Motivations

Problem Formulation

Main Results

Example

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Conclusions

Robust \mathcal{H}_{∞} Control for Model-Based Networked Control Systems with Uncertainties and Packet Dropouts

Dongxiao Wu¹, Jun Wu¹, Sheng Chen²

¹Institute of Cyber-Systems and Control Zhejiang University

²School of Electronics and Computer Science University of Southampton

International Conference on Automation & Computing, 2009

Motivations 00000	Problem Formulation	Main Results	Example 0000	Conclusions
Outline				

Motivations

- Networked Control Systems
- Our Novelty
- Problem Formulation
 - NCS Configuration
 - NCS Dynamics
- 3 Main Results
 - Robust Stochastic Stability
 - Synthesis of Robust Stabilisation Control
 - Robust H_{∞} Control Design

4 Example

- Plant and Network
- H_{∞} Control Solution

5 Conclusions

Motivations ●○○○○	Problem Formulation	Main Results	Example 0000	Conclusions
Outline				

- Networked Control Systems
- Our Novelty
- 2 Problem Formulation
 - NCS Configuration
 - NCS Dynamics
- 3 Main Results
 - Robust Stochastic Stability
 - Synthesis of Robust Stabilisation Control
 - Robust H_{∞} Control Design
- 4 Example
 - Plant and Network
 - H_{∞} Control Solution
- 5 Conclusions

Motivations 0000	Problem Formulation	Main Results	Example 0000	Conclusions
Some Ba	asics			

An NCS is a control system in which the control loop is closed via a shared communication network. The advantages:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

- Low installation cost.
- Reducing system wiring.
- Easy maintenance.

The inherented problems:

- Packet dropout.
- Packet delay.
- Bandwidth constraint.

Motivations ○○●○○	Problem Formulation	Main Results	Example 0000	Conclusions
Existing W	/orks			

- Robust \mathcal{H}_{∞} control has been investigated for the NCS with delays [8,13–15].
- Most of existing works use fixed controller.
- In Model-based NCS, the network is only located between sensor and controller [16,17].

▲□▶▲□▶▲□▶▲□▶ □ のQで

Motivations ○○○●○	Problem Formulation	Main Results	Example 0000	Conclusions
Outline				

Motivations

Networked Control Systems

Our Novelty

- 2 Problem Formulation
 - NCS Configuration
 - NCS Dynamics
- 3 Main Results
 - Robust Stochastic Stability
 - Synthesis of Robust Stabilisation Control
 - Robust H_{∞} Control Design
- 4 Example
 - Plant and Network
 - H_{∞} Control Solution

5 Conclusions

Motivations	Problem Formulation	Main Results	Example 0000	Conclusions
Our Novel	tv			

- Study robust \mathcal{H}_{∞} control for NCS with packet dropouts.
- Consider the generic MB-NCS
 - the plant has time-varying norm-bounded parameter uncertainties;
 - packet dropouts occur in both the S/C and C/A channels.

Motivations 00000	Problem Formulation	Main Results	Example 0000	Conclusions
Outline				

- Motivations
 - Networked Control Systems
 - Our Novelty
- Problem Formulation
 - NCS Configuration
 - NCS Dynamics
 - 3 Main Results
 - Robust Stochastic Stability
 - Synthesis of Robust Stabilisation Control
 - Robust H_{∞} Control Design
- 4 Example
 - Plant and Network
 - H_{∞} Control Solution
- 5 Conclusions

Motivations	Problem Formulation o●oooooo	Main Results	Example 0000	Conclusions
Model Bas	ed NCS			

Figure: Networked control system \hat{P}_{K} .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Motivations	Problem Formulation	Main Results	Example 0000	Conclusions
Plant De	escription			

The plant \hat{P} :

$$\begin{cases} \mathbf{x}(k+1) = [\mathbf{A} + \Delta \mathbf{A}(k)]\mathbf{x}(k) \\ + [\mathbf{B} + \Delta \mathbf{B}(k)]\mathbf{u}(k) + \mathbf{B}_{w}\mathbf{w}(k), & \forall k \in \mathbb{N}, \\ \mathbf{z}(k) = \mathbf{C}\mathbf{x}(k) + \mathbf{D}\mathbf{u}(k), \end{cases}$$

The time-varying parameter uncertainties satisfy:

$$[\Delta \mathbf{A}(k) \Delta \mathbf{B}(k)] = \mathbf{M} \mathbf{F}(k) [\mathbf{N}_a \mathbf{N}_b].$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

with $\mathbf{F}^{\mathsf{T}}(k)\mathbf{F}(k) \leq \mathbf{I}$.

