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High bandwidth-efficiency quadrature amplitude modulation (QAM) signaling widely adopted in high-
rate communication systems suffers from a drawback of high peak-to-average power ratio, which may 
cause the nonlinear saturation of the high power amplifier (HPA) at transmitter. Thus, practical high-
throughput QAM communication systems exhibit nonlinear and dispersive channel characteristics that 
must be modeled as a Hammerstein channel. Standard linear equalization becomes inadequate for such 
Hammerstein communication systems. In this paper, we advocate an adaptive B-Spline neural network 
based nonlinear equalizer. Specifically, during the training phase, an efficient alternating least squares (LS) 
scheme is employed to estimate the parameters of the Hammerstein channel, including both the channel 
impulse response (CIR) coefficients and the parameters of the B-spline neural network that models 
the HPA’s nonlinearity. In addition, another B-spline neural network is used to model the inversion 
of the nonlinear HPA, and the parameters of this inverting B-spline model can easily be estimated 
using the standard LS algorithm based on the pseudo training data obtained as a natural byproduct 
of the Hammerstein channel identification. Nonlinear equalisation of the Hammerstein channel is then 
accomplished by the linear equalization based on the estimated CIR as well as the inverse B-spline 
neural network model. Furthermore, during the data communication phase, the decision-directed LS 
channel estimation is adopted to track the time-varying CIR. Extensive simulation results demonstrate 
the effectiveness of our proposed B-Spline neural network based nonlinear equalization scheme.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

High-order quadrature amplitude modulation (QAM) signaling 
[1] has found its way into many recent high-rate wireless commu-
nications system standards, owing to its desired property of high 
achievable bandwidth efficiency. The higher the order of QAM sig-
naling, the better the bandwidth efficiency but also the higher the 
peak-to-average power ratio (PAPR) of the resulting transmit sig-
nal. As practical high power amplifiers (HPAs) exhibit nonlinear 
saturation characteristics [2–6], the high PAPR signal may drive the 
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HPA at transmitter into the nonlinear saturation region, which will 
significantly degrade the system’s achievable bit error rate (BER) 
performance. An effective means of compensating the nonlinear 
distortions of HPA is to implement a digital predistorter at the 
transmitter, and various predistorter techniques have been devel-
oped [7–13], which are capable of achieving excellent performance. 
However, implementing the predistorter is attractive for the down-
link, where the base station (BS) transmitter has the sufficient 
hardware and software capacities to accommodate the hardware 
and computational requirements for implementing digital predis-
torter. By contrast, in the uplink, implementing predistorter at 
transmitter is much more difficult, because it is extremely chal-
lenging for a pocket-size handset to absorb the additional hard-
ware and computational complexity required. Alternatively, in the 
uplink, the nonlinear distortions of the transmitter HPA can be 
dealt with at the BS receiver, which has sufficient hardware and 
software resources.
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With the nonlinear HPA at transmitter, the high-order QAM up-
link is a complex-valued (CV) nonlinear Hammerstein system and, 
moreover, the received signal is further impaired by the channel 
additive white Gaussian noise (AWGN) while the coefficients of 
the channel impulse response (CIR) are time-varying. Therefore, 
nonlinear equalization of such a CV time-varying Hammerstein 
channel is a challenging task. A recent work [14] developed a 
generic method for identification and inversion of CV stationary 
Hammerstein systems based on a novel CV B-spline neural net-
work approach. In this paper, we advocate the extension of this CV 
B-spline neural network based approach to nonlinear equalization 
of the time-varying QAM uplink with the nonlinear HPA at trans-
mitter. Our original contribution is twofold.

Firstly, during the training phase, we propose a similar ap-
proach to the one adopted by [14] to construct a nonlinear equal-
izer. More specifically, as in [14], a CV B-spline neural network 
is utilized to model the HPA’s nonlinearity, and an efficient alter-
nating least squares (ALS) identification algorithm is employed to 
estimate the CIR coefficients as well as the parameters of the CV 
B-spline neural network that models the static nonlinearity of the 
Hammerstein channel. Nonlinear equalization can then be natu-
rally accomplished by standard linear equalization based on the 
CIR as well as the inversion of the HPA’s nonlinearity. The inver-
sion of the HPA’s nonlinearity is implemented in [14] as a root 
finding problem based on the estimated B-spline neural network, 
which requires to carry out the iterative root finding procedure 
for detecting every data symbol and is time-consuming. We adopt 
a more efficient approach of directly inverting the HPA’s nonlin-
earity. Specifically, we use another CV B-spline neural network to 
model the inversion of the HPA nonlinearity. Although the HPA’s 
output at the transmitter is unobservable at the receiver for iden-
tifying this inverse model, the pseudo training data obtained as 
a natural byproduct of the Hammerstein channel identification can 
be used to estimate the parameters of the inverting B-spline model 
using the standard least squares (LS) algorithm. Secondly, in order 
to cope with the fading CIR, during the data communication phase, 
the usual decision-directed (DD) LS channel estimator is employed 
to track the time-varying CIR coefficients and, therefore, to adapt 
the equalizer. Extensive simulation results are presented to demon-
strate the effectiveness of our proposed B-spline neural network 
based nonlinear equalizer for combating the detrimental effects of 
the Hammerstein channel.

The remainder of this paper is organized as follows. Section 2
presents the high-order QAM uplink, where the channel is mod-
elled as a CV Hammerstein system with the nonlinear HPA at 
the transmitter and the fading CIR, while a nonlinear equalizer 
is required at the receiver to combat the adverse effects of the 
Hammerstein channel. Our adaptive B-spline neural network based 
nonlinear equalizer is detailed in Section 3, and the simulation 
results are presented in Section 4. Our concluding remarks are of-
fered in Section 5.

Throughout our discussions, a CV number x ∈ C is represented 
either by the rectangular form x = xR + jxI , where j = √−1, while 
xR = �[x] and xI = �[x] denote the real and imaginary parts of x, 
or alternatively by the polar form x = |x| · ej � x

with |x| denoting 
the amplitude of x and � x its phase. E[ ] denotes the expectation 
operator, while ( )−1 denotes the inversion. The conjugate opera-
tion is denoted by ( )∗ , while ( )T and ( )H represent the transpose 
and conjugate transpose operators, respectively. The L × L identify 
matrix is denoted by I L .

2. High-order QAM nonlinear uplink

We consider the M-QAM signaling and, therefore, the transmit-
ted symbols x(k) ∈ C, where k denotes the symbol index, take the 
values from the M-QAM symbol set
X= {d(2l − √
M − 1) + j · d(2q − √

M − 1),1 ≤ l,q ≤ √
M}, (1)

with 2d being the minimum distance between symbol points.

