
Genetic algorithm assisted error probability
optimisation for beamforming

A. Wolfgang, N.N. Ahmad, S. Chen and L. Hanzo

A novel genetic algorithm (GA) assisted direct error probability

optimisation technique is proposed for adaptive beamforming, which

reduces the achievable error probability by nearly two orders of

magnitude at a signal-to-noise ratio of 10 dB in the investigated

scenario in comparison to the minimum mean-squared error beam-

forming benchmarker.

Introduction: The capacity of wireless systems can be significantly

enhanced by separating users transmitting on the same carrier

frequency in the spatial domain [1]. Therefore the receiver employs

an adaptive antenna array and controls the radiation pattern by

adjusting the array weights so that a certain optimisation criterion

is met. The conventional beamformer combines the signals received

with the aid of each antenna element for the sake of minimising the

mean square error (MSE) between a transmitted and a received

reference sequence [1] rather than minimising the bit error rate

(BER). By contrast, this Letter aims for directly minimising the

BER at the beamformer’s output, rather than the MSE. A substantial

BER performance gain may be achieved at the expense of solving a

more elaborate cost function optimisation problem than the mini-

misation of the MSE. For solving the complex optimisation problem

of minimising the BER directly, gradient based algorithms can be

employed, although the choice of the appropriate algorithmic

parameters may turn out to be challenging. To circumvent these

implementational challenges, we propose to employ a random

heuristic optimisation algorithm, namely a genetic algorithm (GA)

[2] for the direct minimisation of the BER at the beamformer’s

output.

System model: The desired user and the interferers are assumed to be

binary phase shift keying (BPSK) modulated point-sources in the far-

field of the receiver. Additionally, we consider a one-dimensional

L-element antenna array having an inter-element spacing of d¼ l=2,
where l is the wavelength of the sources. The receiver noise n is

assumed to be a complex additive white Gaussian noise (AWGN)

process with variance 2s2. The antenna array output signal x at an

instant k can then be written as x(k)¼Pb(k)þ n(k)¼ x̄(k)þ n(k),

where b is an M-element vector containing the symbols of the M

number of BPSK modulated users, P is the (L�M)-dimensional

system matrix, with L being the number of array elements and x̄(k)

is the antenna array output signal in the absence of noise. The element

(l, m) of the system matrix can be written as P(l, m)¼Ame
jotl(ym),

where Am is the amplitude of the signal received from the mth user, ym
is the mth user’s angle of incidence and tl(ym) is the relative time delay

of the signal transmitted by the mth source, m¼ 1, . . . M, at the lth

array element, l¼ 1, . . .L. The beamformer’s output can now be

expressed as

yðkÞ ¼ wHxðkÞ ð1Þ

where H denotes the Hermitian operator.

True and estimated BER: It can be shown, that the bit error

probability Pe encountered at the beamformer’s output can be

expressed as [3]

PeðwÞ ¼
1

Nb

XNb

q¼1

QðgqðwÞÞ with

gqðwÞ ¼
sgnðbq;1ÞRefw

H �xxqg

sn
ffiffiffiffiffiffiffiffiffiffi
wHw

p ð2Þ

where Nb¼ 2M is the number of possible transmitted bit sequence

combinations of the M BPSK users, bq is the qth possible transmitted

bit sequence with 1� q�Nb and x̄q¼Pbq. The symbol bq,1 is assumed

to correspond to the desired user’s BPSK symbols. To aim for a realistic

receiver structure, the true bit error probability Pe is replaced by

its estimated value P̂e, which can be obtained using kernel density

estimation [4]. The estimated bit error probability P̂e may be

written as [3]

P̂PeðwÞ ¼
1

K

XK
k¼1

Qðĝgk ðwÞÞ with

ĝgqðwÞ ¼
sgnðb1ðkÞÞyRðkÞ

rn
ffiffiffiffiffiffiffiffiffiffi
wHw

p ð3Þ

where K is the reference sequence. length, yR(k) is the real part of the

received reference symbol, b1 (k) is the transmitted reference symbol

and rn is the so-called kernel width, also known as the smoothening

parameter. Note that for the kernel density estimation of the probability

density function (pdf) of yR a Gaussian kernel function was used, which

has been transformed into the Q-function by integrating it. The

challenging and novel task of the GA in the system configuration

considered is to calculate the complex array weight vector w in order to

minimise (3).

BER surface: In Fig. 1 the BER surface described by (2) is shown for

a two-element array detecting five equal-power users arranged accord-

ing to the angular positions of Table 1. The imaginary part of the

beamformer weights was fixed to the optimum solution. The mini-

mum of the BER surface shown can only be found with the aid of a

gradient based algorithm if it is initialised appropriately, since the

surface is characterised by a narrow valley representing the lowest

achievable BER solution. If the error surface is estimated using (2) it

will additionally become irregular and thus gradient based algorithms

may not converge to the minimum BER solution. More explicitly, for

sub-optimum step-size settings, the gradient based algorithms may get

trapped in a local minimum of the BER surface described by (2) and

(3), thus resulting in a sub-optimum solution [3]. The motivation of

our research was to derive a GA, which is capable of finding the

antenna array weights that directly minimise the BER at the beam-

former’s output and therefore circumvents the problems imposed by

gradient based algorithms.

