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Abstract

The paper investigates blind finite-impulse-response (FIR) equalization schemes for quadrature
amplitude modulation signalling. We compare a bootstrap maximposteriori probability (MAP)
equalizer with a recently introduced concurrent constant modulus algorithm (CMA) and decision di-
rected (DD) equalizer (CMA+DD). Both equalizers are known to outperform the CMA considerably
in the situations where carrier recovery is performed and the signal constellation is known. The con-
current CMA+DD equalizer has a complexity that is slightly more than twice of the CMA, and the
bootstrap MAP equalizer has computational requirements that are only slightly more complex than
the CMA. Simulation results indicate that the bootstrap MAP blind FIR equalizer has a faster conver-
gence rate and better steady-state performance than the concurrent CMA+DD blind FIR equalizer,
but tuning of the former is more complicated than the latter.
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1. Introduction

Blind equalization improves system bandwidth efficiency by avoiding the use of a train-
ing sequence. Furthermore, for multi-point communication systems, training is infeasible
and blind equalizer provides a practical means for combating the detrimental effects of
channel intersymbol interference (ISI) in such systems. For communication systems em-
ploying high bandwidth-efficiency quadrature amplitude modulation (QAM) signalling,
the constant modulus algorithm (CMA) based finite-impulse-response (FIR) equalizer is
by far the most popular blind equalization scheme [1-4]. It has very simple computational
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requirements and readily meets the real-time computational constraint. The CMA is also
very robust to imperfect carrier recovery. A particular problem of the CMA, however, is
that it only achieves a moderate level of mean square error (MSE) after convergence, which
may not be sufficiently low for the system to obtain adequate performance. A possible so-
lution is to switch to a decision directed (DD) adaptation which should be able to minimize
the residual CMA steady state MSE [5]. However, as pointed out in [6], in order for such a
transfer to be successful, the CMA steady state MSE should be sufficiently low. In practice,
such a low level of MSE may not always be achievable by the CMA.

De Castro et al. [6] have suggested an interesting solution to this problem. Rather than
switching to a DD adaptation after the CMA has converged, they have proposed to oper-
ate a DD equalizer concurrently with a CMA equalizer. The weight adaptation of the DD
equalizer follows that of the CMA equalizer, and the DD adjustment only takes place if
the CMA has achieved a successful adjustment with high probability. At a small cost of
doubling complexity to that of the very simple CMA, this concurrent CMA+DD equal-
izer is reported to obtain a dramatical improvement in equalization performance over the
CMA [6]. Many blind FIR equalizers have been reported before, which can commonly be
referred to as Bussgang algorithms (e.g., [7—12]). A Bussgang-type blind equalizer has an
FIR filter structure and adjusts the filter coefficients by optimizing a non-convex criterion
function using stochastic gradient. The CMA is obviously a Bussgang-type blind equalizer.
In the lights of the results reported in [6], we revisit a Bussgang-type blind FIR equalizer
called the bootstrap maximuaposteriori probability (MAP) equalizer [11,12].

The bootstrap MAP equalizer was originally derived in [13] for 4-QAM constellation
and extended ta/-QAM (M > 4) communication channels in [11,12]. The basic idea is
to maximize thea posteriori probability density function (PDF) of the equalizer output
subject to the equalizer weights. To accomplish a fast and reliable convergence and to keep
the complexity to a minimum, a multi-stage procedure is adopted. At the first stage, a
4-cluster PDF model is adopted as though the data constellation is an equivalent 4-QAM
one. The aim of this stage is to classify equalizer outputs correctly into one of the four
guadrants in the complex plane with high probability. At the second stage, a 16-cluster PDF
model is used and it is divided into 4 sub-sets, one for each quadrant. If the equalizer output
appears in a particular quadrant, the corresponding 4-cluster sub-model is used to adapt the
equalizer weights. After the stage two, the complex plane is divided into 16 square regions,
each containing a 4-cluster sub-model. The procedure is continuing until aftdrttthe
stage, wherd. is given by 2 = /M, the correct data constellation is restored.