2.1. The channel model

With the transmitter HPA exhibiting nonlinear saturation char-
acteristics, the high-order QAM uplink can be represented by the 
generic CV Hammerstein system consisting of a cascade of two 
subsystems: a CV nonlinear static function �(•) : C → C that rep-
resents the HPA at the transmitter, followed by a CV linear dy-
namic system with a finite-duration impulse response (FIR) filter 
of order Lh which represents the dispersive channel. Furthermore, 
the received signal y(k) ∈ C is corrupted by the channel AWGN 
n(k) ∈ C. Therefore, y(k) is represented by

w(k) = � (x(k)) , (2)

y(k) =
Lh∑

i=0

hi w(k − i) + n(k), (3)

where the channel AWGN has the power of E
[|n(k)|2] = 2σ 2

n , and 
h = [

h0 h1 · · ·hLh

]T
is the CIR coefficient vector, while the HPA 

output w(k) is unobserved and, therefore, is unavailable at the re-
ceiver.

The most widely used HPA is the solid state power amplifier 
[5,6], whose nonlinearity �( ) is constituted by the HPA’s ampli-
tude response A(r) and phase response ϒ(r) given by

A(r) = gar(
1 +

(
gar
Asat

)2βa
) 1

2βa

, (4)

ϒ(r) = αφrq1

1 +
(

r
βφ

)q2
[degree], (5)

where r denotes the amplitude of the input to the HPA, ga is the 
small gain signal, βa is the smoothness factor and Asat is the satu-
ration level, while the parameters of the phase response, αφ . βφ , q1
and q2, are adjusted to match the specific amplifier’s characteris-
tics. The NEC GaAs power amplifier used in the recent wireless 
standards [5,6] for example has the parameter set

ga = 19, βa = 0.81, Asat = 1.4;
αφ = −48000, βφ = 0.123, q1 = 3.8, q2 = 3.7. (6)

Therefore, given the input x(k) = |x(k)| · ej � x(k)

to the HPA, the out-
put of the HPA can be expressed as

w(k) = A(|x(k)|) · ej
(� x(k)+ϒ(|x(k)|)). (7)

The operating status of the HPA may be specified by the output 
back-off (OBO), which is defined as the ratio of the maximum out-
put power Pmax of the HPA to the average output power Paop of 
the HPA output signal, given by

OBO = 10 · log10
Pmax

Paop
. (8)

The smaller OBO is, the more the HPA is operating into the non-
linear saturation region.

To model the time-varying nature of the CIR, it is usually as-
sumed that the CIR taps {h0, h1, · · · , hLh } follow the Rayleigh fading 
distribution with a given fading rate [15]. In this paper, we con-
sider the slow fading scenario. More specifically, as transmission is 
organized in frames and each frame contains N F symbols, we as-
sume that within a frame, the CIR taps remain constant, while be-
tween frames the CIR taps are faded with the normalized Doppler 
frequency of fd.
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2.2. The receiver model

To combat the adverse efforts of the dispersive CIR, the stan-
dard linear equalizer takes the form of an FIR filter with the or-
der Lg , and the output of this linear equalizer is

ŵ(k − ι) =
Lg∑

i=0

g∗
i y(k − i), (9)

where ι is known as the decision delay. In particular, if the CIR 
is minimum phase, ι = 0. If the HPA at the transmitter were lin-
ear, ŵ(k − ι) would be a sufficient statistic for estimating the 
transmitted data symbol x(k − ι). To guarantee an accurate equal-
ization, the length of the linear equalizer Lg should be chosen 
to be three to four times of the length of h, but not too long 
in order not to amplify the noise in the input signal too much. 
The well-known minimum mean square error (MMSE) solution 
[16] can readily be applied to obtain the linear equalizer’s weight 
vector g = [

g0 g1 · · · gLg

]T
. Define the CIR coefficient matrix H ∈

C
(Lg+1)×(LH +1)

H =

⎡
⎢⎢⎢⎢⎣

h0 h1 · · · hLh 0 · · · 0

0 h0 h1 · · · hLh

. . .
...

...
. . .

. . .
. . . · · · . . . 0

0 · · · 0 h0 h1 · · · hLh

⎤
⎥⎥⎥⎥⎦

= [
h0 h1 · · · hι · · · hLH

]
, (10)

where LH = Lh + Lg . Then the MMSE solution of g is expressed as

gMMSE =
(

H H H + 2σ 2
n

σ 2
w

I LH +1

)−1

hι, (11)

in which σ 2
w = E

[∣∣�(x(k))
∣∣2]

is the power of w(k) which needs to 
be estimated. The optimal value for ι can be chosen to minimise 
the MMSE of the combined linear system of h and g

Jcmmse(ι) = σ 2
w

(
1 − hH

ι

(
H H H + 2σ 2

n

σ 2
w

I LH +1

)−1
hι

)
. (12)

Since the transmitter HPA is nonlinear, the linear equalizer (9)
alone is insufficient for estimating the transmitted data symbol 
x(k − ι). If the inversion of the HPA’s nonlinearity, �−1( ), is 
known, then the transmitter HPA’s nonlinear distortion can be re-
moved, yielding the estimate of x(k − ι)

x̂(k − ι) = �−1(ŵ(k − ι)
)
. (13)

3. The proposed adaptive nonlinear equalizer

As discussed in the previous section, in order to accomplish the 
equalization objective, it is necessary to identify the Hammerstein 
channel, including both the CIR h and the HPA’s nonlinearity �( ), 
as well as to invert the nonlinearity �( ).

3.1. Complex-valued B-spline neural network

Note that the HPA’s nonlinearity, (4) and (5), is unknown to the 
receiver and w(k) is unobserved. We adopt the CV B-spline neural 
network [14,17,18] to represent the mapping ŵ = �̂(xR + j · xI ) :
C →C that is the estimate of �( ). Before introducing the B-spline 
modeling of �( ), we point out that the HPA �( ) satisfies the 
following conditions.

1) �( ) is a one to one mapping, i.e. it is an invertible and con-
tinuous function.
Fig. 1. Visualisation of the De Boor recursion for Po = 4 and Nd = 5, where Umin =
U3 and Umax = U6.

2) xR and xI are upper and lower bounded by some finite and 
known real values, where x = xR + j · xI denotes the input to 
the HPA �( ). Furthermore, the distributions of xR and xI are 
identical.

According to the property 2), we assume that Umin < xd < Umax, 
where Umin and Umax are known finite real values, while xd rep-
resents either xR or xI , namely, the subscript d is either R or I .

