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Abstract—We propose a new sparse model construction
method aimed at maximizing a model’s generalisation capability
for a large class of linear-in-the-parameters models. The coordi-
nate descent optimization algorithm is employed with a modified
l1- penalized least squares cost function in order to estimate a
single parameter and its regularization parameter simultaneously
based on the leave one out mean square error (LOOMSE).
Our original contribution is to derive a closed form of optimal
LOOMSE regularization parameter for a single term model, for
which we show that the LOOMSE can be analytically computed
without actually splitting the data set leading to a very simple
parameter estimation method. We then integrate the new results
within the coordinate descent optimization algorithm to update
model parameters one at the time for linear-in-the-parameters
models. Consequently a fully automated procedure is achieved
without resort to any other validation data set for iterative model
evaluation. Illustrative examples are included to demonstrate the
effectiveness of the new approaches.

Index Terms—lasso, linear-in-the-parameters model, regular-
ization, leave one out errors, cross validation.

I. INTRODUCTION

In data based modeling for the construction of mathematical
models, one of the main aims should be good generalisation of
the models, i.e. the capability to approximate system output for
unseen data. A large class of nonlinear models including some
types of neural networks can be classified as linear models
which include statistically linear or linear-in-the-parameters
models [1], [2]. These models have provable learning and con-
vergence conditions and are well suited to be used for adaptive
learning. They are amenable to parallel implementations, and
have clear applications in many engineering applications [3]–
[5]. Two important aspects in system identification are choos-
ing parsimonious model structure and deriving robust model
parameter estimates for a smooth prediction surface.

Fundamental to the evaluation of model generalisation capa-
bility is the concept of cross-validation (CV) [6], which can be
used either in parameter estimation (e.g. tuning regularisation
parameter [7], [8], forming new parameter estimates [9]), or to
derive model selection criteria based on information theoretic
principles [10], which regularises model structure in order to
produce parsimonious models, since a parsimonious model is
favored by these criteria. Cross validation as required in most
algorithms for model generalization evaluation contributes
significantly to overall computational overheads. Luckily for
the linear-in-the-parameters models, the leave one out (LOO)

mean square error (LOOMSE) can be calculated without
actually splitting the training data set and estimating the
associated models, by making use of the Sherman-Morrison-
Woodbury theorem [11]. For linear models, the forward or-
thogonal least squares (OLS) algorithm efficiently constructs
parsimonious models [12], [13], and has been a popular
tool in associative neural networks such as fuzzy/neurofuzzy
systems [14], [15], wavelet neural networks [16], [17]. It is
shown the computation cost of LOOMSE is further reduced
via recurcive computation, which is used as the model term
selective criterion to in the forward orthogonal least squares
(OLS) algorithm [18].

Regularization methods are developed to carry out pa-
rameter estimation and model structure selection simulta-
neously [19], [20]. It has been shown [21], [22] that the
parameter regularization is equivalent to a maximized a poste-
rior probability (MAP) estimate of parameters from Bayesian
viewpoint by adopting a Gaussian prior for parameters. The
regularization [7], [8] uses a penalty function on l2 norms
of the parameters. A regularization parameter is equivalent to
the ratio of the related hyperparameter to the noise parameter,
lending to an iterative evidence procedure for solving the
optimal regularization parameters [19], [22].

Alternatively the model sparsity can be achieved by min-
imizing the l1 norm of the parameters. The l1 norm mini-
mization is fundamental to the basis pursuit or least absolute
shrinkage and selection operator (lasso) [23], [24]. Using the
l1-penalized cost function for a large class of linear-in-the-
parameters models leads to a standard quadratic programming
optimization problem. The advantage of lasso is that it can
achieve much sparser models by forcing more parameters to
zero, than models derived from the minimization of the lp

norm, as most lp norms will produces small, but nonzero,
values. The Bayesian interpretation for lasso is simply by
adopting an Laplacian prior for parameters. By exploiting
piecewise linearity of the problem, the least angle regression
(LAR) procedure [25] is developed for solving the problem
efficiently, facilitated by a single regularisation parameter
setting. If the model performance is measured by the model
predictive performance via a form of cross validation, the
optimal regularization can be easily determined using line
search.