In this study, we compare the bootstrap MAP equalizer with the concurrent CMA+DD
equalizer, with the standard CMA acting as a benchmark in terms of complexity and
performance. Note that we assume carrier lock and constellation registration. Obviously,
the CMA does not actually need these assumptions. However, in normal communication
systems, the signal constellation is known to receiver and, typically, carrier recovery is
performed. The bootstrap MAP equalizer requires similar numbers of multiplications and
additions as the CMA, with an additional need of evaluating 4 exponential function values.
Even taking into account this additional requirement, the complexity of the bootstrap MAP
equalizer is very simple and is less than that of the concurrent CMA+DD equalizer. As the
bootstrap MAP equalizer requirdsstage switching and each stage has a set of different
algorithm parameters, the tuning of the bootstrap MAP equalizer is more complicated than
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the concurrent CMA+DD equalizer. Simulation confirms that both the bootstrap MAP and
concurrent CMA+DD equalizers outperform the CMA considerably, and the results show
that the bootstrap MAP equalizer achieves faster convergence and better steady-state per-
formance than the concurrent CMA+DD equalizer.

2. Blind equalization

Blind equalization with a fractionally-spaced equalizer (FSE) is investigated. For sim-
plicity, we will consider theT;/2-spaced FSE, wherg denotes the symbol period. The
baseband discrete-time model of communication system wify2-spaced FSE is de-
picted in Fig. 1 (see [14]). For notational convenience, the idexeserved foff;-spaced
guantities and index for T /2-spaced quantities throughout the discussion. The transmit-
ted 7;-spaced complex symbol sequenck) = sg (k) + js; (k) is assumed to be indepen-
dently identically distributed (i.i.d.) and the symbol constellatioMiSQAM with the set
of all the symbol points defined by

whereQ = /M = 2L, andL is an integer. The receivej /2-spaced signal sample is

2N.—1
Finy= Y @s(n—i)+e), (2)

i=0

where theT /2-spaced sequendg(n)} is a zero-filled version of the transmitted symbol
sequencés(k)} defined by

. |sm/2), forevenn,
S(m) = { 0, for oddn, 3)

the channel is specified by th& /2-spaced complex-valued channel impulse response
(CIR) given by

a=[apaydzas ... am,-11" (4)

with N, corresponding to th&,-spaced CIR length, and thg/2-spaced samplé(n) =
er(n) + jé;(n) is an i.i.d. complex Gaussian white noise witfef(n)] = E[e2(n)] = 2,
and H-] denotes the expectation operator.

e(n)

s(n) — %7(11) — Y(n) y(k)
> ad w =¢/2_>

Fig. 1. Multirate baseband model of communication system Wift2-spaced equalizer, whefg denotes symbol
period, indexk indicatesT;-spaced quantities, and indexndicatesT /2-spaced quantities.

k
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To remove the channel distortion,7a/2-spaced equalizer is employed, which has an
FIR structure defined by
2m—1
Fy= Y wiF(n—i)=WF(n), (5)
i=0
where 2n is the order or length of th&; /2-spaced equalizer,

W= [wo w1 ... wzm_]_]T (6)
is the equalizer complex-valued weight vector, and
F(n)=[r() F(n—1) ... f(n—2m+1)]T (7)

is the equalizer input vector. To deal with non-minimum phase channels, the equalizer
should have a decision delay approximatelyitoBefore blind adaptation, the equalizer
weights are initialized tavy; = 1+ jO fori =m — 1 andm, andw; = 0+ ;O for all the
other values of. The FSE outpui(n) is decimated by a factor of 2 to create thespaced
outputy (k).

It can easily be shown [14] that the system model of Fig. 1 is equivalent to the model
depicted in Fig. 2 by defining

&=laoay ... 2", @=laias ... aw,1l".
We=[wo w2 ... Wam—2l",  Wo=[w1ws ... wam-1l", (8)
and
ef(ky=eé2n),  °(k)=én+1),
re(k) =r(2n), ro(k) =r(2n+1). 9)
Further define
W= [wowi ... wan_1l” = [@)T @&7]" (10)
e*(k)
| =e —0
- a . w
rk)
s(k) — y(k)
(0)
Tz e K
e’(k)

Fig. 2. Multichannel model of communication system witty2-spaced equalizer, whef® denotes symbol
period, and indeX indicatesT-spaced quantities.
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and
r)=[r)rtk—1) ... r(k—2m+ 1)]T =[rek)” (r°(k))T]T (11)
with rék) = [rek) rék —1) ... rék —m+1))7 andrO(k) = [r°(k) rO(k —1) ... ro(k —
m + 1)]17. Then theT;-spaced equalizer outputk) is given by
2m—1
y(k) = Z wir(k —i) =wTr (k). (12)
i=0
The equalizer model (12) forms the basis for the discussion of the three blind adaptive
algorithms in the following subsections.

