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Abstract— A general class of model-based networked con-
trol systems is investigated where the plant has time-varying
norm-bounded parameter uncertainties and both the sensor-to-
controller and controller-to-actuator channels experience random
packet dropouts. Sufficient conditions for guaranteeing the robust
stochastic stability and synthesis of stabilisation controller as
well as the design of H∞ controller are derived in the form of
linear matrix inequalities. An illustrative example is provided to
demonstrate the effectiveness of our proposed design approach.
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I. INTRODUCTION

A networked control system (NCS) [1]–[3] is a control
system in which a control loop is closed via a shared com-
munication network. Compared to the conventional point-to-
point system connection, the use of an NCS has advantages of
low installation cost, reducing system wiring, simple system
diagnosis and easy maintenance. However, some inherent
shortcomings of NCSs, such as packet dropouts, packet delays
and bandwidth constraints, will degrade performance of NCSs
or even cause instability. Packet dropouts, which can randomly
occur due to node failures or network congestion, is one of
the most important issues in NCSs. Stochastic approaches are
typically adopted to deal with packet dropouts in the literature,
and these approaches attempt to establish the stability in terms
of mean square stability [4], [5]. Under such a stochastic
approach, the packet dropout process is usually modeled as an
independently and identically distributed Bernoulli process [6],
[7] or a Markov chain [8]–[10], and the system is considered as
a special case of the jump linear system. In some works [10],
[11], the NCSs with arbitrary packet dropouts are modelled as
switched systems.

When the system has parameter uncertainties, the standard
H∞ control [12] cannot provide guaranteed H∞ performance
and stability. Robust H∞ control has been investigated for
both continuous-time and discrete-time systems [8], [13]–
[15]. All these references only consider the systems with
delays, such as state or network packet delays. To the best
of our knowledge, robust H∞ control has not been studied

for NCSs with packet dropouts. Most of the works in NCS
research utilise fixed controllers. Some exceptions are model-
based NCSs (MB-NCSs) [16], [17], which utilise more flexible
controllers. For the MB-NCSs considered in [16], [17], only
the sensor and the controller is separated by the network, and
the underlying idea of MB-NCSs is as follows. When packet
dropouts occur in the sensor-to-controller (S/C) channel, a
nominal plant model is employed in the controller to estimate
the plant behaviour, which replaces the real plant behaviour
information in computing the control signal, while when the
controller can access sensor data, the controller performs the
same feedback control as standard closed-loop control system
without network. All the plant parameters are assumed to be
known in the works [16], [17] but this assumption is not
met in most control practice. It is significant to remove this
strict assumption on the plant and to study MB-NCSs with
robustness considerations. It is also important to consider more
general MB-NCSs, where not only the network is located
between the sensor and the controller but also the controller
and the actuator is separated by the network.

The novel contribution of this paper is that we study robust
stochastic stability and synthesis of robust stabilisation control
as well as design of robust H∞ control for the generic
MB-NCS where the plant has time-varying norm-bounded
parameter uncertainties and packet dropouts occur in both the
S/C and controller-to-actuator (C/A) channels. We formulate
this class of NCSs as the Markovian jump linear system by
using a Markov process to model packet dropouts occur-
ring randomly in both the S/C and C/A channels. Sufficient
conditions are derived for ensuring robust stochastic stability
and for synthesising robust stabilisation controller as well
as for designing robust H∞ controller. These conditions are
formulated in terms of linear matrix inequalities (LMIs) that
can be solved by the existing numerical techniques [18].

The remainder of this contribution is organised as follows.
The NCS problem is formulated in Section II while Section III
addresses the robust stochastic stability and synthesis of robust
stabilisation control. Section IV considers the robust H∞
control design and present the LMI solution for the control
law that stabilises the uncertain Markovian jump linear system



with a prescribed disturbance attenuation level. A numerical
example is provided in Section V to illustrate the proposed
method, and our conclusion is given in Section VI.

Throughout this contribution we adopt the following no-
tational conventions. R stands for real numbers and N for
nonnegative integers. W > 0 indicates that W is a positive-
definite matrix, while I and 0 represent the identity and zero
matrices of appropriate dimensions, respectively. The notation
∗ within a matrix denotes symmetric entries. For a discrete-
time signal w = {w(k)}k∈N with w(k) ∈ Rp, `p

2 denotes
the set of ws with

∑∞
k=0 wT(k)w(k) < ∞. E[·] denotes the

expectation.

