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Nonlinear time series modelling and 
prediction using Gaussian RBF networks 
with enhanced clustering and RLS learning 

S. Chen 

Indexing terms: Neural networks. Time series 

An improved clustering and recursive least squares (RLS) learning 
algorithm for Gaussian radial basis function (RBF) networks is 
described for modelling and predicting nonlinear time series. 
S i g d i i t  performance gain can be achieved with a much smaller 
network compared with the usual clustering and RLS method. 

Introduction: A powerful learning method for RBF networks is 
clustering and least squares learning [1,2]. The RBF centres are 
obtained by means of a K-means clustering algorithm while the 
network weights are learnt using the RLS algorithm. The K-means 
clustering algorithm is an unsupmised learning method based 
only on input training samples. It partitions the input data set into 
n clusters and obtains the cluster centres by attempting to mini- 
mise the total squared error incurred in representing the data set 
by the n cluster centres [3]. The traditional r-means clustering 
algorithm can only achieve a local optimal solution, which 
depends on the initial locations of cluster centres. A consequence 
of this local optimality is that some initial centres can become 
stuck in regions of the input domain with few or no input pat- 
terns, and never move to where they are needed. This wastes 
resources and results in an unnecessarily large network. 

Recently, an improved r-means clustering algorithm has been 
proposed [4], which overcomes the above-mentioned drawback. By 
using a cluster variation-weighted measure, the enhanced K-means 
partitioning process always converges to an optimal or near-opti- 
mal configuration, independent of the initial centre locations. This 
enhanced K-means clustering algorithm is ideal for learning RBF 
centres from time series samples for the purpose of modelling. 

Method: The RBF network structure considered is the normalised 
Gaussian RBF network 

where 

A normalised Gaussian basis function features either localised 
behaviour similar to that of a Gaussian function or nonlocalised 
behaviour similar to that of a sigmoid function, depending on the 
location of the centre [5 ] .  This is often a desired property. 

The RBF centres are learnt using the improved K-means cluster- 
ing method [4] 

Ci(k + 1) = c,(k) + Ma(x(k))bJ(x(k! - ct(k))l (3) 

if w,IIx - c,112 5 wjllx - c711* for all j # i 

(4) 

where the membership function 

1 
0 otherwise M A X )  = ( 

and v, is the variation or ‘variance’ of the ith cluster. To estimate 
variation v,, the following updating rule is used: 

v,(k + 1) = av,(k) + (1 - a )  [h l , (x (k ) ) ( (x (k )  - c,(k)112] 

( 5 )  

The initial variations v,(O), 1 5 i S n, are set to the same small 
number, and a is a constant slightly less than 1. The learning rate 
for centres, 1, is self-adjusting based on an ‘entropy’ formula [4] 

v =  1 -H(c:,;..,o,)/ln(n) (6) 

where 

The widths o:, 1 5 i S n can be calculated, after the clustering 
process has converged, from the variances of the clusters. Because 
the optimal K-means clustering distributes the total variation 
equally among the clusters, a universal width can be used for all 
the nodes. The network weights w,, 1 S i 5 n are learnt using the 
usual RLS algorithm. 
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Fig. 1 Noisy observations of two-dimensional time series example 
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Fig. 2 Mean square error against centre number for two-dimensional 
time series example 
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Results: The method was applied to nonlinear time series model- 
ling and prediction. The first example was a simulated two-dimen- 
sional system 

y(k) = [0.8 - 0.5exp(-y2(k - l ) ) ]y(k - 1) 
- [0.3 + O.Sexp(-y2(k - l))]y(k - 2) 
+ O.ls in(~y(k  - 1)) + e ( k )  (8)  

The noise e(k) had a zero mean and variance 0.01, Two thousand 
samples of the time series are depicted in Fig. I. The first 1000 
points were used as the training set and the last 1000 as the test 
set. Fig. 2 shows the mean square error (MSE) as a function of the 
centre number. 
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Fig. 3 Noise-free two-dimensional system and RBF centre locations 
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Fig. 4 Multistep prediction performance for noisy Mackey-Glass lime 
series 

Eight centres are sufficient for modelling this time series. The 
noise-free system is a limit cycle shown in Fig. 3, where the eight 
centre locations obtained by the enhanced K-means clustering 
algorithm from noisy data are also depicted. From Fig. 3 it can he 
seen that an optimal centre configuration was obtained. When the 
network model output was fed back to the input, the iterative net- 
work output generated a limit cycle which was indistinguishable 
from the system limit cycle. The results shown here are better than 
some previous results [2,6]. Furthermore, the present method 
requires a smaller network size. 

The second example was a Mackey-Glass time series prediction. 
To make the task more realistic, a small amount of noise was 
added to the time series samples, giving rise to a signaVnoise ratio 
of 50dB. The network model obtained was used to compute mult- 
istep prediction over a noisy test set not used in training. The 
results are illustrated in Fig. 4, where it can be seen that good pre- 
dictive accuracy was achieved using a network of only 20 centres. 

Conclusions: An enhanced clustering and RLS learning algorithm 
has been applied to nonlinear time series modelling and prediction 
using Gaussian RBF networks. The improved K-means clustering 
algorithm ensures that an optimal centre configuration can be 
achieved, resulting in a smaller network size with better perform- 
ance. 
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All-optical multiplexing of femtosecond 
signals using an AlGaAs nonlinear 
directional coupler 
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The authors demonstrate multiplexing of femtosecond signals 
without the usual 3dB loss of conventional passive multiplexers 
using an AlGaAs nonlinear directional coupler controlled by 
strong pump pulses. 

One of the most powerful applications of integrated all optical 
switching devices is the multi/demultiplexing of high repetition 
rate signals. All-optical demultiplexing using nonlinear directional 
couplers (NLDCs) has been successfully demonstrated in recent 
years [I]. All-optical multiplexing has also been demonstrated 
using fibres [2,3]. However, because of the weak nonlinearity in 
the fibre, lengths of the order of kilometres are required. Thus, 
such devices suffer from long transit times which can be unaccept- 
able, and from environmental effects of temperature and pressure. 
The passive means of multiplexing, using Y-junctions, results in a 
3dB excess loss. Using strong pump pulses to control a weak sig- 
nal pulse train through crossphase modulation, we demonstrate an 
eficient and compact method of multiplexing femtosecond signals 
using an NLDC, operated with photon energy below half the 
handgap. 

The experiment was performed with an NaCl colour centre laser 
operating at a wavelength which corresponds to the low loss tele- 
comuunication window of 1.55pn. Additive pulse modelocking 
(APM) of the laser produces W f s  pulses at 76MHz. A 2.2cm 
long, strip-loaded AIGaAs, half heat length waveguide coupler 
was used for this experiment where the guiding region is made of 
A& IsGa, 82As and the cladding regions of Al, ,Ga, ,sAs. 
Waveguides were formed using standard optical lithography and 
reactive ion etching. 

A schematic diagram of the experimental arrangement is shown 
in Fig. 1. Using a polarising beamsplitter, the strong pump (trans- 
verse magnetic field) and the weak signals (transverse electric field) 
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