Motivations 00000	Problem Formulation	Main Results	Example 0000	Conclusions
Network	Assumptions			

Packet dropouts indicators:

$$\begin{cases} \theta_{k+1}^s \in \{0,1\}, & \text{in S/C channel;} \\ \theta_k^a \in \{0,1\}, & \text{in C/A channel.} \end{cases}$$

Then the system index $r_k = f(\theta_{k+1}^s, \theta_k^a) \in \mathcal{N} \triangleq \{1, 2, 3, 4\}.$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- r_k is driven by Makov chain.
- TCP-like protocol.

Controller is running as:

$$\hat{\mathbf{x}}(k+1) = \theta_{k+1}^{s} \mathbf{x}(k+1) + (1 - \theta_{k+1}^{s}) (\mathbf{A}\hat{\mathbf{x}}(k) + \mathbf{B}\mathbf{u}(k))$$

$$= \begin{cases} \mathbf{x}(k+1), & \theta_{k+1}^{s} = 1, \\ \mathbf{A}\hat{\mathbf{x}}(k) + \mathbf{B}\mathbf{u}(k), & \theta_{k+1}^{s} = 0. \end{cases}$$

where $\mathbf{u}(k) = \theta_k^a \hat{\mathbf{u}}(k)$ with $\hat{\mathbf{u}}(k) = \mathbf{K}_{r_k} \hat{\mathbf{x}}(k)$, $r_k \in \mathcal{N}$.

State feedback gain matrices \mathbf{K}_i , $i \in \mathcal{N}$, but only \mathbf{K}_3 and \mathbf{K}_4 are needed, as $\theta_k^a = 0$ for i = 1, 2.

Motivations 00000	Problem Formulation	Main Results	Example 0000	Conclusions
Outline				

- Motivations
 - Networked Control Systems
 - Our Novelty
- Problem Formulation
 - NCS Configuration
 - NCS Dynamics
 - Main Results
 - Robust Stochastic Stability
 - Synthesis of Robust Stabilisation Control
 - Robust H_{∞} Control Design
- 4 Example
 - Plant and Network
 - H_{∞} Control Solution
- 5 Conclusions

Motivations	Problem Formulation	Main Results	Example	Conclusions
00000	○○○○○○●○	000000	0000	
NCS Dy	namics			

The NCS \hat{P}_{K} in the form of Markovian jump linear system:

$$\begin{bmatrix} \overline{\mathbf{x}}(k+1) \\ \mathbf{z}(k) \end{bmatrix} = \begin{bmatrix} \overline{\mathbf{A}}_{r_k}(k) & \overline{\mathbf{B}}_{r_k} \\ \overline{\mathbf{C}}_{r_k} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \overline{\mathbf{x}}(k) \\ \mathbf{w}(k) \end{bmatrix}, r_k \in \mathcal{N}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

where $\mathbf{e}(k) = \mathbf{x}(k) - \hat{\mathbf{x}}(k)$, $\overline{\mathbf{x}}(k) \triangleq [\mathbf{x}^{\mathsf{T}}(k) \mathbf{e}^{\mathsf{T}}(k)]^{\mathsf{T}}$.

Motivations	Problem Formulation	Main Results	Example 0000	Conclusions
NCS Dyr	namics			

$$\overline{\mathbf{A}}_{i}(k) = \mathbf{\Phi}_{i} + \overline{\mathbf{M}} \ \overline{\mathbf{F}}(k)\mathbf{\Gamma}_{i}, i \in \mathcal{N},$$
 where

$$\mathbf{\Phi}_{i} = \left[\begin{array}{cc} \mathbf{A} + \theta_{k}^{a} \mathbf{B} \mathbf{K}_{i} & -\theta_{k}^{a} \mathbf{B} \mathbf{K}_{i} \\ \mathbf{0} & (\mathbf{1} - \theta_{k+1}^{s}) \mathbf{A} \end{array} \right],$$