The coordinate descent is a popular optimization tech-



nique by updating one variable at a time by minimizing a
single-variable sub-problem. It is particularly appealing if the
subproblem is simple. The coordinate descent algorithm has
been recently successfully applied for penalized least squares
problems [26], [27], where a fixed regulariser is decreasing
along a path, along which the current solutions are used to as
staring points to yield efficient solutions.

In this paper we propose a new coordinate descent optimiza-
tion algorithm, within which the l1 regularization is applied
to estimate model parameters one at a time. We show that for
a significant model term there exists a closed form of optimal
LOOMSE regularization parameter for a single term model,
which can be analytically computed without actually splitting
the data set. Consequently we proposed a very simple method
of simultaneously estimating the regularizer and parameter,
forming the basis of our proposed sparse model construction
algorithm for linear-in-the-parameters models. The method is
very simple to implement without resort to any other validation
data set for iterative model evaluation.

The paper is organized as follows. Section II introduces
the general linear-in-the-parameters problem and the proposed
cost function. Section III formulates a single term model,
derives LOOMSE for the single term model and presents
the proposed regulariser estimation formula for minimizing
LOOMSE. Section IV presents the proposed coordinate algo-
rithm which cyclically update a one term model with other
parameters fixed in turn. Simulated examples are utilized to
demonstrate the efficacy of the proposed algorithm in Section
V and some conclusions are given in Section VI.

II. PROBLEM FORMULATION

Consider the general nonlinear system represented by the
nonlinear model:

y(k) = f(x(k)) + e(k), (1)

where x(k) ∈ ℜm denotes the system input vector and y(k)
is the system output variable, respectively. e(k) is the system
white noise and f(•) is the unknown system mapping. The
system model (1) is to be identified from an observation data
set DN = {x(k), y(k)}Nk=1 using some suitable functional
which can approximate f(•) with arbitrary accuracy. One class
of such functionals is the kernel regression model of the form:

y(k) = ŷ(k) + e(k) =

nM∑
i=1

θiϕi(x(k)) + e(k), (2)

where ŷ(k) denotes the model output, θi are the model
weights, ϕi(x(k)) are the regressors, and nM is the total
number of candidate regressors or model terms.

By letting ϕi = [ϕi(x(1)) · · ·ϕi(x(N))]T , for 1 ≤ i ≤ nM ,

and defining

y =

 y(1)
...

y(N)

 , Φ = [ϕ1 · · ·ϕnM
],

θ =

 θ1
...

θnM

 , e =

 e(1)
...

e(N)

 , (3)

the regression model (2) can be written in the matrix form

y = Φθ + e. (4)

Let λ = [λ1, · · · , λnM
]T , with λj > δ, ∀j. δ is a predeter-

mined small positive number. Define the cost function

L(λ,θ) = ∥y −Φθ∥2 +
nM∑
j=1

λj |θ|j (5)

where ∥ • ∥ denotes Euclidean norm. We highlight that we do
need to have an individual regularization parameter associated
with each model term, and this makes our objective function
to be different from original lasso setting. The second term in
(5) helps to achieve a sparse model, since for fixed λ, we can
find

θ̂ = argmin
θ

{L(λ,θ)} (6)

via a standard quadratic programming algorithm. The resultant
solutions have many parameters exactly as zeros. In order
to obtain a model with good generalization, λ needs to be
optimized with respect to the models predictive performance
over an unseen data set. If all elements in λ are constrained to
have the same value, then a grid search can locate the optimal
λ efficiently, e.g. using ten fold cross validation.

III. OPTIMIZING REGULARIZATION PARAMETER FOR ONE
TERM MODEL USING LOOMSE

A. One term model and LOOMSE

We note that there is no analytical solution to (5) because
of the correlated terms. If however there is only one term in
the model, i.e. nM = 1, L(λ,θ) becomes

L(λ1, θ1) = ∥y − θ1ϕ1∥2 + λ1|θ|1 (7)

Let θ(LS)
1 =

ϕT

1 y

ϕT

1 ϕ1

denote the least square estimate. With λ1

being fixed, by setting the subderivatives ∂L(λ1,θ1)
∂θ1

= 0, we
have

ϕT
1 y − λ1

2
sign(θ1) = ϕT

1 ϕ1θ1 (8)

where

sign(s)