II. PROBLEM FORMULATION

The NCS P̂K of Fig. 1 contains a generalised discrete-time
plant P̂ and a discrete-time controller K̂ with the control loop
closed via a shared communication network. The plant P̂ with
parameter uncertainties is described by





x(k + 1) = [A + ∆A(k)]x(k)
+[B + ∆B(k)]u(k) + Bww(k),

z(k) = Cx(k) + Du(k),
∀k ∈ N (1)

where x(k) ∈ Rn, u(k) ∈ Rm and z(k) ∈ Rq are the state,
input and controlled output vectors, respectively, w(k) ∈ Rp

is the disturbance input and w ∈ `p
2. A, B, Bw, C and D are

the known constant matrices of appropriate dimensions, while
∆A(k) and ∆B(k) are the unknown matrices representing
the time-varying parameter uncertainties which satisfy the
following condition

[∆A(k) ∆B(k)] = M F(k) [Na Nb]. (2)

Here M, Na and Nb are the known constant matrices of
appropriate dimensions and F(k) is an unknown time-varying
matrix function with

FT(k)F(k) ≤ I. (3)

Network packet dropouts occur in both the S/C and C/A
channels. Define θs

k+1 ∈ {0, 1} and θa
k ∈ {0, 1} as the

indicators of the packet dropouts in the S/C and C/A channels,
respectively, where a value 0 indicates that the packet is
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Fig. 1. Networked control system P̂K .

dropped while a value 1 indicates that the packet is transmitted
successfully. Define the set

S , {(θs
k+1, θ

a
k) : θs

k+1 ∈ {0, 1}, θa
k ∈ {0, 1}}. (4)

Further define rk ∈ N , {1, 2, 3, 4} and the one to one
mapping f : S → N

rk = f(θs
k+1, θ

a
k) =





1, (θs
k+1, θ

a
k) = (0, 0),

2, (θs
k+1, θ

a
k) = (1, 0),

3, (θs
k+1, θ

a
k) = (0, 1),

4, (θs
k+1, θ

a
k) = (1, 1).

(5)

Assumption 1: rk is driven by a discrete-time Markov chain
and takes values in N with the transition probability matrix
Υ , [pij ] ∈ R4×4, where pij = Prob(rk+1 = j|rk = i) with
pij ≥ 0 and

∑4
j=1 pij = 1, ∀i, j ∈ N .

Assumption 2: TCP-like protocol is assumed, in which
there is acknowledgement for a received packet. Thus at each
instant k the network sends an ACK signal to the controller
to indicate whether the current control input is received or not
by the actuator.

The controller K̂ consists of the state feedback gain matri-
ces Krk

∈ Rm×n and the plant model. The controller output
is given by

û(k) = Krk
x̂(k), rk ∈ N , (6)

where x̂(t) ∈ Rn denotes the model state. Referring to Fig. 1,
if the packet is transmitted successfully in the C/A channel,
u(k) = û(k). If the packet is lost, the actuator does nothing,
i.e. u(k) = 0. Thus we have

u(k) = θa
kû(k). (7)

The plant model is given by

x̂(k + 1) = Ax̂(k) + Bu(k). (8)

If the sensor data x(k) is transmitted successfully in the S/C
channel, the controller K̂ uses x(k) to update the model state
x̂(k) as x̂(k) = x(k). If the data is lost, K̂ uses the plant
model (8) to derive x̂(k). Thus

x̂(k + 1) = θs
k+1x(k + 1)

+(1− θs
k+1)(Ax̂(k) + Bu(k))

=
{

x(k + 1), θs
k+1 = 1,

Ax̂(k) + Bu(k), θs
k+1 = 0.