2.1. Constant modulus algorithm

The CMA adjusts the equalizer weights by minimizing the non-convex cost function

Jemaw) = E[(Ily 02 - A2)°] (13)
using a stochastic gradient algorithm, whergis a real positive constant defined by
Az =E[Is®*]/E[Is k) ?]. (14)

At Ty-spaced sample, giveny (k) = w’ (k)r (k), the CMA adaptsv according to [1,2]

{e(k) = y(k) (A2 —|y(R) ),

W(k + 1) =w(k) + pek)r*k),

whereu is a small positive adaptive gain ant{k) is the complex conjugate ofk).
The CMA is by far the most popular blind equalizer for high-order QAM signal constel-

lation. It has a very simple computational complexity, as summarized in Table 1. Although

M-QAM symbols do not fall on the circle of radiugA, it is known that the cost function

Jema (W) is minimized at the equalizer weight solution which restores the signal constel-

lation. Under certain conditions, the CMA converges to this solution subject to a possible

phase shift. Lewop: be the solution of the adaptive equalizer based on the cost func-

tion (13) that yields the correct signal constellation. All the weight vectors

Wy = eXFXJ¢)WOpt7 0 g ¢ < 277:1 (16)

produces the same cost &sva (Wopp . In practice, the adaptive equalizer may converge to
any of the solutions defined in (16). This undesired phase shift cannot be resolved by the
CMA and must be eliminated by other means. Typically, a very small adaptiveugaas

to be used to ensure convergence.

(15)

Table 1

Comparison of computational complexity per weight update. The equalizer order is 2
Equalizer Multiplications Additions Exp) evaluations
CMA 8 x (2m)+6 8x (2m) -

CMA+DD 16 x (2m)+8 20x% (2m) -

MAP 8 x (2m) + 23 8x (2m) +19 4
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2.2. Concurrent CMA and decision directed equalizer
De Castro et al. [6] proposed a blind equalization scheme that consists of a CMA equal-
izer and a DD equalizer operating concurrently. Specifically, let
W =W, + Wy, 17)

wherew, is the weight vector of the CMA equalizer which is designed to minimize the
CMA cost functionJcma (W) andwy is the weight vector of the DD equalizer which is
designed to minimize the decision based MSE

- 1
Joo(wa) = SE[|Q[y ()] - yk)|°] (18)
with Q[y(k)] denoting the quantized equalizer output defined by
[y (k)] = arg min|y (k) — sit|”. (19)
S,'IES

More precisely, ak, giveny (k) = w! (k)r (k) + w} (k)r (k), the CMA part adapts/. ac-
cording to the rule (15) by substitutivg. in the place ofwv with an adaptive gaip... The

DD adaptation follows immediately after the CMA adaptation and it only takes place if the
CMA adjustment is viewed to be a successful one. Let

5k =W, (k + Dr (k) +wj (or (k). (20)
Then the DD part adjusts,; according to [6]

Wy (k 4+ 1) = Wa (k) + 1ad(Q[y (k)] — Q[y(0)]) (Q[y k)] — y(k))r* k), (21)
wherepu, is the adaptive gain of the DD equalizer and the indicator function

(L x=0+jo,
5()‘)—{0, x 0+ jO.

It can be seen that, is updated only if the equalizer hard decisions before and after the
CMA adaptation are the same.