A set of univariate B-spline basis functions for xd ∈ R is 
parametrised by the order Po of a piecewise polynomial and a 
knot sequence which is a set of values defined on the real line 
that break it up into a number of intervals. To have Nd basis func-
tions, the knot sequence is specified by (Nd + Po + 1) knot values, 
{U0, U1, · · · , U Nd+Po }, with

U0 < U1 < · · · < U Po−2 < U Po−1 = Umin < U Po < · · · <
U Nd < U Nd+1 = Umax < U Nd+2 < · · · < U Nd+Po . (14)

At each end, there are Po − 1 “external” knots that are outside the 
input region and one boundary knot. As a result, the number of 
“internal” knots is Nd + 1 − Po . Given the set of predetermined 
knots (14), the set of Nd B-spline basis functions can be formed by 
using the De Boor recursion [19], yielding for 1 ≤ l ≤ Nd + Po ,

B(d,0)

l (xd) =
{

1, if Ul−1 ≤ xd < Ul,

0, otherwise,
(15)

as well as for l = 1, · · · , Nd + Po − p and p = 1, · · · , Po ,

B(d,p)

l (xd) = xd − Ul−1

U p+l−1 − Ul−1
B(d,p−1)

l (xd)

+ U p+l − xd

U p+l − Ul
B(d,p−1)

l+1 (xd). (16)

Here we have the subscript/superscript d = R or I .
The De Boor recursion is illustrated in Fig. 1. Po = 3 to 4 is 

sufficient for most practical applications. The number of B-spline 
basis functions should be chosen to be sufficiently large to provide 
accurate approximation capability but not too large as to cause 
overfitting and to impose unnecessary modeling complexity. More 
specifically, Nd = 6 to 10 is usually sufficient for accurate modeling 
in the finite and known interval 

[
Umin, Umax

]
. The two boundary 

knots are obviously related to the known values Umin and Umax, 
respectively. The Nd + 1 − Po internal knots may be uniformly 
spaced in the interval 

[
Umin, Umax

]
. The extrapolation capability 

of the B-spline model is influenced by the choice of the external 
knots. Note that there exist no data for xd < Umin and xd > Umax in 
identification but it is desired that the B-spline model has certain 
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Fig. 2. Complexity of the B-spline model with Po = 4 using the De Boor recursion, 
where {a, b} beside a node indicates that it requires a additions and b multiplica-
tions to compute the basis function value at this node.

extrapolating capability outside the interval 
[
Umin, Umax

]
. The ex-

ternal knots can be set empirically to meet the required extrapola-
tion capability. In fact, since no data appears outside 

[
Umin, Umax

]
, 

the precise choice of these external knots does not really matter, 
in terms of modeling accuracy. Also note that for QAM signals, the 
distribution of xd is naturally symmetric and, therefore, the knot 
sequence should be chosen to be symmetric too.

Using the tensor product between the two sets of univari-
ate B-spline basis functions [20], B(R,Po)

l (xR) for 1 ≤ l ≤ NR and 
B(I,Po)

m (xI ) for 1 ≤ m ≤ NI , a set of the new B-spline basis func-
tions B(Po)

l,m (x) can be formed and used in the CV B-spline neural 
network, giving rise to

ŵ = �̂(x) =
NR∑
l=1

NI∑
m=1

B(Po)

l,m (x)ωl,m

=
NR∑
l=1

NI∑
m=1

B(R,Po)

l (xR)B(I,Po)
m (xI )ωl,m, (17)

where ωl,m = ωl,mR + j · ωl,mI ∈ C, 1 ≤ l ≤ NR and 1 ≤ m ≤ NI , are 
the CV weights. Denote the weight vector of the B-spline model 
(17) as

ω = [
ω1,1 ω1,2 · · ·ωl,m · · ·ωNR ,NI

]T ∈C
NB , (18)

where NB = NR NI . The task of identifying the nonlinearity �( ) is 
turned into one of estimating the parameter vector.

Remark 1. Because of the piecewise nature of B-spline functions, 
given a value xd ∈ [

Umin, Umax
]
, there are only Po + 1 basis func-

tions with nonzero values at most. This is advantageous as Po can 
be set to a quite low value, e.g. Po = 4 is often sufficient. The com-
plexity of the De Boor recursion is, therefore, on the order of P 2

o
[17,19]. Fig. 2 shows the complexity of generating the B-spline ba-
sis function set for Po = 4 using the De Boor recursion. Note that 
the complexity does not depend on the number of basis functions 
Nd employed. For the B-spline model with the polynomial degree 
Po = 4, the total computational requirements are 26 additions and 
38 multiplications at most.

Thus, in the tensor-product B-spline model of (17), there are 
only (Po + 1)2 nonzero basis functions at most for any given input. 
This is in fact comparable to the conventional polynomial mod-
eling. For the polynomial model with the polynomial degree Po , 
there are also Po + 1 basis functions which are given by

1, xd, x2
d, · · · , xPo

d .

Thus, the tensor-product polynomial model also have (Po + 1)2

nonzero basis functions.
Remark 2. B-splines have been widely studied in the subjects of 
approximation theory and numerical analysis, owing to their many 
desired properties. In particular, the B-spline basis functions as 
model basis have the best approximation capability, because the 
basis function is complete. Although any polynomial function can 
also be used to approximate a continuous function, the B-spline 
functions are proven to be optimally stable bases [21–23]. A crit-
ical aspect to consider in a model representation is its stability 
with respect to perturbation of the model parameters, because in 
any identification, the data are inevitably noisy, which will perturb 
the model parameters away from their true values. A significant 
advantage of using the B-spline model with De Boor algorithm for 
functional approximation over many other polynomial forms is its 
superior numerical stability [21–23]. Let us further analyze this as-
pect. Assume that the real-valued true system can be represented 
by the polynomial model of degree Po as

y =
Po∑

i=0

ai · xi,

as well as by the following B-spline model exactly

y =
Nd∑

i=1

bi · B(d,Po)
i (x),

where y, x ∈ R. Because the identification data are noisy, the es-
timated model coefficients are perturbed from their true values 
to âi = ai + εi for the polynomial model, and to b̂i = bi + εi for 
the B-spline model. Assume that all the estimation noises εi are 
bounded, namely, |εi | < εmax. The upper bound of |y − ŷ| for the 
B-spline model can be worked out to be

|y − ŷ| =
∣∣∣ Nd∑

i=1

bi · B(d,Po)
i (x) −

Nd∑
i=1

b̂i · B(d,Po)
i (x)

∣∣∣
< εmax ·

∣∣∣ Nd∑
i=1

B(d,Po)
i (x)

∣∣∣ = εmax.

