for this example the bootstrap MAP equalizer has the fastest convergence rate
lowest MD measure among the three blind equalizers. The signal constellation of the
shown in Fig. 4b has an obvious phase rotation.
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Fig. 4. EqualizerTs/2-spaced input (a), and equalizerTs -spaced output signal constellations after converge
(b) the CMA, (c) the CMA+DD, and (d) bootstrap MAP for Example 1.

Example 2

The CIR was again given in Table 2 but the transmitted data symbols were 64-Q
Given a noise power ofσ 2

e = 0.00183, the SNR was 40 dB. TheTs/2-spaced equalize
had 18 taps and the length of data samples for estimating the MSE at each adaptat
NMSE = 500. The CMA had an adaptive gainµ= 5×10−7 (µ= 10−6 caused divergence
and the two adaptive gains of the concurrent CMA+DD equalizer wereµc = 5× 10−7 and
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Fig. 5. Comparison of convergence performance in terms of (a) estimated MSE and (b) MD measure fo
ple 2.

µd = 0.0001. For the first stage of the bootstrap MAP equalizer, 1000Ts -spaced sample
were used withµ= 0.0002 andρ = 8.0; for the second stage 1000 samples were used
µ = 0.0002 andρ = 1.6; in the final third stage, the adaptive gain wasµ = 0.0002 with
the cluster widthρ = 0.6.

The convergence performance of the three blind equalizers, in terms of the est
MSE and MD measure, are depicted in Figs. 5a and 5b, respectively. It can clea
seen that both the concurrent CMA+DD and bootstrap MAP equalizers have much
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Fig. 6. EqualizerTs/2-spaced input (a), and equalizerTs -spaced output signal constellations after converge
(b) the CMA, (c) the CMA+DD, and (d) bootstrap MAP for Example 2.

equalization performance over the CMA. The three equalizer output signal constell
are shown in Fig. 6, where a phase rotation of the CMA signal constellation is evid
Fig. 6b. The signal constellation of the bootstrap MAP equalizer depicted in Fig. 6d h
best quality among the three blind equalizers. For this example the bootstrap MAP
izer has a faster convergence speed and better steady-state performance than the c
CMA+DD equalizer.
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Fig. 7. Comparison of convergence performance in terms of (a) estimated MSE and (b) MD measure fo
ple 3.

Example 3

In this example, 256-QAM data symbols were transmitted through the channel w
CIR is given in Table 2. The noise power was set toσ 2

e = 7.39× 10−5, corresponding to a
SNR of 60 dB. TheTs/2-spaced equalizer had 18 taps and the length of the data blo
estimating the MSE at each adaptation wasNMSE = 1000. The adaptive gain for the CM
had to be set toµ = 10−8 to avoid divergence. The two adaptive gains of the concur



32 S. Chen et al. / Digital Signal Processing 14 (2004) 18–36

nce

t stage,
e,
es
nd
Fig. 8. EqualizerTs/2-spaced input (a), and equalizerTs -spaced output signal constellations after converge
(b) the CMA, (c) the CMA+DD, and (d) bootstrap MAP for Example 3.

CMA+DD equalizer were set toµc = 10−8 andµd = 0.00001. As this was a 256-QAM
case, a four-stage process was adopted by the bootstrap MAP equalizer. In the firs
2000Ts -spaced samples were used withµ= 0.00005 andρ = 30.0. For the second stag
2000 samples were used withµ = 0.00005 andρ = 8.0. In the third stage, 2000 sampl
were used withµ = 0.00005 andρ = 1.6. In the final fourth stage, the adaptive gain a
cluster width were set toµ= 0.00005 andρ = 0.6, respectively.
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The learning curves of the three blind equalizers, in terms of the estimated MS
MD measure, are depicted in Figs. 7a and 7b, respectively. The equalizer output
constellations of the three equalizers after convergence are plotted in Fig. 8. The
again show that both the concurrent CMA+DD and bootstrap MAP equalizers hav
nificantly better equalization performance over the CMA. It can also be seen that fo
example the bootstrap MAP equalizer converges faster with better performance th
concurrent CMA+DD equalizer. In fact, the signal constellation of the bootstrap M
equalizer depicted in Fig. 8d shows that a (near) perfect reconstruction of the trans
signal constellation is achieved.