The complexity of this CMA+DD blind equalizer, summarized in Table 1, is obviously
linear in the equalizer orden? Letw,opt be the solution of the DD equalizer based on the
cost function (18) that yields the correct signal constellation. The weight vectors

Wgs = eXp(jd)Waopt, ¢ =0, % 7, 3771 (23)
produces the same cost %D(Wdopt). As with any blind equalization scheme, this am-
biguity needs to be resolved by other means. However, the DD adaptation does not suffer
from a serious phase shift problem. Note that the CMA is very robust and is capable of
opening “initially closed eye.” The decision-directed adaptation, when is safe to perform,
has a much faster convergence speed and is capable of lowering the steady state MSE,
compared with the CMA. Obviously, this CMA+DD blind equalizer combines the advan-
tages of both the CMA and decision-directed adaptation. The adaptive.gdor the DD
equalizer can often be chosen much larger thansed for the CMA.

(22)
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2.3. Bootstrap MAP equalizer

After the equalization is accomplished, the equalizer output can approximately be ex-
pressed in two terms

y(k) ~ x (k) + v(k), (24)

wherex (k) = s(k — kg), kg is an integer, ana (k) = vg (k) + jv; (k) is approximately a
Gaussian white noise. Thus, if the equalizer weights have correctly been chosen, the equal-
izer output can be modelled approximatelyMyGaussian clusters. The cluster means are

yir=sii, 1<i,1<Q, (25)
and all the clusters have an approximate covariance
Elvz(0)]  Elvrvr 1] [p 0
[E[vz (vr®]  EE(0)] } ~ [0 p} ‘ (6)
Under the above conditions, tlagosteriori PDF of y (k) is approximately
p(w. y(k) ~ ié - exp(_ by (’02; yql|2>, (27)

wherep,; are thea priori probabilities ofy,;, 1< ¢, ! < Q, and they are all equal. The
bootstrap MAP equalizer is designed to maximize log ofalpesteriori PDF criterion

Imap (W) = E[Jmap (W, y(k))] (28)
with
Jmap (W, y(k)) = plog(p(w, y(k))). (29)

At k, giveny(k) = w’ (k)r (k), the equalizer weights can be adapted according to the sto-
chastic gradient algorithm

Wik +1) = w(k) + 1 aJMAP(V;\Z‘)’ y®) (30)

with the adaptive gaip and the stochastic gradient

R vy 12
D e W), y(K) Sy Yy exp(— 2O ) (v — (k)
- _ 2
w quzl ZIQ=1 exp(—%)

Karaoguz and Ardalan [13] first suggested this algorithm for 4-QAML 2) channels. In
order to speed up convergence rate and to keep the complexity to a minimum, a multi-stage
implementation was proposed [11,12] for high-oder QAM signalling.

In the 16-QAM case, the equalization objective is decomposed into a two-stage process.
In the first stage, a 4-cluster PDF model is adopted with the 4 cluster means{#&irg
J £ 2}. The equalizer weights are adjusted using this equivalent “4-QAM” model through
the gradient algorithm (30). The objective of this stage is to achieve a roughly correct
classification of equalizer outputs into the 4 quadrants in the complex plane, and this task

r* (k). (31)
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can easily be accomplished. At the second stage, the 16-cluster PDF model is adopted
with the 16 cluster means being the correct symbol pdints 1 < ¢, < 4}. This cluster

model is divided into 4 sub-models, one for each quadrant. If the equalizer output is in a
particular quadrant, the corresponding 4-cluster sub-model is used to adapt the equalizer
weights via the gradient algorithm (30). The equalizer adaptation is done correctly with
high probability at this stage owing to the primary clustering of the previous stage. Thus
the overall equalization objective can be achieved faster and more reliably.

For the 64-QAM case, a three-stage process is adopted. This multi-stage process is up-
wardly extendable. In general, the taskitQAM equalization, where/ = 2L, can be
achieved using thd.-stage process. Because the sub-task of each stage can be accom-
plished easily and reliably, the overall convergence of the equalizer is achieved faster and
more reliably. The soft-decision directed nature of this bootstrap MAP means that a much
large adaptive gain can be used, which otherwise would cause the CMA to diverge. The
choice ofp for each adaptation stage should ensure a proper separation of the clusters. If
the value ofp is too large, a desired degree of separation among the clusters may not be
achieved. On the other hand, if a too smalls used, the algorithm attempts to impose a
very tight control in the size of clusters and may fail to do so. Apart from these two extreme
cases, the performance of the algorithm does not critically depend on the valuard
there exists a wide range of values foat each stage of the adaptation.