$$\Gamma_{i} = \begin{bmatrix} \mathbf{N}_{a} + \theta_{k}^{a} \mathbf{N}_{b} \mathbf{K}_{i} & -\theta_{k}^{a} \mathbf{N}_{b} \mathbf{K}_{i} \\ (1 - \theta_{k+1}^{s})(\mathbf{N}_{a} + \theta_{k}^{a} \mathbf{N}_{b} \mathbf{K}_{i}) & -(1 - \theta_{k+1}^{s})\theta_{k}^{a} \mathbf{N}_{b} \mathbf{K}_{i} \end{bmatrix}$$
$$\overline{\mathbf{M}} = \operatorname{diag}\{\mathbf{M}, \mathbf{M}\}, \ \overline{\mathbf{F}}(k) = \operatorname{diag}\{\mathbf{F}(k), \mathbf{F}(k)\}.$$

Only \mathbf{K}_3 and \mathbf{K}_4 are needed, as $\theta_k^a = 0$ for i = 1, 2.

•

Motivations 00000	Problem Formulation	Main Results ●00000	Example 0000	Conclusions
Outline				

- Motivations
 - Networked Control Systems
 - Our Novelty
- 2 Problem Formulation
 - NCS Configuration
 - NCS Dynamics

3 Main Results

Robust Stochastic Stability

- Synthesis of Robust Stabilisation Control
- Robust H_{∞} Control Design
- 4 Example
 - Plant and Network
 - H_{∞} Control Solution
- 5 Conclusions

Motivations 00000	Problem Formulation	Main Results o●oooo	Example 0000	Conclusions
Robust s	stability			

Theorem 1: The NCS \hat{P}_{K} with $\mathbf{w}(k) \equiv \mathbf{0}$ and driven by the Markov chain $r_{k} \in \mathcal{N}$ is robustly stochastically stable if there exist scalars $\epsilon_{i} > \mathbf{0}$ and matrices $\mathbf{X}_{i} > \mathbf{0}$ for $i \in \mathcal{N}$ such that $\forall i \in \mathcal{N}$

$$\begin{bmatrix} -\mathbf{X}_i & \mathbf{X}_j \mathbf{\Phi}_j^\mathsf{T} \mathbf{W}_i & \mathbf{X}_i \mathbf{\Gamma}_i^\mathsf{T} \\ * & \epsilon_j \overline{\mathbf{W}}_i - \mathbf{X} & \mathbf{0} \\ * & * & -\epsilon_j \mathbf{I} \end{bmatrix} < \mathbf{0},$$

where $\overline{\mathbf{M}}$, $\mathbf{\Phi}_i$ and $\mathbf{\Gamma}_i$ are given by the NCS dynamics, while

$$\mathbf{W}_{i} = \begin{bmatrix} \sqrt{\rho_{i1}} \mathbf{I} \sqrt{\rho_{i2}} \mathbf{I} \sqrt{\rho_{i3}} \mathbf{I} \sqrt{\rho_{i4}} \mathbf{I} \end{bmatrix},$$
$$\overline{\mathbf{W}}_{i} = \mathbf{W}_{i}^{\mathsf{T}} \overline{\mathbf{M}} \overline{\mathbf{M}}^{\mathsf{T}} \mathbf{W}_{i},$$
$$\mathbf{X} = \operatorname{diag} \{ \mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}, \mathbf{X}_{4} \}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

Motivations 00000	Problem Formulation	Main Results	Example 0000	Conclusions
Outline				

- Motivations
 - Networked Control Systems
 - Our Novelty
- 2 Problem Formulation
 - NCS Configuration
 - NCS Dynamics

3 Main Results

- Robust Stochastic Stability
- Synthesis of Robust Stabilisation Control
- Robust H_{∞} Control Design
- 4 Example
 - Plant and Network
 - H_{∞} Control Solution
- 5 Conclusions

 Motivations
 Problem Formulation
 Main Results
 Example
 Conclusions

 00000
 000000
 000000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 0000
 0000