(9)

Define e(k) = x(k) − x̂(k) and x(k) , [xT(k) eT(k)]T.
From (1), (6) and (9), the NCS P̂K can be described by
[

x(k + 1)
z(k)

]
=

[
Ark

(k) Brk

Crk
0

] [
x(k)
w(k)

]
, rk ∈ N (10)

where

Ark
(k) =

[
A + ∆A(k) + θa

k(B + ∆B(k))Krk

(1− θs
k+1)(∆A(k) + θa

k∆B(k)Krk
)

−θa
k(B + ∆B(k))Krk

(1− θs
k+1)(A− θa

k∆B(k)Krk
)

]
, (11)

Brk
=

[
Bw

(1− θs
k+1)Bw

]
, (12)



Crk
=

[
C + θa

kDKrk
−θa

kDKrk

]
. (13)

From (2), (3) and (5), Ark
(k) can be written as Ai(k) =

Φi + M F(k)Γi, i ∈ N , where

Φi =
[

A + θa
kBKi −θa

kBKi

0 (1− θs
k+1)A

]
, (14)

Γi =
[

Na + θa
kNbKi

(1− θs
k+1)(Na + θa

kNbKi)
−θa

kNbKi

−(1− θs
k+1)θ

a
kNbKi

]
, (15)

M = diag{M,M}, F(k) = diag{F(k),F(k)}. (16)

It is easy to see F
T
(k)F(k) ≤ I. Specifically, the four modes

of Φi and Γi for i ∈ N are

Φ1 =
[

A 0
0 A

]
, Γ1 =

[
Na 0
Na 0

]
; (17)

Φ2 =
[

A 0
0 0

]
, Γ2 =

[
Na 0
0 0

]
; (18)

Φ3 =
[

A + BK3 −BK3

0 A

]
,

Γ3 =
[

Na + NbK3 −NbK3

Na + NbK3 −NbK3

]
;

(19)

Φ4 =
[

A + BK4 −BK4

0 0

]
,

Γ4 =
[

Na + NbK4 −NbK4

0 0

]
.

(20)

Brk
and Crk

can be expressed respectively as

B1 = B3 =
[

Bw

Bw

]
, B2 = B4 =

[
Bw

0

]
; (21)

C1 = C2 =
[

C 0
]
,

C3 =
[

C + DK3 −DK3

]
,

C4 =
[

C + DK4 −DK4

]
.

(22)

Definition 1: (See [8], [15]) The NCS P̂K (10) with
w(k) ≡ 0 is said to be robustly stochastically stable if for
any initial state x(0) ∈ R2n and any initial mode r0 ∈ N ,

∞∑

k=0

E
[‖x(k)|x(0), r0‖2

]
< ∞ (23)

holds for all the admissible uncertainties ∆A(k) and ∆B(k).
Definition 2: (See [8], [15]) The NCS P̂K (10) is said to

be robustly stochastically stable with disturbance attenuation
level γ > 0 if P̂K with w(k) ≡ 0 is robustly stochastically
stable and, for any nonzero w(k) ∈ `p

2, the response {z(k)}
under the zero initial condition x(0) = 0 satisfies
∞∑

k=0

E
[
zT(k)z(k)

∣∣x(0) = 0, r0

]
< γ2

[ ∞∑

k=0

wT(k)w(k)
]
. (24)

Our objective is to establish criteria for robust stochastic
stability and synthesis of robust stabilisation control as well
as to design appropriate robust H∞ state feedback controllers
that guarantee robust stochastic stability of the NCS P̂K .

III. ROBUST STABILITY AND STABILISATION CONTROL

The following lemma from [19] is useful for the proofs of
our main results.

Lemma 1: Let S, U, H, G and F̃ be the real matrices of
appropriate dimensions such that G > 0 and F̃TF̃ ≤ I. Then,
for any scalar ε > 0 such that G− εUUT > 0, we have

(S + UF̃H)TG−1(S + UF̃H) ≤ ST(G− εUUT)−1S

+ε−1HTH. (25)
We present our robust stochastic stability result in the

following theorem.
Theorem 1: The NCS P̂K with w(k) ≡ 0 and driven by

the Markov chain as specified in Assumption 1 is robustly
stochastically stable if there exist scalars εi > 0 and matrices
Xi > 0 for i ∈ N such that ∀i ∈ N the following LMIs are
satisfied



−Xi XiΦT

i Wi XiΓT
i

∗ εiWi −X 0
∗ ∗ −εiI


 < 0, (26)

where Φi and Γi are given in (14) and (15), while

Wi =
[√

pi1 I
√

pi2 I
√

pi3 I
√

pi4 I
]
, (27)

Wi = WT
i M M

T
Wi, (28)