 = 1 if s > 0
= −1 if s < 0
∈ [−1, 1] if s = 0

(9)

yielding to the following simple solution:

θ
(lasso)
1 =

(
|θ(LS)

1 | − λ1

2ϕT
1 ϕ1

)
+

sign(θ(LS)
1 ) (10)



where
z+ =

{
z if z > 0
0 if z ≤ 0

(11)

Clearly if δ ≥ 2|ϕT
1 y|, θ

(lasso)
1 = 0. This is also the case for

any λ1 > 2|ϕT
1 y|. If δ < 2|ϕT

1 y|, and as we decrease λ1 from
2|ϕT

1 y| to δ, θ(lasso)1 increases its magnitude monotonically
from zero to

θ
(B)
1 =

(
|θ(LS)

1 | − δ

2ϕT
1 ϕ1

)
+

sign(θ(LS)
1 ). (12)

Whether a given ϕ1 may be reliably excluded from the
model can be indicated by the magnitude of ϕT

1 y, the cross
correlation between the model term and system output. For
any data set the cross correlation of an insignificant term may
be small, but cannot be exactly zero. However an insignificant
term may be assessed via its sample cross correlation to the
model output for randomly re-sampled data sets, which will
have different signs over different data sets. However if |ϕT

1 y|
is sufficiently large, then the sign change due to sampling is
unlikely, then it indicates that the term should be included in
the model.

Consider the general model selection problem from a set
of models produced using different setting of regularization
parameters of λ1. In this contribution we introduce analytically
choosing the regularization parameter for a significant model
term with 2|ϕT

1 y| > δ1, based on the concept of leave out
out cross validation but without actually splitting the data
set, where δ1 is an empirically predetermined positive value.
Denote a predictor as ŷ(k, λ1) if it is identified using all N
data points. The idea of LOO is that, each data point in the
estimation data set DN is sequentially set aside in turn, a
model is estimated using the remaining (N − 1) data, and the
prediction error is calculated based on the data point that was
removed. That is, for k = 1, · · · , N , the model is estimated
by removing the kth data point from the estimation set. The
output of the model based on (N − 1) data points (with the
kth data point removed) is denoted by ŷ(−k)(k, λ1), and the
LOO prediction error is calculated as

e(−k)(k, λ1) = y(k)− ŷ(−k)(k, λ1) (13)

Finally the leave one out mean square error (LOOMSE) is
obtained by computing the average of all these prediction
errors as J(λ1) = E

[
[e(−k)(k, λ1)]

2
]
. For models obtained

with different setting of regularization parameters of λ1, the
one associated with the minimal LOOMSE is chosen, i.e.

λopt
1 = arg{min

λ1

{J(λ1) =
1

N

N∑
k=1

[e(−k)(k, λ1)]
2}} (14)

and the resultant model is selected.
In the following we show that LOOMSE based on (2) can

be evaluated efficiently without actually sequentially splitting
the estimation data set, if there is only one term in the model.
For a model with nonzero θ

(lasso)
1 , i.e. 2|ϕT

1 y| > δ1, it is clear
that θ(lasso)1 satisfies

θ
(lasso)
1 =

(
ϕT

1 y − λ1

2
sign(θ(LS)

1 )
)
/ϕT

1 ϕ1 (15)

The model residual is

e(k, λ1) = y(k)−ϕ1(k)
(
ϕT

1 y−
λ1

2
sign(θ(LS)

1 )
)
/ϕT

1 ϕ1 (16)

If the data sample indexed at k is removed from estimation
data set, the leave one out lasso parameter estimator is obtained
by using only (N − 1) data points as

θ
(lasso,−k)
1

=
[(
ϕ

(−k)
1

)T
y(−k) − λ1

2
sign(θ(LS,−k)

1 )
]
/
(
ϕ

(−k)
1

)T
ϕ

(−k)
1

(17)

in which ϕ
(−k)
1 and y(−k) denote the regressor and output

vector respectively, with the kth element removed from ϕ1

and y, with the relations of(
ϕ

(−k)
1

)T
ϕ

(−k)
1 = ϕT

1 ϕ1 − [ϕ1(k)]
2 (18)(

ϕ
(−k)
1

)T
y(−k) = ϕT

1 y − ϕ1(k)y(k) (19)

