The value of the Hooge parameter o estimated for MESFETs
was of the same order of magnitude as for TLM structures,
o = (2-3) x 107, This value of « is three orders of magnitude
smaller than that reported for thin GaN films earlier {1 — 4]. We
also found that the value of o in MESFETs does not depend on
the gate voltage V,, i.e. on the channel volume (thickness). Since o
does not depend on the device geometry and volume, we conclude
that the 1/f noise in thin GaN films is of bulk origin. Note that
electrons in these GaN films are not degenerate, since the electron
density of states in GaN at room temperature N, = 2.3 x 10'¥ e
(i.e larger than the electron concentration).
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Fig. 2 Temperature dependence of noise SyIL7 for MESFET at different
frequencies of analysis

Conclusion: Measurements of low-frequency noise in GaN TLM
and MESFETs structures fabricated on 60nm thick film have
shown that, at room temperature, the noise has the form of 1//-
like noise. The temperature dependence of the noise shows the
weak contribution of generation-recombination noise at elevated
temperatures. The Hooge parameter o for TLM structures and
MESFETs is approximately the same and does not exceed
o = (2-3) x 1073, This value of o is three orders of magnitude
smaller than that reported for thin GaN films earlier and is of the
same order of magnitude as for GaN/AIGaN HFETs. In GaN
MESFETs, o does not depend on the gate voltage, indicating that
the noise originates in the butk.
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Adaptive minimum-BER linear multiuser
detection for CDMA signals in multipath
channels with 4-QAM constellation

A.K. Samingan, S. Chen and L. Hanzo

An adaptive minimum-BER linear multiuser detector called the
least BER (LBER) algorithim, originally developed for BPSK
modulation, 1s extended to 4-QAM modulation.

Introduction: The design of linear multiuser detectors is often
based on the minimum mean square error (MMSE) principle.
Adaptive MMSE detectors can readily be implemented using the
LMS algorithm [1]. However, it is well known that the MMSE
solution can in cerlain cases be distinctly inferior to the optimal
minimum bit error rate (MBER) solution. Adaptive MBER linear
multiuser detectors have recently been developed (2, 3]. These two
adaptive MBER multiuser detectors were inspired, respectively, by
the two adaptive MBER linear equalisers called the approximate
MBER (AMBER) algorithm [4] and the LBER algorithm [5], and
they are both designed for a binary signalling scheme. Previous
studies [3, 5] have shown that the LBER algorithm performs bet-
ter than the AMBER algorithm in terms of convergence speed and
steady-state BER. We extend the LBER detector to complex-val-
ued signalling schemes. The 4-QAM modulation scheme is used
for this extension.

channel

N
chip rate

A sampler

cade filters
Fig. 1 Discrete-time model of synchronous CDMA downlink

System model: The discrete-time model of the synchronous
CDMA downlink system with NV users and M chips per symbol is
depicted in Fig. 1, where b(k) = bp k) + jbi (k) € {£1 %}
denotes the kth symbol of user 7, the unit-length spreading code
for user i is §; = [5;; ... §, 417, and the channe!l impulse response
(CIR) is defined by ({z) = ¢y + ¢z + ... + ¢,z with {¢;}
denoting the complex-valued channel taps. The received signal
sampled at the chip rate is given by

b{k)
b(k — 1) y
r(k) =P : +n(k) =5k) +nlk) (1)

bk~ L+1)

where the complex Gaussian channel noise vector n(k) = [r(k) ...
ny(F]T with Eln(fn?(k)] = 2021, bk) = [bi(k)... bpy(k)]” is the

ELECTRONICS LETTERS 24th May 2001 Vol. 37 No. 11 721



user symbol vector, and the M x LN system matrix

SA 0 - 0

p-c| ? 84 = @)
: o0
0 -+ 0 SA

with § = [, ... 5], the user amplitude matrix A = diag{4, ... 4y},
and the M x LM CIR matrix
Co €1 ' Cpe—1
¢ o Cnp -1
C= ‘ A ) (3)
Co 1 IR P |

The intersymbol interference span L depends on n, and M: n. = 1,
L=1;1<n<M,L=2M<n,£2M, L =3; and so on. The lin~
ear detector for user 7 is given by

Bl(k) = sgn(yp(k)) + jsgn(yr(k)) with

y(k) = yu(k) +5ys (k) = whr(k) &)
Let the N, = 4-¥ possible combinations of b/ (k) b7(k-1) ... bT{(k -
L+ DT be

b (k)
b (k ~1)
b = . 1<I< N, (5)

bk~ L+1)

and 0 = 5P, + jb{) the ith element of b(k). We define the N,
noise-free received signal slates r; = rp, + ji;; = Pb®, 1 <1< N,
and the set of N, scalars y; = yg; + jyy; = wir, 1 <l < N,.

