
The value of the Hooge parameter CI estimated for MESFETs 
was of the same order of magnitude as for TLM structures, 
a = (2-3) x l k 3 .  This value of a is three orders of magnitude 
smaller than that reported for thin GaN films earlier [l - 41. We 
also found that the value of a in MESFETs does not depend on 
the gate voltage Vg, i.e. on the channel volume (thickness). Since CL 
does not depend on the device geometry and volume, we conclude 
that the Ilfnoise in thin GaN films is of bulk origin. Note that 
electrons in these GaN films are not degenerate, since the electron 
density of states in GaN at room temperature N, = 2.3 x 101*cm3 
(i.e larger than the electron concentration). 

300 350 400 450 500 
temperature, “G 

Fig. 2 Temperatiire dependence of  noise S/I,:.for MESFET at dubrent 
frequencies of unalysi3 

Conclusion: Measurements of low-frequency noise in GaN TLM 
and MESFETs structures fabricated on 60nni thick film have 
shown that, at room temperature, the noise has the form of llf- 
like noise. The temperature dependence of the noise shows the 
weak contribution of generation-recombination noise at elevated 
temperatures. The Hooge parameter a for TLM structures and 
MESFETs is approximately the same and does not exceed 
a = (2-3) x ICY3. This value of a is three orders of magnitude 
snialler than that rcported for thin GaN films earlier and is of the 
same order of magnitude as for GaNiAlGaN HFETs. In GaN 
MESFETs, a does not depend on the gate voltage, indicating that 
the noise originates in the bulk. 
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Adaptive minimum-BER linear multiuser 
detection for CDMA signals in multipath 
channels with 4-QAM constellation 

A.K. Samingan, S. Chen and L. Hanzo 

An adaptive minimum-BER linear multiuser detector called the 
least BER (LBER) algorillun, originally developed for BPSK 
modulation, is extendcd to 4-QAM modulation. 

Introduction: The design of linear multiuser detectors is often 
based on the minimum mean square error (MMSE) principle. 
Adaptive MMSE detectors can readily be iniplenienled using the 
LMS algorithm [l]. However, it is well known that the MMSE 
solution can in certain cases be distinctly inferior to the optimal 
minimum bit error rate (MBER) solution. Adaptive MBER linear 
multiuser detectors have recently been developed 12, 31. These two 
adaptive MBER multiuser detectors were inspired, respectively, by 
the two adaptive MBER linear equalisers called the approximate 
MBER (AMBER) algorithm [4] and the LBER algorithm [5], and 
they are both designed for a binary signalling scheme. Previous 
studies [3, 51 have shown that the LBER algorithm performs bet- 
ter than the AMBER algorithm in teims of convergence speed and 
steady-state BER. We extend the LBEK detector to complex-val- 
ued signalling schemes. The 4-QAM modulation scheme is used 
for this extension. * S,(z) no,ise 

S,(Z) 

U d sN(z) 
code filters 

Fig. 1 Dbcrrte-time model of ynchronour CDhlA downlink 

System model: The discrcte-time model of the synchronous 
CDMA downlink system with N users and A4 chips per symbol is 
depicted in Fig. 1, where bi(k) = bR,i(k) + j~,,~(lc) E {kl k j }  
denotes the kth symbol of user i ,  the unit-length spreading code 
for user i is Si = [si,, ... s,,lT, and the channel impulse response 
(CIR) is defined by C(z) = co + c , z I  + ... + C , ~ - ~ I “ ~ + ~  with {ci) 
denoting the complex-valued channel taps. The received signal 
sampled at the chip rate is given by 

L b(k, - L + I )  A 
where the complex Gaussian channel noise vector n(k) = [TI,(/<) .._ 
nw(k)lr with &n(k)nH(k)] = 2021, b(k) = [Dl(k) ... bA(k)lT is the 
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user symbol vector, and the A4 x LN system matrix 

[SA 0 . "  0 1 

with S = [SI ... S,]. the user amplitude matrix A = diag{Al ... AI,,], 
and the M x LM CIR matrix 

r c a  c1 . ' .  en'-1 1 

The intersymbol interference span L depends on n,. and M iz,. = 1 ,  
L = I ;  I < n, I M, L = 2; M <  n, 5 2M, L = 3; and so on. The lin- 
ear detector for user i is given by 