The leave one out error evaluated at k is given by

e(−k)(k, λ1) = y(k)− θ
(LS,−k)
1 ϕ1(k)

= y(k)− ϕ1(k)(
ϕ

(−k)
1

)T
ϕ

(−k)
1

×
[(
ϕ

(−k)
1

)T
y(−k) − λ1

2
sign(θ(LS,−k)

1 )
]

(20)

From (18), we have

ϕ1(k)(
ϕ

(−k)
1

)T
ϕ

(−k)
1

=
ϕ1(k)/ϕ

T
1 ϕ1

1− [ϕ1(k)]2/ϕ
T
1 ϕ1

(21)

Substitute (19) and (21) into (20)

e(−k)(k, λ1) = y(k)− ϕ1(k)

1− [ϕ1(k)]2/ϕ
T
1 ϕ1

×
[
ϕT

1 y − ϕ1(k)y(k)−
λ1

2
sign(θ(LS,−k)

1 )
]
/ϕT

1 ϕ1

=
1

1− [ϕ1(k)]2/ϕ
T
1 ϕ1

×
[
y(k)− ϕ1(k)

(
ϕT

1 y − λ1

2
sign(θ(LS,−k)

1 )
)
/ϕT

1 ϕ1

]
(22)

If sign(θ(LS,−k)
1 ) = sign(θ(LS)

1 ), then by applying (16) we
have

e(−k)(k, λ1) = w(1)(k)e(k, λ1) (23)

where w(1)(k) = 1

1−[ϕ1(k)]2/ϕ
T

1 ϕ1

> 0. The leave one out

mean square error (LOOMSE) can be calculated as

J(λ1) =
N∑

k=1

[w(1)(k)]2e2(k, λ1) (24)

by assuming that sign(θ(LS,−k)
1 ) = sign(θ(LS)

1 ) holds for most
data samples. We point out that in order for sign(θ(LS,−k)

1 ) and
sign(θ(LS)

1 ) to be different, θ(LS)
1 needs to be very close to

zero, which would be a violation to the assumption 2|ϕT
1 y| >

δ1. Hence we can treat J(λ1) in (24) as the exact LOOMSE



for sufficiently large value of δ1. The setting of δ1 is that it
should be large enough for LOOMSE, but not too large in
order to allow significant model terms to be included.

We further note that

e(k, λ1) = ε(k) +
λ1

2ϕT
1 ϕ1

ϕ1(k)sign(θ(LS)
1 ) (25)

where ε(k) = y(k)−θ
(LS)
1 ϕ1(k) is the model residual of least

square estimate. By setting ∂J(λ1)
∂λ1

= 0, we obtain λ1 as

λ1 = −2sign(θ(LS)
1 )ϕT

1 ϕ1ϕ
T
1 W

(1)ε/ϕT
1 W

(1)ϕ1 (26)

where W(1) = diag{[w(1)(1)]2, · · · , [w(1)(N)]2}, where ε =
[ε(1), · · · , ε(N)]T ∈ ℜN . We then calculate

λopt
1 = max

[
min

[
2|ϕT

1 y|,
− 2sign(θ(LS)

1 )ϕT
1 ϕ1ϕ

T
1 W

(1)ε/ϕT
1 W

(1)ϕ1

]
, δ
]

(27)

in order to satisfy the constraint that δ ≤ λ1 ≤ 2|ϕT
1 y|.

B. Fast parameter estimate calculation

We are interested in whether the computational cost can be
reduced to minimal in estimating θ

(lasso)
1 . When 2|ϕT

1 y| > δ1,
our parameter estimate can be obtained by plugging (27) into
(10) to yield θ

(lasso)
1 with three possible results. If λ1 = δ,

then θ
(lasso)
1 = θ

(B)
1 . If λ1 = 2|ϕT

1 y|, then θ
(lasso)
1 = 0.

Otherwise we obtain a nonzero θ
(lasso)
1 with same sign, but

smaller in magnitude than θ
(B)
1 .

Consider substituting (26) into the following equation;

θ
(test)
1 =

(
|θ(LS)

1 | − λ1

2ϕT
1 ϕ1

)
sign(θ(LS)

1 ) (28)

which resembles (10), except that it is a continuous function
without thresholding operation as in (10). θ(test)1 is the same
as θ(lasso)1 of (10) if both θ

(LS)
1 and θ

(test)
1 have the same sign.