Fig. 1 BER surface for two-element linear array and five equal-power
sources at SNR¼ 10 dB arranged according to Table 1

Imaginary part of weights fixed to minimum BER solution

Table 1: Angles of incidence relative to perpendicular of antenna
array

User Interferer

y0¼ 15� y1,2,3,4¼�30�, 60�, �70�, 80�

Genetic algorithm: The genetic approach can be interpreted as a

guided random search process, which attempts to imitate biological

evolution [2]. The GA commences its iterations with a set of potential

array weight solutions referred to as the initial population, which can

be chosen randomly from within a given search space. For each of

these potential initial solutions, which are also referred to as GA

individuals, the so-called fitness function is evaluated, as follows

fi ¼ 1�
1

1� logðPeÞ
ð4Þ

which approaches unity as Pe decreases. This function describes the

quality or fitness of a potential solution and ensures that the most fit GA
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individuals are selected as ‘mates’ of the GA creating ‘offspring’, i.e.

new array weight estimates, which become part of the next generation.

By successively repeating the procedure of combining the best array

weight estimates of the previous generation for the sake of creating new

estimates, the algorithm tends to converge to the best solution for the

fitness function, namely to the minimum BER solution. The parameters

determining the complexity of the GA are the number of individuals in

a population (population size P) and the number of iterations the GA

has to invoke (number of generations G). These two determine how

often the fitness function has to be evaluated. The GA operators [2]

used in our GA setup, namely, roulette selection, single point cross-

over, bit-inversion as mutation type, elitism, span scaling, incest

prevention and weighted mutation are here only mentioned for the

sake of completeness.

Fig. 2 BER against SNR for two-element linear and five equal-power
sources arranged according to Table 1

GA employed had population size of P¼ 40 and G¼ 40 number of generations.
The BER associated with specific values of fitness function of (4) estimated
using (3) for different values of r

Simulation results: For the sake of arriving at the analytical minimum

BER expression of (2), a conjugate gradient algorithm based array

weight adaption procedure has been proposed in [3]. This theoretical

minimum BER performance bound will serve as our first bench-

marker, when the performance of the GA is evaluated. The second

bench-marker is the MMSE solution given as [3] w¼ (PPH
þ

2s2IL>)
�1p1, with IL being the (L�L)-dimensional identity matrix

and p1 being the first column of P. For a given weight vector

calculated, the BER was evaluated using (2), so that resorting to

Monte Carlo simulation could be avoided. The BER curves presented

were averaged over 1000 GA-aided weight-optimisation runs. For our

investigations we used a two-element linear array with an inter-

element spacing of l=2. The users were arranged according to

Table 1. It can be seen from Fig. 2 that for a reference sequence

length of K¼ 256 and for P¼ 40 as well as G¼ 40 the algorithm is

capable of converging for a wide range of kernel width values r. As
expected, for an inappropriately chosen value of rn the minimum of

the BER surface is shifted away from the theoretical solution. In this

case the GA becomes incapable of converging to the minimum BER

solution. In the first study we used a fixed kernel width of rn, but
ideally the kernel width has to be adjusted according to the variance of

the received training sequence [4] and is thus dependent on both the

SNR and the INR. Silverman has provided a simple rule of thumb for

the estimation of rn given as [4]

rn ¼
ŝs5

3K

� �1=5

’ 1:06ŝsK�1=5 ð5Þ

where K is the reference sequence length and ŝ is the standard deviation

of the received reference sequence. Equation (5) tends to over-smoothen

the BER estimate, but the results presented in Fig. 2 suggest that the

GA is capable of compensating for this inaccuracy. Fig. 3 shows the

achievable BER against SNR performance for P¼ 50 and G¼ 30,

when detecting equal-power users, as well as for a scenario studying the

near–far effect, where the signals of the interferers at y1,2¼�30�, 60�

were received with 6 dB higher power than the desired user’s signal.

The graphs illustrate the superiority of the minimum BER approach

over the MMSE approach in terms of counteracting the near–far effects,

while demonstrating that the GA is capable of automatically adapting to

the new BER surface without being reconfigured, although a shorter

reference sequence of K¼ 64 is now used instead of K¼ 256.

Fig. 3 BER against SNR for five equal-power sources and for near–far
constellation, where the two interferers having angles of incidence y¼
�30� and y¼ 60� had 6 dB higher power than desired source

GA employed had population size of P¼ 50 and G¼ 30 number of generations.
The BER associated with specific values of fitness function of (4) estimated using
(3) and (5)
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