&(IC) = sgn(yR(k)) + jsgn(yr(k)) with 

y(k) = yX(k) + j y l ( k )  = wxr(k)  (4) 

Let the Nh = 4L" possible combinations of [br(/c) br(k~-l) ... br(k - 
L + I)lT be 

1 b ( ' ) ( k  - L + I ) ]  
and bj" = bk!, +jbj? the ith element of b(')(k). We define the Nh 
noise-free received signal states r, = rR,/ + jrr, = Pbc'), 1 5 I I N,, 
and the set of N, scalars yi = yR,i + jy1,, = wHq, 1 < I < Nh. 

MBER detector: The probability density functions of the 
decision variables ~ g n ( b i ? ~  ) yK(k)  and sgn(h $? ) yr(k) are 

P f d X )  = 

1 Nh (. - "n(b$;,)ytl,l)~ 

A r * d G D ? , & G  :e-(- 20-2 W I f  W 

and 

P I , , ( Z )  = 

respectively. The BER of the linear detector (eqn. 4) is PAW) = 
$(&dw) + PE,r(w)), where 

PE,R(w) = r m ~ ~ , s ( x ) c i ~  and 

PE,r(w) = [mpi , s ( x )d*  (8) 

After some manipulations and With the help of weight normalisa- 
tion wHw = 1, it can be shown that 

The exact MBER solution can thus be obtained using the gradient 
descent algorithm (where t denotes the iteration number) 

P w(t+  1) = w(t) - , (VP~ ,n (w( t ) )  + V P ~ . , r ( w ( t ) ) )  (11) 

. .  
and 

respectively, where pn is the width for a kernel density estimation. 
Re-scaling aftcr each sample update to ensure wH(k)w(k) = 1 and 
using instantaneous gradients 

VPg,n(w(k); IC) = 

leads to the LBER algorithm 

w(k+l)  = w(k)-~(C&!,H(W(k);IC) + ~&,,(w(IC);  k ) )  

(16) 

(17) 
w(k + 1) 

J W H ( k  + l)w(k + 1) 
w(k + 1) = 

where the adaptive gain p and the width parameter pfl should be 
choscn appropriately to ensure a best combined performance of 
convergence rate and steady-state BER misadjustment. 

I 'ik MMSE 

L 

0 200 400 500 800 io00 12W 
training samples 

Fig. 2 Lrurtzing rurves of LBER and AMBER algorithm 
- - - -  AMBER solution 
- - - - - LBER solution 

LBER dptector: We will follow the approach in [3, 51 to derive a 
stochastic gradient adaptive MBER algorithm. One-sample esti- 
mates ofpn,,(.x) and p&) are 

Fig. 3 Perfornu" comparison of MMSE, MBER und LBER detectors 
~ MBER solution . . . . . . . . . . . MMSE solution 

~ - LBER solution 
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Sirnulution exumple: A four-equal-power-user system with 4-QAM 
modulation was used in the simulation. The four-user spreading 
codes were (+I ,  + I ,  + I ,  +I ,  -I, -I, -1, -I)> ( + I ,  -1 ,  +1: -1, -1, 
+ I ,  -1, +I),  (+I ,  +1, -1, -1, -1, -1, + I ,  +1) and ( + I ,  -1, ~ 1, tl, 
-I, +1, +1, -I), respectively. The CIR was C(z) = (0.4 + 0.4j) + 
(0.7 + 0.7j)r' + (0.4 + 0 . 4 ~ ] ~ - ~ ~ .  For user 1 with an SNR = 14dB, 
and p = 5ik and pe = o,~, the convei-gence performalice of the 
LBER algorithm is shown in Fig. 2, where the results are aver- 
aged on 10 runs. The AMBER algorithm [2] was also modified to 
work for 4-QAM, and its perfomiance is also depicted in Fig. 2. 
It can be seen that the LBER algorithm has a faster coiivergence 
rate and a smaller steady-state BER. Fig. 3 compares the BER of 
the LBER detector with those of the MMSE and MBER detectors 
for user 1 over a range of SNR values. 