Observe that the upper bound of the B-spline model output per-
turbation only depends on the upper bound of the perturbation 
noise, and it does not depend on the input value x, the number 
of basis functions Nd or the polynomial degree Po . This confirms 
that the B-spline model has the maximum numerical robustness, 
which is well-known. Optimality of the B-spline model in terms of 
numerical stability is due to the convexity of its model bases, i.e. 
they are all positive and sum to one. By contrast, the upper bound 
of |y − ŷ| for the polynomial model can be worked out to be

|y − ŷ| =
∣∣∣ Po∑

i=0

ai · xi −
Po∑

i=0

âi · xi
∣∣∣ < εmax ·

∣∣∣ Po∑
i=0

xi
∣∣∣

Observe that the upper bound of the polynomial model output 
perturbation depends not only on the upper bound of the per-
turbation noise but also on the input value x and the polynomial 
degree Po . The higher the polynomial degree Po , the more serious 
the polynomial model may be perturbed, a well-known drawback 
of using polynomial modeling.

The excellent numerical stability of the B-spline model is illus-
trated using a simple example. Fig. 3(a) plots a quadratic polyno-
mial function y = 0.001x2 − 0.02x + 0.1 defined over x ∈ [0, 20] in 
solid line. Based on the knot sequence of {−5, −4, 0, 20, 24, 25}, 
this function is modeled as a quadratic B-spline model of y =
0.14B(d,2)

1 (x) − 0.10B(d,2)
2 (x) + 0.14B(d,2)

3 (x), which is depicted 
in Fig. 3(b) in solid line. We now draw three noises εi , 1 ≤
i ≤ 3, from a uniformly distributed random number (UDRN) in 
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Fig. 3. (a) The polynomial model with three perturbation noises drawn from a uni-
formly distributed random number (UDRN) in [−0.0001, 0.0001], (b) the B-spline 
model with three perturbation noises drawn from a UDRN in [−0.0001, 0.0001], 
(c) the B-spline model with three perturbation noises drawn from a UDRN in 
[−0.001, 0.001], and (d) the B-spline model with three perturbation noises drawn 
from a UDRN in [−0.01, 0.01].

[−0.0001, 0.0001], and add them to the three parameters in the 
two models, respectively, to simulate the effects of the noise in 
identification. Figs. 3(a) and (b) depict the ten sets of the per-
turbed functions in dashed line generated by perturbing the two 
models, respectively. It can be clearly seen from Fig. 3(a) that the 
polynomial model is seriously perturbed, but there is no notice-
able change at all in Fig. 3(b) for the quadratic B-spline model. 
To further demonstrate the maximum robustness of the B-spline 
model, we next draw three perturbation noises from a UDRN in 
[−0.001, 0.001], and add them to the three parameters of the B-
spline model. Again, the B-spline model is hardly affected, as can 
be seen from Fig. 3(c). We then draw three perturbation noises 
from a UDRN in [−0.01, 0.01] to add to the three B-spline pa-
rameters, and the results obtained are shown in Fig. 3(d). Observe 
from Figs. 3(a) and (d) that, despite of the fact that the strength 
of the perturbation noise added to the B-spline model coefficients 
is 100 times larger than that added to the polynomial model coef-
ficients, the B-spline model is much less seriously perturbed than 
the polynomial model.

3.2. Training

3.2.1. Hammerstein channel identification
The identification of the Hammerstein channel (2) and (3) then 

involves estimating the parameter vector ω of the CV B-spline neu-
ral network (17) that represents the HPA nonlinearity �( ) as well 
as the CIR coefficient vector h. Note that during the identification 
of this Hammerstein channel, h0 = 1 can be assumed because if 
this is not the case, h0 can always be absorbed into the CV static 
nonlinearity �( ), and the CIR coefficients are re-scaled as hi/h0
for 0 ≤ i ≤ Lh . Consider the joint estimation of ω and h based on 
a block of the training data with K samples 

{
x(k), y(k)

}K
k=1. The 

identification task can be formulated as the one that minimizes 
the cost function

J icf = 1

K

K∑
k=1

|e(k)|2 = 1

K

K∑
k=1

|y(k) − ŷ(k)|2, (19)

subject to the constraint h0 = 1, in which the model prediction 
ŷ(k) is given by

ŷ(k) =
Lh∑

i=0

hi ŵ(k − i) =
Lh∑

i=0

hi

NR∑
l=1

NI∑
m=1

B(Po)

l,m (x(k − i))ωl,m. (20)

Note that the cost function (19) is convex with respect to h when 
fixing ω, and it is convex with respect to ω given a fixed h. This 
is simply because the model (20) can be viewed as two different 
linear regression models, namely, one is with respect to h when 
fixing ω and the other is with respect to ω given a fixed h, each 
problem having a closed-form solution. According to [24,25], the 
estimates of ω and h are unbiased, irrespective the optimization 
algorithm used to minimize the cost function (19). We adopt the 
following efficient ALS procedure to estimate both ω and h.

Initialisation Noting h0 = 1, define the amalgamated parameter 
vector as

θ = [
ωT h1ω

T h2ω
T · · ·hLhω

T]T ∈C
(Lh+1)NB , (21)

and the B-spline basis function vector φ(k) ∈ R
NB for the input 

x(k) as

φ(k) = [
φ1,1(k) φ1,2(k) · · ·φl,m(k) · · ·φNR ,NI (k)

]T
(22)

with

φl,m(k) = B(Po)

l,m (x(k)), 1 ≤ l ≤ NR ,1 ≤ m ≤ NI . (23)

Further define the desired output vector as

y = [
y(1) y(2) · · · y(K )

]T ∈C
K , (24)

and the regression matrix P ∈ R
K×(Lh+1)NB as

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

φT(1) φT(0) · · · φT(1 − Lh)
...

...
...

...

φT(k) φT(k − 1) · · · φT(k − Lh)
...

...
...

...

φT(K ) φT(K − 1) · · · φT(K − Lh)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (25)

Then the LS estimate of θ is readily given by

θ̂ = (
P T P

)−1
P T y. (26)

Obviously, ̂θ is a unique and unbiased estimate of θ . Therefore, the 
first NB elements of ̂θ provide a unique and unbiased LS estimate 
for the weight vector of the CV B-spline neural network ω, which 
will be denoted as ω̂(0) .