Robust Stabilisation Control

Theorem 2: The NCS \hat{P}_{K} with $\mathbf{w}(k) \equiv \mathbf{0}$ and driven by the Markov chain $r_{k} \in \mathcal{N}$ is robustly stochastically stable if there exist $\epsilon_{i} > 0$, $\mathbf{Q}_{i} > 0$ and \mathbf{Y}_{i} for $i \in \mathcal{N}$ such that $\forall i \in \mathcal{N}$

$$\begin{bmatrix} -\tilde{\mathbf{Q}}_i & \tilde{\mathbf{\Phi}}_i^{\mathsf{T}} \mathbf{W}_i & \tilde{\mathbf{\Gamma}}_i^{\mathsf{T}} \\ * & \epsilon_i \overline{\mathbf{W}}_i - \tilde{\mathbf{Q}} & \mathbf{0} \\ * & * & -\epsilon_i \mathbf{I} \end{bmatrix} \triangleq \mathbf{\Theta}_i < \mathbf{0},$$

where $\tilde{\mathbf{Q}}_i = \operatorname{diag}\{\mathbf{Q}_i, \mathbf{Q}_i\}, \ \tilde{\mathbf{Q}} = \operatorname{diag}\{\tilde{\mathbf{Q}}_1, \tilde{\mathbf{Q}}_2, \tilde{\mathbf{Q}}_3, \tilde{\mathbf{Q}}_4\},\$

$$\begin{split} \tilde{\mathbf{\Phi}}_{i} &= \begin{bmatrix} \mathbf{A}\mathbf{Q}_{i} + \theta_{k}^{a}\mathbf{B}\mathbf{Y}_{i} & -\theta_{k}^{a}\mathbf{B}\mathbf{Y}_{i} \\ \mathbf{0} & (1 - \theta_{k+1}^{s})\mathbf{A}\mathbf{Q}_{i} \end{bmatrix}, \\ \tilde{\mathbf{\Gamma}}_{i} &= \begin{bmatrix} \mathbf{N}_{a}\mathbf{Q}_{i} + \theta_{k}^{a}\mathbf{N}_{b}\mathbf{Y}_{i} & -\theta_{k}^{a}\mathbf{N}_{b}\mathbf{Y}_{i} \\ (1 - \theta_{k+1}^{s})(\mathbf{N}_{a}\mathbf{Q}_{i} + \theta_{k}^{a}\mathbf{N}_{b}\mathbf{Y}_{i}) & -(1 - \theta_{k+1}^{s})\theta_{k}^{a}\mathbf{N}_{b}\mathbf{Y}_{i} \end{bmatrix}. \end{split}$$

In this case, state feedback gain matrices $\mathbf{K}_i = \mathbf{Y}_i \mathbf{Q}_i^{-1}$, i = 3, 4.

Motivations 00000	Problem Formulation	Main Results ○○○○●○	Example 0000	Conclusions
Outline				

- Motivations
 - Networked Control Systems
 - Our Novelty
- 2 Problem Formulation
 - NCS Configuration
 - NCS Dynamics

3 Main Results

- Robust Stochastic Stability
- Synthesis of Robust Stabilisation Control
- Robust H_{∞} Control Design
- 4 Example
 - Plant and Network
 - H_{∞} Control Solution
- 5 Conclusions

Theorem 3: Given a scalar $\gamma > 0$, the NCS \hat{P}_{K} driven by the Markov chain is robustly stochastically stable with disturbance attenuation level γ , if there exist scalars $\epsilon_{i} > 0$, matrices $\mathbf{Q}_{i} > 0$ and \mathbf{Y}_{i} for $i \in \mathcal{N}$ such that $\forall i \in \mathcal{N}$

$$\begin{bmatrix} -\tilde{\mathbf{Q}}_i & \mathbf{0} & \tilde{\mathbf{\Phi}}_i^{\mathsf{T}} \mathbf{W}_i & \tilde{\mathbf{\Gamma}}_i^{\mathsf{T}} & \tilde{\mathbf{C}}_i^{\mathsf{T}} \\ * & -\gamma^2 \mathbf{I} & \overline{\mathbf{B}}_i^{\mathsf{T}} \mathbf{W}_i & \mathbf{0} & \mathbf{0} \\ * & * & \epsilon_i \overline{\mathbf{W}}_i - \tilde{\mathbf{Q}} & \mathbf{0} & \mathbf{0} \\ * & * & * & -\epsilon_i \mathbf{I} & \mathbf{0} \\ * & * & * & * & -\mathbf{I} \end{bmatrix} < \mathbf{0},$$

where $\tilde{\mathbf{C}}_i = \begin{bmatrix} \mathbf{C}\mathbf{Q}_i + \theta_k^a \mathbf{D}\mathbf{Y}_i & -\theta_k^a \mathbf{D}\mathbf{Y}_i \end{bmatrix}$, $\mathbf{W}_i, \overline{\mathbf{W}}_i, \tilde{\mathbf{Q}}_i, \tilde{\mathbf{Q}}, \tilde{\mathbf{Q}}_i$ and $\tilde{\mathbf{\Gamma}}_i$ are given before.