It is obvious that the criterion (28) is maximized when the equalizer output produces
the correctly signal constellation. Letpt be the solution of the adaptive equalizer based
on the criterion (28) that yields the correct signal constellation. Then the weight vectors
which produce the same function valueimp(wopt) are given by

b4 3

Wy = exp(j¢)Wopt, ¢ =0, >
It can be seen that the bootstrap MAP equalizer does not suffer from a serious phase shift
problem as the CMA does. Since the equalizer weights are always adapted using a 4-cluster
sub-model at each sample via the gradient algorithm (30), the complexity is always com-
patible to the minimum complexity of the 4-QAM case, and is only slightly more than the
CMA, as can be seen from Table 1. The 4 gxpvaluations can be implemented through
look up table in practice. Because each stage of the bootstrap MAP equalizer requires a
different set of algorithm parameters, the tuning of the bootstrap MAP equalizer is more
complicated than the concurrent CMA+DD one.

(32)

3. Simulation study

The performance of the concurrent CMA+DD and bootstrap MAP blind equalizers
were evaluated in a computer simulation using the standard CMA blind equalizer as a
benchmark. Two performance criteria were used to assess the convergence rate of a blind
equalizer. The first one was an estimated MSE at each adaptation sample based on a block
of Nuse Ts-spaced data samples

Nwmse

1 2
MSE= —— D=y~ 33
oW kzﬂ\g[y( )] =y (33)
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Note that this is the decision based MSE, not the true MSE achievable by an equalizer. The
second one was the maximum distortion (MD) measure defined by

Nf—1

Z,:O |ﬁ|_|ﬁmax|
| fimax! ’
Where{f,'}l{\]:-"ofl was the combined impulse response of the channel and equalizer defined

by W° x a® + W x & with « denoting convolution and/ y = N. + m — 1 being the length
of the Ty-spaced combined impulse response, and

Jimax = MaxX fi, Oglng—l} (35)

MD = (34)

The equalizer output signal constellation after convergence was also shownVusirg
60007-spaced testing data samples not used in adaptation.

TheT,/2-spaced equalizer ordemXhould be chosen sufficiently long to ensure the ca-
pability of opening closed eye and good steady-state performance, but not too long which
can cause the problems of seriously enhancing noise and slow convergence rate. The actual
value of 2n used in the simulation was found empirically. The values for various adaptive
algorithm parameters, namely adaptive gains for the CMA, DD and MAP, and widths for
different stages of the MAP equalizer, were also chosen empirically to ensure fast conver-
gence speed and good steady-state performance.

Example 1

The CIR, listed in Table 2, was a simulatég 2-spaced 6-tap channel and the data sym-
bols were 16-QAM. The noise power wa§ =0.0435, giving rise to a channel signal to
noise ratio (SNR) of 20 dB. The blind equalizer had7l82-spaced taps, and the length of
data samples for estimating the MSE at each adaptation sampléygas= 250. A length
of 2m = 18 for theT, /2-spaced blind equalizer was found to be sufficient to achieve a per-
fectreconstruction in the noise-free case. The adaptive gain for the CMA wa&00001,
and the two adaptive gains of the concurrent CMA+DD equalizer were ggt100.00001
anduy = 0.0005. For the bootstrap MAP equalizer, 10Q0spaced samples were used in
the first stage withu = 0.0005 andp = 1.6, while in the second stage the adaptive gain
wasu = 0.0005 with the cluster widtls = 0.6. Notice that the adaptive gain for the CMA
had to be chosen so small to avoid divergence.

Table 2
A simulatedT;/2-spaced 6-tap channel impulse
response, wherg&; denotes symbol period

Tap no. Real Imaginary
0 -0.2 03
1 -05 04
2 0.7 —0.6
3 0.4 03
4 0.2 01
5 -0.1 0.2
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Fig. 3. Comparison of convergence performance in terms of (a) estimated MSE and (b) MD measure for Exam-
ple 1.