Alternating LS estimation For 1 ≤ τ ≤ τmax, where τmax is the max-
imum number of iterations, perform:

a) Given the fixed ω̂(τ−1) , calculate the LS estimate ̂h(τ )
. Specif-

ically, define the regression matrix Q ∈C
K×(Lh+1) as
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Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

ŵ(1) ŵ(0) · · · ŵ(1 − Lh)
...

...
...

...

ŵ(k) ŵ(k − 1) · · · ŵ(k − Lh)
...

...
...

...

ŵ(K ) ŵ(K − 1) · · · ŵ(K − Lh)

⎤
⎥⎥⎥⎥⎥⎥⎦

, (27)

in which

ŵ(k) = �̂(x(k)) =
NR∑
l=1

NI∑
m=1

B(Po)

l,m (x(k))ω̂
(τ−1)

l,m . (28)

Then the LS estimate ̂h(τ )
is readily given by

ĥ
(τ ) = (

Q H Q
)−1

Q H y, (29)

ĥ(τ )
i = ĥ

(τ )

i

/̂
h

(τ )

0 , 0 ≤ i ≤ Lh. (30)

Since ω̂(τ−1) is a unique and unbiased estimate of ω, the LS es-

timate ĥ
(τ )

is guaranteed to be a unique and unbiased estimate 
of h.

b) Given the fixed ĥ
(τ )

, calculate the LS estimate ω̂(τ ) . Specifi-
cally, introduce

ϕl,m(k) =
Lh∑

i=0

ĥ(τ )
i B(Po)

l,m (x(k − i)) ∈C. (31)

Now introduce the regressor vector ϕ(k) ∈ C
NB given by

ϕ(k) = [
ϕ1,1(k) ϕ1,2(k) · · ·ϕl,m(k) · · ·ϕNR ,NI (k)

]T
, (32)

and define the regression matrix

S = [ϕ(1) ϕ(2) · · ·ϕ(K )]T ∈C
K×NB . (33)

Then the LS estimate ω̂(τ ) is readily given by

ω̂(τ ) = (
SH S

)−1
SH y. (34)

Since ĥ(τ )
is a unique and unbiased estimate of h, the LS estimate 

ω̂(τ ) must be a unique and unbiased estimate of ω.
A few iterations are sufficient for this estimation procedure to 

arrive at a highly accurate and joint unbiased estimate of h and ω
that is the unique minimum solution of the cost function (20).

Remark 3. It is clear that this ALS procedure guarantees to con-
verge, in fact, in no more than one iteration. A few iterations, 
typically 2 to 3, are adopted to improve the estimation accuracy 
or to reduce the estimation variances. More specifically, since ω̂(0)

is a unique and unbiased estimate of ω, ̂h(1)
is guaranteed to be a 

unique and unbiased estimate of h. On the other hand, the unique 
and unbiased estimate ̂θ of the high-dimensional amalgamated pa-
rameter vector θ ∈ C

(Lh+1)NB may have relative high estimation 
variances, owing to the low ratio of the available training data over 
the dimension (Lh + 1)NB . Consequently, The first NB elements of 
θ̂ , i.e. ω̂(0) may have a relatively poor estimation accuracy. With 
the fixed ĥ

(1)
, the LS estimate ω̂(1) has lower estimation variance 

than ω̂(0) . In the second iteration, the estimation accuracy of ĥ
(2)

and ω̂(2) will be further enhanced, in comparison to the estimation 
accuracy of ̂h(1)

and ω̂(1) .

3.2.2. Nonlinear equalizer construction
With the estimated HPA’s nonlinearity �̂( ) and the CIR tap 

vector ĥ, an estimated noise power is readily given by 2σ̂ 2
n =

J icf (̂h, ̂ω), while an estimate for the power of the unobserved w(k)

is given by
σ̂ 2
w = 1

K

K∑
k=1

∣∣ŵ(k)
∣∣2 = 1

K

K∑
k=1

∣∣�̂(x(k))
∣∣2

. (35)

Then the linear equalizer’s weight vector ̂gMMSE is readily provided 
by (11) based on the estimates of ̂h, 2σ̂ 2

n and σ̂ 2
w .

Given �(•), we need to compute its inversion as defined by 
x̂(k − ι) = �−1(ŵ(k − ι)) of (13) in order to complete the non-
linear equalization. This task is identical to find the CV root of 
ŵ(k) = �(̂x(k)), given ŵ(k), which can be solved iteratively based 
on the Gauss–Newton algorithm [14,17,18]. Given the estimated 
�̂( ) and during the data detection, the strategy of [14,17,18] re-
quires to iteratively calculate the root of ŵ(k − ι) = �̂

(̂
x(k − ι)

)
for 

each linearly equalized received signal sample ŵ(k − ι) in order to 
obtain the estimate ̂x(k − ι) of the transmitted data symbol x(k − ι). 
In order to avoid the iterative root finding procedure for every 
sample ŵ(k), it is more efficient to directly construct a mapping 
to model x(k) = (w(k)) = �−1(w(k)). We adopt another CV B-
spline neural network to represent the inverse mapping (w(k)). 
To learn the mapping x(k) = (w(k)), however, a training data 
set {w(k), x(k)} would be needed but w(k) is unobservable and, 
therefore, is not available. Fortunately, in the Hammerstein chan-
nel identification, we already obtain an estimate �̂( ) for the HPA’s 
nonlinearity �( ). Therefore, we may construct the “pseudo” train-

ing data set 
{

ŵ(k), x(k)
}K

k=1 for identifying the inverse mapping 
( ), where ŵ(k) is computed based on the estimated �̂( ).

More specifically, define the two knot sequences similar to (14)
for w R and w I . Similar to (17), we construct the inverting B-spline 
neural network

x̂ = ̂(w) =
NR∑
l=1

NI∑
m=1

B(Po)

l,m (w)αl,m

=
NR∑
l=1

NI∑
m=1

B(R,Po)

l (w R)B(I,Po)
m (w I )αl,m, (36)

where B(R,Po)

l (w R) and B(I,Po)
m (w I ) are respectively calculated 

based on (15) and (16), while

α = [
α1,1 α1,2 · · ·αl,m · · ·αNR ,NI

]T ∈ C
NB (37)

is the parameter vector of this inverting B-spline neural network. 
Here for notational simplicity, we assume that the same number of 
basis functions and the same polynomial degree are used for the 
two B-spline neural networks that model �(x) and (w). Over 
the pseudo training data set 

{
ŵ(k), x(k)

}K
k=1, the regression matrix 

B̂ ∈ R
K×NB can be formed as

B̂ =

⎡
⎢⎢⎢⎢⎢⎣

B(Po)
1,1 (1) B(Po)

1,2 (1) · · · B(Po)
NR ,NI

(1)

B(Po)
1,1 (2) B(Po)

1,2 (2) · · · B(Po)
NR ,NI

(2)

...
...