In this case, state feedback gain matrices $\mathbf{K}_i = \mathbf{Y}_i \mathbf{Q}_i^{-1}$, i = 3, 4.

Motivations 00000	Problem Formulation	Main Results	Example ●000	Conclusions
Outline				

- Motivations
 - Networked Control Systems
 - Our Novelty
- 2 Problem Formulation
 - NCS Configuration
 - NCS Dynamics
- 3 Main Results
 - Robust Stochastic Stability
 - Synthesis of Robust Stabilisation Control
 - Robust H_{∞} Control Design

4 Example

- Plant and Network
- H_{∞} Control Solution
- 5 Conclusions

00000	0000000	000000	0000	
Plant an	d Network			

 Unstable uncertain NCS of x(t) ∈ ℝ³, u(t) ∈ ℝ², z(t) ∈ ℝ and w(t) ∈ ℝ, with

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0.4 & 0.6 & 0.2 \\ 1 & 0.2 & -1.1 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 0.5 & 1 \\ 0.5 & 0.2 \\ 1 & 0.4 \end{bmatrix}, \ \mathbf{B}_w = \begin{bmatrix} 0.1 \\ -0.2 \\ 0.7 & 0.9 \end{bmatrix},$$
$$\mathbf{M} = \begin{bmatrix} 0.1 \\ -0.1 \\ 0.2 \end{bmatrix}, \ \mathbf{C} = \begin{bmatrix} 0.2 & 0.3 & 0.3 \end{bmatrix}, \ \mathbf{D} = \begin{bmatrix} 0.7 & 0.9 \end{bmatrix},$$
$$\mathbf{N}_a = \begin{bmatrix} 0.5 & 0.2 & 0.3 \end{bmatrix}, \ \mathbf{N}_b = \begin{bmatrix} 0.1 & 0.2 \end{bmatrix}.$$

• Markov chain r_k with transition probability matrix

$$\boldsymbol{\Upsilon} = \begin{bmatrix} 0.2 & 0.1 & 0.1 & 0.6 \\ 0.1 & 0.2 & 0.1 & 0.6 \\ 0.1 & 0.1 & 0.2 & 0.6 \\ 0 & 0.1 & 0.1 & 0.8 \end{bmatrix}.$$

Motivations 00000	Problem Formulation	Main Results	Example 0000	Conclusions
Outline				

- Motivations
 - Networked Control Systems
 - Our Novelty
- 2 Problem Formulation
 - NCS Configuration
 - NCS Dynamics
- 3 Main Results
 - Robust Stochastic Stability
 - Synthesis of Robust Stabilisation Control
 - Robust H_{∞} Control Design

4 Example

- Plant and Network
- H_{∞} Control Solution

Conclusions

- Give disturbance attenuation level $\gamma = 0.45$.
- According to Theorem 3, we can obtain *ϵ_i* and **Q**_i, 1 ≤ *i* ≤ 4, as well as **Y**₃ and **Y**₄.
- Thus, derive state feedback gain matrices

$$\begin{split} \mathbf{K}_3 &= \left[\begin{array}{ccc} 0.0004 & 0.0170 & 0.0331 \\ -0.0707 & -0.0964 & -0.1062 \end{array} \right], \\ \mathbf{K}_4 &= \left[\begin{array}{ccc} -0.5959 & -0.1417 & 0.4485 \\ 0.3396 & -0.3326 & -0.5625 \end{array} \right], \end{split}$$

as the solution of robust H_{∞} control problem.

Motivations	Problem Formulation	Main Results	Example 0000	Conclusions
Conclus	ions			

We have studied a generic class of model-based NCSs, where

- the plant has time-varying norm-bounded uncertainties;
- both the sensor-to-controller and controller-to-actuator channels experience random packet dropouts.

We have derived sufficient conditions, in the form of LMIs, for

(日) (日) (日) (日) (日) (日) (日)

- guaranteeing the robust stochastic stability;
- synthesising the stochastic stabilisation controller;
- designing the H_{∞} controller.