Conchion: A stochastic gradient adaptive MBER linear multiuser 
detector, originally developed for binary signalling schemes, has 
been exlended to the complex-valued 4-QAM signalling scheme. 
Initial simulation results show that this proposed LBER detector 
has better perfonnance, in terms of faster convcrgencc rate and 
smaller steady-state BER, than the existing AMBER detector. 
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[2- 31. However, in the presence of severe noise, consonants with 
low energy are undoubtedly masked by louder noise. I n  isolated 
word recognition with many similar words, the recognition per- 
formance is degraded because consonants are likely to be labelled 
as missing data. We propose a ncw method of using voicing prob- 
ability to indicate the reliability of detected missing data. Using 
the proposed method, we obtain better results than the baseline 
system using only spectral subtraction. 

Detection of missing dutu: Spectral subtraction is also used in our 
work for the case of speech corrupted by additive noise. Some 
spectral subtraction criteria have been proposed for identifying 
missing data [2, 31. One of them is the SNR criterion. Let y(n) be 
the speech samples affected by an additive stationary noisc signal 
d(n): 

The short-time magnitude spectrum of enhanced speech is calcu- 
lated by 

y(u j  = s( t1 j  + d(nj (1) 

where lYnr(m)l is the magnitude spectrum of the current noisy 
speech frame, and I m('(o)l is the average magnitude spcctrum of the 
noise. For lhe SNR criterion, features are regarded as being 
missed if the estiindted SNR is smaller than 0 dB. This means 

Murginulisation: In HMMs, each state is defined by observation 
and transition probabilities. For a single slate model r, the likeli- 
hood function of the probability of ObSerVdtion vector x = [x(l), 
.... x(o), ..., x(Q)IT is expressed as 

%=I w=l  

wherc i.vj is the weight for the ith Gaussian PDF, x a vector of the 
log-speclrum components of the critical bands and pri(o), 03, (a) 
thc mean and variance for the zth Gaussian PDF in frequency 
band w, respectively. The components of x can be divided into 
missing and present features. Eqn. 4 can be expressed as follows: 

Missing data techniques using voicing 
probability for robust automatic speech 
recognition 

L.Y. Kim, H.Y. Cho and  Y.H. Oh 

Thc authors propose a new mcthod for detecting missing data by 
utilising voicing probability under a missing data theory. With the 
same levcl of distortion, people fail to recognise vowels inore 
frequently than consonants. From this observation, we propose 
that consonants should not be classified into missing data. The 
experimental results showed that our method significantly 
improves Ihc performance for isolated word recognition under 
various noise environments. 

Introduction: The human auditory system is robust to spectral loss 
caused by band-limited noise sources [l]. Human beings can cope 
with unnatural, unseen degradation or deletion even though they 
are no1 trained U priori. They are able to reject a broad range of 
degradation or deletion in time or frequency donuins, while still 
taking into account cue information for recognition. People are 
capable of utilising the partial information left in the degraded 
speech. This is the capability that a 'missing data' approach mod- 
els. Ongoing robust speech recognition research is exploring more 
reliable features and spcech recognition that uses these features. In 
previous work, a simple method of spectral subtraction has been 
widely used for classifying the features as reliable or unreliable 

w,misszn.q 

The modified likelihood function j(x,lr) required to recognise 
speech with missing features can be obtained by integrating the 
original likelihood function Axlr) over missing features, .flx,lQ = 
  XI^&,^^ where x,, represents all missing features. The desired 
modified likelihood is then given by 

Using voicing probability .for decteutinx miwing data: In our 
research, we use a robust algorithm for pitch tracking (RAPT) [4] 
to obtain voicing probability. RAPT makes a binary voicing clas- 
sification on the presence or the absence of voicing in speech. A 
consonant with low energy is easily inasked by the background 
noise. We adopt a voicing probability in order to measurc the reli- 
ability of detected missing data. A segmental SNR of a vowel 
region is higher than that of a consonant. If some frequency bands 
of a vowel frame arc marked as missing data, their feature vector 
elements are ignored in the next likelihood calculation. However, 
labelled as unvoiced. consonants should not be classified as miss- 
ing data. As shown in Fig. 1, for input speech, we perform spec- 
tral subtraction to find any unreliable frames. If the energy of the 
estimated noise is higher than that of the enhanced speech frame, 
it is labelled as missing data. The frame detected as missing data is 
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