...
...

B(Po)
1,1 (K ) B(Po)

1,2 (K ) · · · B(Po)
NR ,NI

(K )

⎤
⎥⎥⎥⎥⎥⎦ , (38)

where B(Po)

l,m (k) = B(Po)

l,m (ŵ(k)), while the associated desired output 
vector is given by

x = [
x(1) x(2) · · · x(K )

]T
. (39)

Then the LS solution for α is readily given by α̂ = (
B̂

T
B̂
)−1

B̂
T
x.

3.3. Decision-directed adaptation

During the data communication phase, since the transmitter 
HPA �( ) remains the same, the estimated HPA’s nonlinearity �̂( )
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and its inversion ̂( ) = �̂−1( ) obtained during the training re-
main valid. Therefore, we do not need to update these two B-spline 
models’ parameter vectors, ω̂ and α̂. However, as the CIR changes 
from frame to frame, the estimated CIR tap vector ̂h obtained dur-
ing the training must be adapted. We adopt a decision-directed 
(DD) LS estimator to update the CIR coefficient vector during the 
data communication.

Specifically, let f be the data frame index, while ĥ
( f )

and 
ĝ( f )

MMSE denote the estimated CIR tap vector and the correspond-
ing linear equalizer weight vector, respectively, after the detection 
of the f -th data frame. Also the training based estimates are de-

noted as ĥ = ĥ
(0)

and ĝMMSE = ĝ(0)
MMSE, respectively. Given ĝ( f −1)

MMSE
and ̂( ) = �̂−1( ), the detection of the f -th data frame is car-
ried out by performing the nonlinear equalization of (9) and (13), 
and then quantising the resulting ̂x(k) to obtain the hard decisions 
x̃(k) for 1 ≤ k ≤ N F . Given the estimate of the HPA �̂( ) and based 
on the hard decisions of {̃x(k)}N F

k=1, the DD estimate of the HPA’s 
output can be calculated according to

w̃(k) = �̂(̃x(k)) =
NR∑
l=1

NI∑
m=1

B(Po)

l,m (̃x(k))ω̂l,m. (40)

By constructing the DD regression matrix Q̃ ∈C
N F ×(Lh+1) as

Q̃ =

⎡
⎢⎢⎢⎢⎢⎢⎣

w̃(1) w̃(0) · · · w̃(1 − Lh)
...

...
...

...

w̃(k) w̃(k − 1) · · · w̃(k − Lh)
...

...
...

...

w̃(N F ) w̃(N F − 1) · · · w̃(N F − Lh)

⎤
⎥⎥⎥⎥⎥⎥⎦

(41)

and denoting the corresponding channel observation vector as 
ỹ ∈C

N F , the DD LS estimate is readily be obtained as

ĥ
( f ) = (

Q̃
H

Q̃
)−1

Q̃
H

ỹ. (42)

Given ĥ
( f )

as well as the training based estimates 2σ̂ 2
n and σ̂ 2

w , 
we can obtain an updated linear equalizer’s weight vector ĝ( f )

MMSE
according to (11). Algorithm 1 summarizes the detection of each 
data frame, which involves two iterations of the above-mentioned 
DD adaptation.

Algorithm 1 Detection of f -th data frame and decision-directed 
updating.

1: Give ĝ( f −1,0)
MMSE = ĝ( f −1)

MMSE , ̂( ) = �̂−1( ) and �̂( ), as well as the observations 
y(k), 1 ≤ k ≤ N F ;

2: for t = 1 to 2 do
3: Given ̂g( f −1,t−1)

MMSE and ̂( ), perform data detection according to the nonlinear 
equalization of (9) and (13) to obtain the hard decisions ̃x(k − ι);

4: Given the detected symbols {̃x(k)}N F
k=1 and �̂( ), obtain the DD LS estimate 

ĥ
( f −1,t)

according to (42) and, therefore, obtain the updated equalizer weight 
vector ̂g( f −1,t)

MMSE ;
5: end for
6: ĝ( f )

MMSE = ĝ( f −1,2)
MMSE .

Remark 4. While maintaining a high system throughput, this 
decision-directed updating scheme introduces a fixed delay in de-
tecting each data frame. Since this delay is constant for every data 
frame, it will not cause problem even to real-time applications. Al-
ternative would be to allocate part of each data frame, e.g. 10%, for 
training, at a cost of significantly reducing the achievable system 
throughput.

3.4. Extension to nonlinear channel with Wiener HPA

For most practical systems, the transmitter HPA can be mod-
eled by a CV static nonlinear mapping. In some systems, HPAs may 
Table 1
Empirically determined knot sequences.

xR and xI (OBO = 5 dB)
−10.0,−9.0,−1.0,−0.9,−0.06,−0.04,0.0,0.04,0.06,0.9,1.0,9.0,10.0

xR and xI (OBO = 8 dB)
−10.0,−9.0,−0.9,−0.5,−0.04,−0.02,0.0,0.02,0.04,0.5,0.9,9.0,10.0

w R and w I

−20.0,−18.0,−3.0,−1.4,−0.8,−0.4,0.0,0.4,0.8,1.4,3.0,18.0,20.0

Fig. 4. Illustration of nonlinear equalization for the dispersive channel with the 
Wiener high power amplifier at transmitter.

exhibit memory [26]. By modeling an HPA with memory as a Ham-
merstein system, namely, a CV static nonlinearity �(•) : C → C

followed by a FIR linear filter, then the combined HPA and disper-
sive channel can also be represented by our model of (2) and (3), 
where the linear filter (3) is the convolution of the HPA’s FIR filter 
and the dispersive channel. Thus, the nonlinear equalization ap-
proach developed in this work can be applied directly to this class 
of nonlinear HPAs with memory.

Another popular model for nonlinear HPAs with memory is the 
Wiener model [4] which represents an HPA with memory by a 
FIR filter followed by a CV static nonlinearity. This class of non-
linear dispersive channels with the Wiener HPA at transmitter is 
depicted in the top part of Fig. 4, while the bottom part of Fig. 4
illustrates the corresponding nonlinear equalizer design. The same 
tensor-product B-spline model of (17) can be adopted to model 
the CV static nonlinearity �(•). However, the identification of the 
nonlinear system illustrated in Fig. 4 is a much more difficult task. 
In particular, nonlinear estimation methods, such as the gradient-
based algorithms [13,18,27] and the evolutionary algorithms [12], 
must be employed in order to estimate the parameter vectors of 
the linear filter FIRHPA(•), the B-spline model of the CV static non-
linearity �(•) and the linear filter FIRchn(•), which are inherently 
high complexity and may suffers from the drawback of slow con-
vergence.