The learning curves of the three blind equalizers, the CMA, the CMA+DD and the
bootstrap MAP, are compared in Fig. 3. The equalizer output signal constellations after
convergence are shown in Fig. 4. The results confirm the founding of [6] that the concurrent
CMA+DD equalizer has superior performance over the pure CMA. It can also be seen
that for this example the bootstrap MAP equalizer has the fastest convergence rate and the
lowest MD measure among the three blind equalizers. The signal constellation of the CMA
shown in Fig. 4b has an obvious phase rotation.
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Fig. 4. EqualizerT, /2-spaced input (a), and equalizEr-spaced output signal constellations after convergence
(b) the CMA, (c) the CMA+DD, and (d) bootstrap MAP for Example 1.

Example 2

The CIR was again given in Table 2 but the transmitted data symbols were 64-QAM.
Given a noise power o:fre2 =0.00183, the SNR was 40 dB. TH&/2-spaced equalizer
had 18 taps and the length of data samples for estimating the MSE at each adaptation was
Nmse = 500. The CMA had an adaptive gain=5x 10~/ (1 = 10~ caused divergence),
and the two adaptive gains of the concurrent CMA+DD equalizer were 5 x 10~/ and
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Fig. 5. Comparison of convergence performance in terms of (a) estimated MSE and (b) MD measure for Exam-
ple 2.

g = 0.0001. For the first stage of the bootstrap MAP equalizer, IQ&€paced samples
were used withu = 0.0002 andp = 8.0; for the second stage 1000 samples were used with
u = 0.0002 andp = 1.6; in the final third stage, the adaptive gain was= 0.0002 with
the cluster widthp = 0.6.

The convergence performance of the three blind equalizers, in terms of the estimated
MSE and MD measure, are depicted in Figs. 5a and 5b, respectively. It can clearly be
seen that both the concurrent CMA+DD and bootstrap MAP equalizers have much better
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Fig. 6. EqualizerT,/2-spaced input (a), and equalizEr-spaced output signal constellations after convergence
(b) the CMA, (c) the CMA+DD, and (d) bootstrap MAP for Example 2.

equalization performance over the CMA. The three equalizer output signal constellations
are shown in Fig. 6, where a phase rotation of the CMA signal constellation is evident in
Fig. 6b. The signal constellation of the bootstrap MAP equalizer depicted in Fig. 6d has the
best quality among the three blind equalizers. For this example the bootstrap MAP equal-
izer has a faster convergence speed and better steady-state performance than the concurrent
CMA+DD equalizer.



S Chen et al. / Digital Signal Processing 14 (2004) 18-36 31

14 !i\ T CMA T
1.2 Fifpp CMA+DD §
!
| A VY —
1 _‘;I V‘“W Fh.
w08 Y
= e
0.4 o, MNMWM
T T
0.2 =
N | U (N
0 6000 12000 18000 24000 30000
Symbol spaced sample
@)
1.2 : ;
'i \ CMA ——
1 U CMA+DD -~ |
\ \\ MAP """"""""
) \
(2] H
N AN
GEJ 0.6 \
'l’ N
S o4 ?tv N
Wi, S
0.2 p-I T2 -\W‘“m\,

0 6000 12000 18000 24000 30000

Symbol spaced sample
(b)

Fig. 7. Comparison of convergence performance in terms of (a) estimated MSE and (b) MD measure for Exam-
ple 3.

Example 3

In this example, 256-QAM data symbols were transmitted through the channel whose
CIR is given in Table 2. The noise power was setfo= 7.39 x 10~°, corresponding to a
SNR of 60 dB. Thel/2-spaced equalizer had 18 taps and the length of the data block for
estimating the MSE at each adaptation Wage = 1000. The adaptive gain for the CMA
had to be set ta. = 10~ to avoid divergence. The two adaptive gains of the concurrent
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(b) the CMA, (c) the CMA+DD, and (d) bootstrap MAP for Example 3.

after convergence

CMA+DD equalizer were set tp. = 10~ and .y = 0.00001. As this was a 256-QAM

case, a four-stage process was adopted by the bootstrap MAP equalizer. In the first stage,
20007,-spaced samples were used with= 0.00005 andp = 30.0. For the second stage,

2000 samples were used with= 0.00005 ando = 8.0. In the third stage, 2000 samples
were used withu = 0.00005 ando = 1.6. In the final fourth stage, the adaptive gain and
cluster width were set tp = 0.00005 andg = 0.6, respectively.
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The learning curves of the three blind equalizers, in terms of the estimated MSE and
MD measure, are depicted in Figs. 7a and 7b, respectively. The equalizer output signal
constellations of the three equalizers after convergence are plotted in Fig. 8. The results
again show that both the concurrent CMA+DD and bootstrap MAP equalizers have sig-
nificantly better equalization performance over the CMA. It can also be seen that for this
example the bootstrap MAP equalizer converges faster with better performance than the
concurrent CMA+DD equalizer. In fact, the signal constellation of the bootstrap MAP
equalizer depicted in Fig. 8d shows that a (near) perfect reconstruction of the transmitted
signal constellation is achieved.