MBER detector: The probability density functions of the signed
decision variables sgn(h &} ) yp(k) and sgn(h () y(k) are

Plt,s(l') =
( —sgn(dplyr)?\
N 2ro, VW NovZroaVwliw Zex ( 2oiwhiw ©)
and
p],s(m) =
Ny (0] 2
1 (= — sgn(by Jyr.)
- R AL A 7
Nyv2rop,vVwHw ;exp( 20ZwHw @)

respectively. The BER of the linear detector (eqn. 4) is Pg(w) =
L(Pp (W) + Pg{w)), where

0
Pg g(w) 2/ prs(z)dr and

0
PE,[(W) = / pl,s($)d$ (8)
After some manipulations and with the help of weight normalisa-
tion wHw = 1, it can be shown that
VPgr(w) =
N,

1
ex
bV ZTTUn ; P

VPp (W) =
1 X

NyV2mo, ;

The exact MBER solution can thus be obtained using the gradient
descent algorithm (where 7 denotes the iteration number)

(2 )sgn(b%?ixymw—rn ©)
eXp(—é’T>sgn<b<,1><y1,,w+m> (10)

w(t+1)=w(t) - g(VPE,R(W(t)) + VPg,r(w(t))) (11)

LBER detector: We will follow the approach in {3, 5] to derive a
stochastic gradient adaptive MBER algorithm. One-sample esti-
mates of pg (x) and p, (x) are
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ﬁR,s(aj; k/) =
1 exp(— (z— sgn(bR,i(k))yR(k))Q)
V2 pn/wWH (BYw(k) 2p2wH(k)yw(k)
(12)
and
Pr.o(wik) =
L exp(- ( sgn(bf,xk))m(k))z)
V27 o/ WH (BYyw (k) 2p2wH (E)yw(k)
(13)

respectively, where p, is the width for a kernel density estimation.
Re-scaling after each sample update to ensure wH(k)w(k) = 1 and
using instantaneous gradients

VP p(w(k)sk) =

oo~ st ) 0w ) — x(h)
(19

V Py (wik);k) =

exp (= Ysgnton ) O ) + ;r<k(>1>5>

1
\/%pn
leads to the LBER algorithm
wlk+1) = w(k)~ 2 (V Pua(w(k); k) + VP, (w(k); K))
(16)
w(k+1)
VwWE(E+ Dw(k + 1)

where the adaptive gain [l and the width parameter p, should be
chosen appropriately to ensure a best combined performance of
convergence rate and steady-state BER misadjustment.

wik+1)=

(17

Vi MMSE
“'\
10391 M‘\;\‘
& ey
& e
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Fig. 2 Learning curves of LBER and AMBER algorithms
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Fig. 3 Performance comparison of MMSE, MBER and LBER detectors
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Simulation example: A four-equal-power-user system with 4-QAM
modulation was used in the simulation. The four-user spreading
codes were (+1, +1, +1, +1, -1, -1, L, =1), (+1, -1, +1, -1, -1,
+1, -1, +1), (+1, +1, -1, -1, -1, -1, +1, +1) and (+1, -1, -1, +1,
-1, +1, +1, 1), respectively. The CIR was ({z) = (0.4 + 0.4j) +
0.7 + 0.7)z"! + (0.4 + 0.4)z2. For user 1 with an SNR = 14dB,
and u = 5/ and p, = o, the convergence performance of the
LBER algorithm is shown in Fig. 2, where the results are aver-
aged on 10 runs. The AMBER algorithm [2] was also modified to
work for 4-QAM, and its performance is also depicted in Fig. 2.
It can be seen that the LBER algorithm has a faster convergence
rate and a smaller steady-state BER. Fig. 3 compares the BER of
the LBER detector with those of the MMSE and MBER detectors
for wser 1 over a range of SNR values.