Once the estimates of FIRHPA(•), �(•) and FIRchn(•) are ob-
tained, it is straightforward to applied the nonlinear equalizer 
design presented in this work. Specifically, the partial equalizers 
FIR−1

chn(•) and FIR−1
HPA(•) can readily be obtained based on the es-

timates of FIRchn(•) and FIRHPA(•), respectively. The inverse non-
linearity �−1(•) can be modeled by the same inverting B-spline 
model of (36), whose parameters can be estimated in a similar 
manner based on the pseudo training data 

{
ŵ O (k), ̂w I (k)

}K
k=1 cal-

culated using the estimates of FIRHPA(•) and �(•).

4. Simulation study

We considered the 64-QAM Hammerstein communication sys-
tem in which the HPA employed was described by (4) and (5)
with the parameter set given in (6). We assumed a quasi-frame-
static Rayleigh multipath channel with an exponentially decreasing 
power delay profile, where the average gain for the lth path was 
given by
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Table 2
Identification results for the CIR coefficient vector h of the Hammerstein stationary channel.

Tap No. True parameters Estimated parameters

OBO = 5 dB OBO = 5 dB OBO = 8 dB OBO = 8 dB
Es/No = 5 dB Es/No = 10 dB Es/No = 5 dB Es/No = 10 dB

h0 1 1 1 1 1
h1 −0.31606 + j0.47804 −0.31562 + j0.47833 −0.31580 + j0.47820 −0.31571 + j0.47825 −0.31586 + j0.47816
h2 0.09484 + j0.15786 0.09373 + j0.15752 0.09422 + j0.15767 0.09388 + j0.15756 0.09430 + j0.15769
h3 0.03030 + j0.05838 0.03005 + j0.05879 0.03016 + j0.05862 0.03012 + j0.05869 0.03020 + j0.05856

Fig. 5. Comparison of the HPA’s static nonlinearity �(•) and the B-spline estimated static nonlinearity �̂(•) under: (a) OBO = 5 dB and Es/No = 5 dB, (b) OBO = 5 dB and 
Es/No = 10 dB, (c) OBO = 8 dB and Es/No = 5 dB, and (d) OBO = 8 dB and Es/No = 10 dB.
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E
[|hl|

] = e
− l

η , 0 ≤ l ≤ Lh. (43)

In the simulation, the channel degradation factor was chosen to 
be η = 2 while the channel length was set to Lh = 3. Each frame 
contained N F = 2000 64-QAM data symbols, while the first frame 
was used for training, yielding K = N F = 2000. The CIR coeffi-
cients hl for 0 ≤ l ≤ Lh changed at the beginning of each frame 
according to a Rayleigh fading distribution with the normalized 
Doppler frequency of fd = 0.0001, but they remained constant 
within a frame. The linear equalizer’s length was chosen to be 
Lg = 15 and the decision delay was set to ι = 0. The piecewise 
quartic polynomial of Po = 4 was chosen as the B-spline basis 
function, and the number of B-spline basis functions was set to 
NR = NI = 8. The empirically determined knot sequences for the 
two B-spline models covering different HPA operating conditions 
are listed in Table 1. The system’s signal-to-noise ratio (SNR) was 
defined as SNR = Es

/
No, where Es was the average power of 

the input signal x(k) to the HPA and No = 2σ 2
n was the channel 

AWGN’s power.

4.1. Training performance

We first considered the stationary channel, whose CIR tap vec-
tor h is listed in Table 2, in order to evaluate the training perfor-
mance of the proposed B-spline neural network based nonlinear 
equalizer. The ALS algorithm of Section 3.2 was used to identify 
this Hammerstein channel, specifically, to provide both the esti-
mates of the CIR vector ̂h and the B-spline neural network’s weight 
vector ω̂. It was observed that no more than four iterations were 
sufficient for the algorithm to obtain the highly accurate estima-
tion results as summarized in Table 2 as well as illustrated in 
Fig. 5. Indeed, observe from Table 2 that the identification of the 
CIR tap vector in the nonlinear Hammerstein channel was achieved 
with high precision even under the adverse operational condition 
of OBO = 5 dB and Es

/
No = 5 dB. Note that under the HPA oper-

ational condition of OBO = 5 dB, the peak amplitude of |x(k)| was 
less than 0.09, while under the condition of OBO = 8 dB, the peak 
amplitude of |x(k)| was less than 0.06. The results of Fig. 5 clearly 
demonstrate the capability of the proposed CV B-spline neural 
network to accurately model the HPA’s nonlinearity �( ). To be 
more specifically, within the HPA’s operational input range, the es-
timated amplitude response exhibits negligible deviation from the 
true HPA’s amplitude response, while the maximum error in the 
estimated phase response is no more than 0.01 radian. From Fig. 5, 
it can also be seen that the channel noise n(k) has little effort on 
the accuracy of the amplitude response estimate, but the noise has 
noticeable influence on the accuracy of the phase response esti-
mate.

The effectiveness of the proposed CV B-spline inversion based 
on the pseudo training data is next demonstrated, and Fig. 6 de-
picts the combined response of the HPA’s true nonlinearity and 
its estimated inversion obtained under the operating conditions 
of OBO = 5 dB and Es

/
No = 5 dB as well as OBO = 5 dB and 

Es
/

No = 10 dB, respectively. The results of Fig. 6 show that the 
CV B-spline inversion estimated based on the pseudo training data 
is highly accurate. Specifically, within the HPA’s operating input 
range, the combined amplitude response of the HPA’s true nonlin-
earity and the estimated B-spline inversion matches the ideal re-
sponse, while the combined phase response only deviates from the 
ideal response of zero by no more than 0.01 radian. For the given 
operating condition of OBO = 8 dB and Eb

/
No = 10 dB, Fig. 7 plots 

the HPA’s input signal x(k), the noisy Hammerstein channel’s out-
put signal y(k), the linearly equalized signal ŵ(k) based on the 
estimated CIR ĥ, and the nonlinearly equalized signal x̂(k) based 
on the estimated CIR ĥ and the estimated B-spline inversion ̂( ). 
Fig. 6. Combined response of the true HPA and its estimated B-spline inversion un-
der OBO = 5 dB and the SNR of: (a) Es/No = 5 dB, and (b) Es/No = 10 dB.

The results of Fig. 7 further illustrate the power of the proposed B-
spline neural network based nonlinear equalizer for combating the 
dispersive channel as well as compensating the transmitter HPA’s 
nonlinearity.