X = diag
{
X1,X2,X3,X4

}
, (29)

and M is defined in (16).
Proof Define Fn , σ{x(0), r0, · · · ,x(n), rn}, ∀n ≥ 0,

as the σ-algebra generated by {(x(k), rk), 0 ≤ k ≤ n}. Let
Pi = X−1

i , i ∈ N , and P = X−1. Then, from (26), it is easy
to show that

Ψi , P−1 − εiWi > 0, i ∈ N . (30)

Now for the NCS P̂K , construct the Lyapunov function

V (k, rk) , xT(k)Prk
x(k). (31)

Noticing εi > 0 , (16) and (30) as well as using Lemma 1,
we have

E[V (k + 1, rk+1)
∣∣Fk]− V (k, rk)

= xT(k)
[
A

T

i (k)
( 4∑

j=1

pijPj

)
Ai(k)−Pi

]
x(k)

= xT(k)
[
A

T

i (k)WiPWT
i Ai(k)−Pi

]
x(k)

= xT(k)
[
(WT

i Φi + WT
i M F(k)Γi)TP

×(WT
i Φi + WT

i M F(k)Γi)−Pi

]
x(k)

≤ xT(k) Θ̂ix(k), (32)

where

Θ̂i = ΦT
i WiΨ−1

i WT
i Φi + ε−1

i ΓT
i Γi −Pi, (33)



and Ψi is defined in (30). On the other hand, pre- and post-
multiplying (26) by diag(Pi, I) yields



−Pi ΦT

i Wi ΓT
i

∗ εiWi −P−1 0
∗ ∗ −εiI


 < 0. (34)

By Schur complement, (34) implies that Θ̂i < 0. This together
with (32) leads to

E[V (k + 1, rk+1)
∣∣Fk]− V (k, rk)

≤ −λmin(−Θ̂i)xT(k)x(k) ≤ −τ xT(k)x(k) (35)

where λmin(−Θ̂i) denotes the minimal eigenvalue of −Θ̂i

and τ = inf{λmin(−Θ̂i), i ∈ N}. From (35), we obtain

E[V (T + 1, rT+1)
∣∣FT ]− E[V (0, r0)]

=
T∑

k=0

(
E[V (k + 1, rk+1)

∣∣Fk]− V (k, rk)
)

≤ −τ

T∑

k=0

E[xT(k)x(k)] (36)

for any T ≥ 1, which implies

T∑

k=0

E[xT(k)x(k)] ≤ 1
τ

[
E[V (0, r0)]− E[V (T + 1, rT+1)]

]

≤ 1
τ

E[V (0, r0)]. (37)

Finally, from (37) we can directly obtain
∞∑

k=0

E[xT(k)x(k)] ≤ 1
τ

E[V (0, r0)] < ∞. (38)

According to Definition 1, the NCS P̂K is robustly stochas-
tically stable. ¥

Using Theorem 1, we obtain the following theorem for
synthesis of robust stabilisation control.

Theorem 2: The NCS P̂K with w(k) ≡ 0 and driven by
the Markov chain as specified in Assumption 1 is robustly
stochastically stable if there exist scalars εi > 0, matrices
Qi > 0 and Yi for i ∈ N such that ∀i ∈ N the following
LMIs are satisfied



−Q̃i Φ̃

T

i Wi Γ̃
T

i

∗ εiWi − Q̃ 0
∗ ∗ −εiI


 , Θi < 0, (39)

where Wi and Wi are given in (27) and (28), respectively,

Q̃i = diag{Qi,Qi}, (40)

Q̃ = diag
{
Q̃1, Q̃2, Q̃3, Q̃4

}
, (41)

Φ̃i =
[

AQi + θa
kBYi −θa

kBYi

0 (1− θs
k+1)AQi

]
, (42)

Γ̃i =
[

NaQi + θa
kNbYi

(1− θs
k+1)(NaQi + θa

kNbYi)
−θa

kNbYi

−(1− θs
k+1)θ

a
kNbYi

]
. (43)

In this case, the state feedback gain matrices can be chosen
as Ki = YiQ−1

i .
Proof Given the state feedback gain matrices Ki, let Yi =

KiQi in (42) and (43). Then (39) can be expressed in a form
of (26) and the proof is as given in Theorem 1. ¥

Remark 1: From (5), we have θa
k = 0 for rk = 1, 2. Thus

K1 and K2 have no impact on P̂K , and they do not need to be
chosen. In fact they do not appear in the problem formulation,
see (17) and (18).