Otherwise it indicates θ
(lasso)
1 = 0 for (10) with thresholding.

Noting that ε = y − ϕ1θ
(LS)
1 , we obtain

θ
(test)
1 =

ϕT
1 W

(1)y

ϕT
1 W

(1)ϕ1

(29)

Thus we can use the following three extremely simple rules
to determine θ

(lasso)
1 ;

1) If 2|ϕT
1 y| < δ1, set θ(lasso)1 = 0. Otherwise goto Step

2).
2) If sign(θ(test)1 ) ̸= sign(θ(LS)

1 ) then set θ
(lasso)
1 = 0.

Otherwise goto 3).
3) Calculate both θ

(test)
1 and θ

(B)
1 , and set θ(lasso)1 as the

one with the smaller magnitude.

IV. THE PROPOSED COORDINATE DESCENT ALGORITHM

In this section we present the proposed coordinate descent
algorithm, incorporated with the fast calculation method in
Section IV, for solving (5) in which λ are optimized based
on LOOMSE. For a model with nonorthogonal terms, (10)
cannot be extended into vector form. In order to exploit the
simplicity of (27) and (10), we optimize each parameter one
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Fig. 1. The modeling results of the illustrative scalar function problem.

at a time using coordinate descent algorithm. Given an initial
solution of θ, each element in θ is optimized in turn by holding
other elements fixed. Using the coordinate descent algorithm,
we fit the associated parameter based on a single term model
towards the model residual that has not yet been explained by
all the fixed parameters. Hence (27) and (10) are still usable
with appropriate modification as detailed in the following. The
procedure is repeated until the parameters converge.

Specifically consider representing (2) as a single term model

ỹj(k) = θjϕj(x(k)) + e(k), (30)

where

ỹj(k) = y(k)−
nM∑

i=1,i ̸=j

θ̃iϕi(x(k)) (31)

i.e. θi for i ̸= j are fixed at θ̃i. Clearly the desired model
response ỹj(k) of (28) is simply the partial model residual



subject to θ̃i for i ̸= j.
The objective function is

L(λj , θj) = ∥ỹj − θjϕj∥2 + λj |θ|j (32)

where ỹj = [ỹj(1), · · · , ỹj(N)]T ∈ ℜN . To minimize
L(λj , θj) with respect to θj , we have solution similar to (15)
as

θ
(lasso)
j =

(
|θ(PLS)

j | −
λopt
j

2ϕT
j ϕj

)
+

sign(θ(PLS)
j ) (33)

where θ
(PLS)
j =

ϕT

j ỹj

ϕT

j ϕj

denotes the (partial) least square

estimate by fitting θj using ỹj(k) as the target.
The regularization parameter minimizing LOOMSE has a

similar form to (27) given by

λopt
j = max

[
min

[
2|ϕT

j ỹj |,

− 2sign(θ(PLS)
j )ϕT

j ϕjϕ
T
j W

(j)εj/ϕ
T
j W

(j)ϕj

]
, δ
]

(34)

by replacing y with ỹj , and ε with εj =
[εj(1), · · · , εj(N)]T ∈ ℜN , in which εj(k) =

ỹj(k) − θ
(PLS)
j ϕj(k) is model residual using all

current model parameters. W(1) is replaced by
W(j) = diag{[w(j)(1)]2, · · · , [w(j)(N)]2}, in which
w(j)(k) = 1

1−[ϕj(k)]2/ϕ
T

j ϕj

> 0.

Rather than directly calculating (34) and (33), which are
for analysis, in our proposed algorithm below we use fast
parameter estimation method as analyzed in Section IV. De-
note ϕ̄j = W(j)ϕj , αj = ϕT

j ϕj and βj = ϕT
j W

(j)ϕj .
These vector/variables are stored in memory to minimize the
computational cost, e.g. (see Step 3) below).

Initialize all θ̃i as zeros. we repeat the following four
steps for j = 1, 2, · · · , nM , 1, 2, · · · , nM , 1, 2, · · · until
convergence.

1) Generate the partial model residual vector ỹj according
to (31).