The achievable BER performance of the proposed nonlinear 
equalizer constructed based on the estimated CIR ĥ and the esti-
mated B-spline inversion ̂( ) are depicted in Fig. 8 under the two 
operating conditions of the transmitter HPA, in comparison to the 
BER performance attained by the standard linear equalizer. It can 
be seen from Fig. 8 that as expected, the linear equalization alone 
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Fig. 7. The case of OBO = 8 dB and Es/No = 10 dB: (a) the HPA’s input signal x(k), (b) the noisy Hammerstein channel’s output signal y(k), (c) the linearly equalized signal 
ŵ(k) based on the estimated CIR, and (d) the nonlinearly equalized signal ̂x(k) based on the estimated CIR and the estimated B-spline inversion of the HPA’s nonlinearity.
Fig. 8. The bit error rate performance comparison of the proposed CV B-spline neu-
ral network based nonlinear equalizer, the standard linear equalizer and the polyno-
mial based nonlinear equalizer for the stationary channel case with the transmitter 
nonlinear HPA operating conditions given by OBO = 5 dB and OBO = 8 dB, respec-
tively.

is incapable of compensating the transmitter HPA’s nonlinearity. 
More specifically, for the 64-QAM signaling, the HPA operates at 
OBO = 5 dB exhibits the relatively severe nonlinearity and as a re-
sult, the linear equalizer performs poorly with a high error floor of 
above 10−2. By adopting the proposed nonlinear equalizer, a large 
part of the nonlinearity is removed, which enables the equalizer to 
lower the error floor by the three orders of magnitude, compared 
with the linear equalizer. Even when the transmitter HPA operates 
under the condition of OBO = 8 dB, which only exhibits relatively 
mild nonlinearity, the linear equalizer still shows an error floor of 
above 10−4. By contrast, the proposed nonlinear equalizer signifi-
cantly outperforms the linear equalizer, as confirmed in Fig. 8.

As mentioned in Section 3.1, two tensor-product polynomial 
models, both having a polynomial degree of Po in each dimension, 
can also be utilized to estimate the CV HPA’s static nonlinearity 
�(•) and its inversion �−1(•), respectively, based on the same 
identification procedure developed in Section 3, yielding a polyno-
mial based nonlinearity equalizer. In our simulation study, we also 
adopted the tensor-product polynomial model of degree Po = 4, 
which had 25 basis functions that was comparable to the tensor-
product B-spline model of at most 25 nonzero basis functions for 
any given input. The achievable BER performance of this polyno-
mial based nonlinear equalizer are also shown in Fig. 8, where it 
can be seen that the performance of the polynomial based non-
linear equalizer is slightly inferior to that of the proposed B-spline 
based nonlinear equalizer, particularly when the HPA is operating 
in the severe nonlinear region.

4.2. Decision-directed adaptive performance

We then investigated the achievable performance of the pro-
posed decision-directed adaptive B-spline nonlinear equalizer 
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Fig. 9. The bit error rate performance comparison of the proposed decision-directed 
adaptive B-spline based nonlinear equalizer and the non-adaptive B-spline based 
nonlinear equalizer for the frame faded channel case with the transmitter nonlinear 
HPA operating conditions given by OBO = 5 dB and OBO = 8 dB, respectively.

based on the DD adaptive scheme of Algorithm 1, under the envi-
ronment of frame-fading CIR, where the CIR tap coefficients faded 
at the beginning of each frame with the normalized Doppler fre-
quency of fd = 0.0001, but they remained constant within each 
frame. Fig. 9 compares the performance of the proposed DD adap-
tive B-spline nonlinear equalizer with that of the non-adaptive 
B-spline nonlinear equalizer which was fixed based on the training 
results obtained in the first frame. As expected, the non-adaptive 
nonlinear equalizer is unable to track the time-varying channel, 
and its BER performance is very poor. By contrast, with the aid of 
the DD adaptive scheme of Algorithm 1, the DD adaptive B-spline 
nonlinear equalizer is capable of tracking the time-varying chan-
nel reasonably well and, consequently, significantly improves the 
attainable BER performance. Observe from Fig. 9 that for the ex-
tremely low SNR conditions, the DD adaptive nonlinear equalizer 
actually performs worse than the non-adaptive one. Specifically, 
given the OBO = 5 dB and SNR ≤ −1 dB as well as given the 
OBO = 8 dB and SNR ≤ −3 dB the non-adaptive equalizer out-
performs the DD adaptive equalizer. This is due to the well-known 
error propagation phenomenon. Under such extremely low SNR 
conditions, a large portion of the decisions are erroneous, which 
degrade the DD adaptive algorithm severely. Fig. 10 compares the 
performance of the DD adaptive B-spline based nonlinear equalizer 
with that of the DD adaptive polynomial based nonlinear equalizer. 
The results of Fig. 10 demonstrate that the DD adaptive B-spline 
based nonlinear equalizer outperforms the DD adaptive polynomial 
based nonlinear equalizer.

5. Conclusions

We have proposed a novel CV B-spline neural network based 
nonlinear equalizer for the nonlinear Hammerstein communica-
tion system that employs high-order QAM signaling with non-
linear transmitter high power amplifier and communicates over 
the dispersive channel. Specifically, we have extended a recent 
development of the CV B-spline neural network based approach 
to construct nonlinear equalizer for Hammerstein channels, which 
employs a CV B-spline neural network to model the HPA’s non-
linearity as well as uses another CV B-spline neural network to 
model the inversion of the HPA’s nonlinearity. During training, the 
Hammerstein channel model parameters that include the CIR co-
efficients and the B-spline neural network weights can readily be 
estimated using a highly efficient ALS algorithm, while the weights 
Fig. 10. The bit error rate performance comparison of the adaptive B-spline based 
nonlinear equalizer and the adaptive polynomial based nonlinear equalizer for the 
frame faded channel case with the transmitter nonlinear HPA operating conditions 
given by OBO = 5 dB and OBO = 8 dB, respectively.

of the B-spline inversion model can be identified using a standard 
LS algorithm based on the pseudo training data as a natural by-
product of the Hammerstein channel model identification. More-
over, a decision-directed adaptive algorithm has been adopted to 
track the time-varying channel during data communication. The 
effectiveness of our proposed nonlinear equalization approach has 
been demonstrated in a simulation study, and the results obtained 
confirm that our B-spline neural network based nonlinear equal-
izer is capable of efficiently combating the dispersive transmis-
sion medium and compensating the detrimental transmitter HPA’s 
nonlinearity as well as effectively tracking the time-varying chan-
nel.
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