IV. ROBUST H∞ CONTROL

A sufficient condition is proposed in this section for design-
ing robust H∞ controller, and our main result is given in the
following theorem.

Theorem 3: Given a scalar γ > 0, the NCS P̂K driven by
the Markov chain as specified in Assumption 1 is robustly
stochastically stable with disturbance attenuation level γ, if
there exist scalars εi > 0, matrices Qi > 0 and Yi for i ∈ N
such that ∀i ∈ N the following LMIs are satisfied




−Q̃i 0 Φ̃
T

i Wi Γ̃
T

i C̃T
i

∗ −γ2I B
T

i Wi 0 0
∗ ∗ εiWi − Q̃ 0 0
∗ ∗ ∗ −εiI 0
∗ ∗ ∗ ∗ −I




< 0, (44)

where
C̃i =

[
CQi + θa

kDYi −θa
kDYi

]
, (45)

Wi and Wi are defined in (27) and (28), respectively, while
Q̃i, Q̃, Φ̃i and Γ̃i are given in (40) to (43).

In this case, the state feedback gain matrices are given by
Ki = YiQ−1

i .
Proof From (44), we can directly obtain

Θi ≤ Θi +




C̃T
i

0
0


 [

C̃i 0 0
]

+
1
γ2




0
WT

i Bi

0




[
0 B

T

i Wi 0
]

< 0,

where Θi is defined in (39). Therefore, it follows from
Theorem 2 that the NCS P̂K with w(k) ≡ 0 is robustly
stochastically stable.

Next, we proceed to prove that P̂K has the required noise
attenuation level γ for all the w(k) ∈ `p

2. Let P̃i = Q̃−1
i

and P̃ = Q̃−1. Consider the Lyapunov function Ṽ (k, rk) =
xT(k)P̃rk

x(k) with the zero initial condition, x(0) = 0 and
Ṽ (0, r0) = 0. It follows from (36) that for any T ≥ 1

T∑

k=0

(
E[Ṽ (k + 1, rk+1)

∣∣Fk]− Ṽ (k, rk)
)

= E[Ṽ (T + 1, rT+1)
∣∣FT ] ≥ 0. (46)



Since εi > 0 for i ∈ N and

Ψ̃i , P̃−1 − εiWi > 0, (47)

according to Lemma 1, we have

E
[
Ṽ (k + 1, rk+1)

∣∣Fk

]

=
[
xT(k) wT(k)

]
Ξi

[
xT(k) wT(k)

]T

≤ [
xT(k) wT(k)

]
Ξ̃i

[
xT(k) wT(k)

]T
, (48)

where

Ξi =
[
Ai(k) Bi

]T

WiP̃WT
i

[
Ai(k) Bi

]

=
(
WT

i

[
Φi Bi

]
+ WT

i M F(k)
[
Γi 0

])T

P̃

×
(
WT

i

[
Φi Bi

]
+ WT

i M F(k)
[
Γi 0

])
,

Ξ̃i =

[
ΦT

i Wi

B
T

i Wi

]
Ψ̃
−1

i

[
WT

i Φi WT
i Bi

]

+ε−1
i

[
ΓT

i

0

] [
Γi 0

]
.

Combining (10) and (48) yields

E
[
Ṽ (k + 1, rk+1)

∣∣Fk

]− Ṽ (k, rk)

+zT(k)z(k)− γ2wT(k)w(k)

≤ [
xT(k) wT(k)

]
Θ̃i

[
xT(k) wT(k)

]T
, (49)

where

Θ̃i = Ξ̃i +

[
C

T

i

0

]
[

Ci 0
]−

[
P̃i 0
0 γ2I

]

=




WT
i Φi WT

i Bi

Γi 0
Ci 0




T 


Ψ̃
−1

i 0 0
0 ε−1

i I 0
0 0 I




×



WT
i Φi WT

i Bi

Γi 0
Ci 0


−

[
P̃i 0
0 γ2I

]
, (50)

where Ψ̃i is defined in (47). On the other hand, pre- and
post-multiplying (44) by diag(P̃i, I) as well as applying Schur
complement yield