Conclusion: A stochastic gradient adaptive MBER linear multiuser
detector, originally developed for binary signalling schemes, has
been extended to the complex-valued 4-QAM signalling scheme.
Initial simulation results show that this proposed LBER detector
has better performance, in terms of faster convergence rate and
smaller steady-state BER, than the existing AMBER detector.
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Missing data techniques using voicing
probability for robust automatic speech
recognition

LY. Kim, HY. Cho and Y.H. Oh

The authors propose a new method for detecting missing data by
utilising voicing probability under a missing data theory. With the
same level of distortion, people fail to recognise vowels more
frequently than consonants. From this observation, we propose
that consonants should not be classified into missing data. The
experimental results showed that our method significantly
mproves the performance for isolated word recognition under
various noise environments.

Introduction: The human auditory system is robust to spectral loss
caused by band-limited noise sources [1]. Human beings can cope
with unnatural, unseen degradation or deletion even though they
are nol trained a priori. They are able to reject a broad range of
degradation or deletion in time or frequency domains, while still
taking into account cue information for recognition. People are
capable of utilising the partial information left in. the degraded
speech. This is the capability that a ‘missing data’ approach mod-
els. Ongoing robust speech recognition research is exploring more
reliable features and speech recognition that uses these features. In
previous work, a simple method of spectral subtraction has been
widely used for classifying the features as reliable or unreliable
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[2, 3]. However, in the presence of severe noise, consonants with
low energy are undoubledly masked by louder noise. In isolated
word recognition with many similar words, the recognition per-
formance is degraded because consonants are likely to be labelled
as missing data. We propose a new method of using voicing prob-
ability to indicate the reliability of detected missing data. Using
the proposed method, we obtain better results than the baseline
system using only spectral subtraction.

Detection of missing data: Spectral subtraction is also used in our
work for the case of speech corrupted by additive noise. Some
spectral subtraction criteria have been proposed for idenlifying
missing data {2, 3]. One of them is the SNR criterion. Let y(r) be
the speech samples affected by an additive stationary noisc signal
d(ny:
y(n) = s(n) + d(n) (1)

The short-time magnitude spectrum of enhanced speech is calcu-
lated by

Suted] = { Il = NI o)l > [0
0 otherwise -

where Y, (o) is the magnitude spectrum of the current noisy
speech frame, and | N(w)| is the average magnitude spectrum of the
noise. For the SNR criterion, features are regarded as being
missed if the estimated SNR is smaller than 0dB. This means

5 2
101og<M)<o or |$n)® <N @
IA’Y(M)I

Marginalisation: ln HMMs, each state is defined by observation
and transition probabilities. For a single state model T, the likeli-
hood function of the probability of observation vector x = [x(1),
v X(@), ..., x(Q))T is expressed as

M Q
JID) = Zu [T 2(e@), mr (@) of (@) @)

where w; is the weight for the ith Gaussian PDF, x a vector of the
log-spectrum components of the critical bands and ur(w), 6 (®)
the mean and variance for the ith Gaussian PDF in frequency
band ®, respectively. The components of x can be divided into
missing and present features. Eqn. 4 can be expressed as follows:

M
HCIVEDIINN | IR ONEIORAD)

w,present

I @@w),ur ).t @) ©6)

w,missing

The modified likelihood function Ax,|I) required to recognise
speech with missing features can be obtained by mtegrating the
original likelihood function Ax|T") over missing features, f{x,|I) =
Jfx|M)dx,, where x,, represents all missing features. The desired
modified likelihood is then given by

H & (x(w), pur, (W), 0k, (w))  (6)

w,present

M
FxplT) =
i=1

Using voicing probability for detecting missing data: In our
research, we use a robust algorithm for pitch tracking (RAPT) [4]
to obtain voicing probability. RAPT makes a binary voicing clas-
sification on the presence or the absence of voicing in speech. A
consonant with low energy is easily masked by the background
noise. We adopt a voicing probability in order to measure the reli-
ability of detected missing data. A segmental SNR of a vowel
region is higher than that of a consonant. If some frequency bands
of a vowel frame arc marked as missing data, their feature vector
elements are ignored in the next likelihood calculation. However,
labelled as unvoiced, consonants should not be classified as miss-
ing data. As shown in Fig. 1, for input speech, we perform spec-
tral subtraction to find any unreliable frames. If the energy of the
estimated noise is higher than that of the enhanced speech frame,
it is labelled as missing data. The frame detected as missing data is
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