2) If 2|ϕT
j ỹj | > δ1, then set θ(lasso)j = 0 and goto Step 6);

Otherwise goto 3).
3) Calculate

θ
(PLS)
j = ϕT

j ỹj/αj (35)

θ
(B)
j = sign(θ(PLS)

j )
(
|θ(PLS)

j | − δ

2αj

)
(36)

θ
(test)
j = ϕ̄

T
j ỹj/βj (37)

4) If sign(θ(PLS)
j ) ̸= sign(θ(test)j ), then set θ

(lasso)
j = 0

and goto Step 6); Otherwise goto 5).
5) Set

θ
(lasso)
j = sign(θ(PLS)

j )min(|θ(B)
j |, |θ(test)j |) (38)

6) Set θ̃j = θ
(lasso)
j .

The algorithm is terminated when a predetermined number
of iterations is reached. Clearly with only two inner product
calculations, the computational cost of updating a single pa-
rameter is extremely cheap. However the overall convergence

rate of any coordinate descent algorithm can be problem
dependent and is difficult to analyze. Thus the convergence
of the proposed algorithm is still an open problem.

V. NUMERICAL EXAMPLES

Example 1: Consider using a RBF network to approximate
an unknown scalar function

f(x) =
sin(x)

x
(39)

A data set of two hundred points was generated from y =
f(x) + ξ, where the input x was uniformly distributed in
[-10,10] and the noise ξ was Gaussian with zero mean and
standard deviation 0.2. The data were very noisy. The Gaussian
function

ϕi(x) = exp(− (x− ci)
2

2τ2
) (40)

was used as the basis function to construct an RBF model, with
a kernel width τ2 = 10. All the two hundred data points were
used as the candidate RBF centre set for ci. The proposed
algorithm is applied with the parameters set as δ1 = 2 and
δ = 0.03. At the beginning all parameters are initialized as
zeros (empty model). The snapshot of the modeling process is
presented in Figure 1. It can be seen that over the iterations,
the mean square error (MSE) is reduced rapidly to 0.04 at
1000 iterations. The model increases to a large model size at
the beginning and reduces its size to 29 at 2000 iterations.
By comparing the model prediction this 29-term model with
noisy data and the true function in Figure 1(a), it is seen that
the proposed method is capable of constructing sparse model
to represent true function for this example.

Example 2: A simulated two dimensional nonlinear time
series is given by

y(k) = (0.8− 0.5 exp(−y2(k − 1))y(t− 1)

−(0.3 + 0.9 exp(−y2(k − 1))y(t− 2)

+0.1 sin(πy(k − 1)) (41)

500 data samples were generated given y(0) = 1, y(1) = 1.
The first 100 data points were used for training, and remaining
data samples were used for model validation. We set x =
[y(k − 1), y(k − 2)]T and used 100 training data points as
the candidate RBF centre set for ci. The Gaussian function
ϕi(x) = exp(− (∥x−ci∥2

2τ2 ) was used, with a kernel width τ =
0.3. The proposed algorithm is applied with the parameters set
as δ1 = 0.001 and δ = 0.5, resulting a sparse RBF model with
model size 36 at 5000 iterations. The modeling mean square
error for the validation data set by the resultant 36-term RBF
model is 5× 10−5. The phase plot of the actual data and that
of model predictions using the 36-term RBF model over the
validation data set is shown in Figure 2.

VI. CONCLUSIONS

We proposed a new coordinate descent optimization algo-
rithm for sparse model construction of linear-in-the-parameter
models from observational data. By using a penalized l1
least square cost function together with the coordinate descent
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Fig. 2. The phase plots of the nonlinear time series example. (a) Time series
data and (b) One-step ahead prediction over the validation data set.

framework, both the model parameter and the regularization
parameter are estimated one at a time by minimizing the
leave one out mean square error (LOOMSE). We derive a
closed form of optimal LOOMSE regularization parameter
for a single (assumingly significant) term model, for which
we show that the LOOMSE can be analytically computed
without actually splitting the data set leading to a very simple
parameter estimation method. We then integrate the new
results within the coordinate descent optimization algorithm
and develop the model construction algorithm for linear-in-the-
parameters models. Consequently a fully automated procedure
is achieved without resort to any other validation data set for
iterative model evaluation. Illustrative examples are included
to demonstrate the effectiveness of the new approaches. Future
researches will be focused on its applications to more practical
signal processing problems.
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