Θ̃i < 0. (51)

Let us define the performance function

J(T ) =
T∑

k=0

E
[
[zT(k)z(k)− γ2wT(k)w(k)]

∣∣∣Fk

]
. (52)

Then from (46), (49) and (52), we derive

J(T ) =
T∑

k=0

E
[(

zT(k)z(k)− γ2wT(k)w(k)

+Ṽ (k + 1, rk+1)− Ṽ (k, rk)
)

−(
Ṽ (k + 1, rk+1)− Ṽ (k, rk)

)∣∣∣Fk

]

≤
T∑

k=0

E
[[

x̃T(k) wT(k)
]

Θ̃i

[
x̃T(k) wT(k)

]T
]

−E[Ṽ (T + 1, rT+1)
∣∣FT ]. (53)

For all the w(k) 6= 0, (51) and (53) lead to

J(∞) < 0. (54)

This completes the proof of Theorem 3. ¥

V. A NUMERICAL EXAMPLE

To illustrate the effectiveness of the proposed approach, we
considered the following uncertain NCS P̂K of x(k) ∈ R3,
u(k) ∈ R2, z(k) ∈ R and w(k) ∈ R, with the following
parameters

A =




0 1 0
0.4 0.6 0.2
1 0.2 −1.1


 , B =




0.5 1
0.5 0.2
1 0.4


 ,

Bw =




0.1
0.1
−0.2


 , M =




0.1
−0.1
0.2


 ,

C =
[

0.2 0.3 0.3
]
, D =

[
0.7 0.9

]
,

Na =
[

0.5 0.2 0.3
]
, Nb =

[
0.1 0.2

]
.

The plant’s eigenvalues: 1.0757, − 0.6274, − 0.9483. The
system was driven by the Markov chain with the following
transition probability matrix

Υ =




0.2 0.1 0.1 0.6
0.1 0.2 0.1 0.6
0.1 0.1 0.2 0.6
0 0.1 0.1 0.8


 .

Our objective was to design the state feedback gain matrices
K3 and K4 such that, for all the admissible uncertainties, the
NCS P̂K was robustly stochastically stable with the specified
disturbance attenuation level γ.

Assuming γ = 0.45, we applied the Matlab LMI Control
Toolbox to solve the LMIs (44) and obtained the following
solution

Q1 =




2.5613 −1.1880 2.5657
−1.1880 1.4562 −1.8515
2.5657 −1.8515 4.6658


 ,

Q2 =




3.3872 −1.7206 3.3227
−1.7206 1.8596 −2.3236
3.3227 −2.3236 5.5412


 ,



Q3 =




3.1346 −1.3269 3.3523
−1.3269 1.4702 −2.0870
3.3523 −2.0870 5.8350


 ,

Q4 =




4.0753 −1.1078 3.0745
−1.1078 2.2382 −2.0678
3.0745 −2.0678 7.6812


 ,

Y3 =
[

0.0895 −0.0445 0.1588
−0.4495 0.1736 −0.6552

]
,

Y4 =
[ −0.8924 −0.5845 1.9063

0.0233 0.0424 −2.5885

]
,

ε1 = 15.7628, ε2 = 14.4109,

ε3 = 14.3356, ε4 = 16.5168.

It followed from Theorem 3 that the robust H∞ control
problem was solvable with the state feedback gain matrices
given by

K3 = Y3Q−1
3 =

[
0.0004 0.0170 0.0331
−0.0707 −0.0964 −0.1062

]
,

K4 = Y4Q−1
4 =

[ −0.5959 −0.1417 0.4485
0.3396 −0.3326 −0.5625

]
.

VI. CONCLUSIONS

In this contribution we have investigated a general class
of model-based networked control systems where the plant
model has time-varying norm-bounded parameter uncertainties
and both the sensor-to-controller and controller-to-actuator
channels experience random packet dropouts. Firstly we have
established sufficient conditions in the form of linear matrix
inequalities for guaranteeing the robust stochastic stability and
synthesising robust stabilisation controller. Secondly we have
considered the robustH∞ controller design and have presented
the linear matrix inequality solution for robust H∞ control
law that stabilises this class of model-based networked control
systems with a prescribed disturbance attenuation level. A
numerical example has been included to illustrate our proposed
design approach.
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