Example 4

For this example, 256-QAM data symbols were transmitted throu@h/2a-spaced
22-tap channel whose CIR is given in Table 3. The noise power was sét:to4.24 X
107>, corresponding to a SNR of 60 dB. Thg/2-spaced equalizer had 26 taps and the
length of the data block for estimating the MSE at each adaptationMygs = 1000.
Although this 7, /2-spaced CIR appears to be very long, its leading and tailing taps are
very small, and the effective CIR length is much smaller than 22. We found out that a
T, /2-spaced equalizer with 26 taps was sufficient to achieve a perfect reconstruction in
the noise-free case. The adaptive gain for the CMA had to be settd 08 to avoid
divergence. The two adaptive gains of the concurrent CMA+DD equalizer were set to
pe = 1078 and s = 0.00001. In the first three stages of the bootstrap MAP equalizer,
20007;-spaced samples were used in each stagewith0.00002 andp = 30.0 for stage
one,u = 0.00002 ang = 8.0 for stage two, ang = 0.00002 ancp = 1.6 for stage three.

In the final fourth stage, the adaptive gain and cluster width were set2t®.00005 and
p = 0.6, respectively.

The learning curves of the three blind equalizers, in terms of the estimated MSE and
MD measure, are depicted in Figs. 9a and 9b, respectively. The equalizer output signal
constellations of the three equalizers after convergence are plotted in Fig. 10. The results
again show that for this example the bootstrap MAP equalizer converges faster and has
better equalization performance than the concurrent CMA+DD equalizer. The signal con-

Table 3

A simulatedT /2-spaced 22-tap channel impulse response, whedenotes symbol period

Tap no. Real Imaginary Tap no. Real Imaginary
0 0.0145 —0.0006 11 00294 —0.0049
1 0.0750 00176 12 —0.0181 00032
2 0.3951 00033 13 00091 00003
3 0.7491 —0.1718 14 —0.0038 —0.0023
4 0.1951 00972 15 00019 00027
5 —0.2856 01896 16 —0.0018 —0.0014
6 0.0575 —0.2096 17 00006 00003
7 0.0655 01139 18 00005 00000
8 —0.0825 —0.0424 19 —0.0008 —0.0001
9 0.0623 00085 20 00000 —0.0002

10 —0.0438 00034 21 00001 00006
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Fig. 9. Comparison of convergence performance in terms of (a) estimated MSE and (b) MD measure for Exam-
ple 4.

stellation of the bootstrap MAP equalizer depicted in Fig. 10d indicates that a perfect
reconstruction of the transmitted signal constellation is achieved.

4. Conclusions
In this paper, we have investigated two novel blind FIR equalizers, namely the con-

current CMA+DD and bootstrap MAP, with the popular CMA as a benchmark, under the
condition of carrier lock and constellation registration. These two novel blind FIR equaliz-
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Fig. 10. EqualizefT, /2-spaced input (a), and equalizBr-spaced output signal constellations after convergence
(b) the CMA, (c) the CMA+DD, and (d) bootstrap MAP for Example 4.

ers are attractive as they have low computational requirements that are only slightly more
complex than the very simple CMA. Simulation study has confirmed that these two blind
equalizers outperform the CMA considerably. The results have also demonstrated that the
bootstrap MAP equalizer has a faster convergence speed and better steady-state perfor-
mance than the concurrent CMA+DD equalizer. The tuning of the bootstrap MAP equalizer

is however more complicated than that of the concurrent CMA+DD equalizer. This initial
investigation suggests that further theoretical study of the concurrent CMA+DD and boot-
strap MAP blind FIR equalizers is warranted.
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