Example 4

For this example, 256-QAM data symbols were transmitted through aTs/2-spaced
22-tap channel whose CIR is given in Table 3. The noise power was set toσ 2

e = 4.24×
10−5, corresponding to a SNR of 60 dB. TheTs/2-spaced equalizer had 26 taps and
length of the data block for estimating the MSE at each adaptation wasNMSE = 1000.
Although thisTs/2-spaced CIR appears to be very long, its leading and tailing tap
very small, and the effective CIR length is much smaller than 22. We found out t
Ts/2-spaced equalizer with 26 taps was sufficient to achieve a perfect reconstruc
the noise-free case. The adaptive gain for the CMA had to be set toµ = 10−8 to avoid
divergence. The two adaptive gains of the concurrent CMA+DD equalizer were
µc = 10−8 andµd = 0.00001. In the first three stages of the bootstrap MAP equal
2000Ts -spaced samples were used in each stage withµ= 0.00002 andρ = 30.0 for stage
one,µ= 0.00002 andρ = 8.0 for stage two, andµ= 0.00002 andρ = 1.6 for stage three
In the final fourth stage, the adaptive gain and cluster width were set toµ = 0.00005 and
ρ = 0.6, respectively.

The learning curves of the three blind equalizers, in terms of the estimated MS
MD measure, are depicted in Figs. 9a and 9b, respectively. The equalizer output
constellations of the three equalizers after convergence are plotted in Fig. 10. The
again show that for this example the bootstrap MAP equalizer converges faster a
better equalization performance than the concurrent CMA+DD equalizer. The signa

Table 3
A simulatedTs/2-spaced 22-tap channel impulse response, whereTs denotes symbol period

Tap no. Real Imaginary Tap no. Real Imaginary

0 0.0145 −0.0006 11 0.0294 −0.0049
1 0.0750 0.0176 12 −0.0181 0.0032
2 0.3951 0.0033 13 0.0091 0.0003
3 0.7491 −0.1718 14 −0.0038 −0.0023
4 0.1951 0.0972 15 0.0019 0.0027
5 −0.2856 0.1896 16 −0.0018 −0.0014
6 0.0575 −0.2096 17 0.0006 0.0003
7 0.0655 0.1139 18 0.0005 0.0000
8 −0.0825 −0.0424 19 −0.0008 −0.0001
9 0.0623 0.0085 20 0.0000 −0.0002

10 −0.0438 0.0034 21 0.0001 0.0006
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Fig. 9. Comparison of convergence performance in terms of (a) estimated MSE and (b) MD measure fo
ple 4.

stellation of the bootstrap MAP equalizer depicted in Fig. 10d indicates that a p
reconstruction of the transmitted signal constellation is achieved.

4. Conclusions

In this paper, we have investigated two novel blind FIR equalizers, namely the
current CMA+DD and bootstrap MAP, with the popular CMA as a benchmark, unde
condition of carrier lock and constellation registration. These two novel blind FIR equ
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Fig. 10. EqualizerTs/2-spaced input (a), and equalizerTs -spaced output signal constellations after converge
(b) the CMA, (c) the CMA+DD, and (d) bootstrap MAP for Example 4.

ers are attractive as they have low computational requirements that are only slightly
complex than the very simple CMA. Simulation study has confirmed that these two
equalizers outperform the CMA considerably. The results have also demonstrated t
bootstrap MAP equalizer has a faster convergence speed and better steady-state
mance than the concurrent CMA+DD equalizer. The tuning of the bootstrap MAP equ
is however more complicated than that of the concurrent CMA+DD equalizer. This i
investigation suggests that further theoretical study of the concurrent CMA+DD and
strap MAP blind FIR equalizers is warranted.
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