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Abstract: The authors derive a Bayesian decision 
feedback equaliser which incorporates co-channcl 
interference compensation. By exploiting the 
structure of co-channel interfering signals, the 
proposed Bayesian decision feedback equaliser is 
able to distinguish an interfering signal from 
white noise and utilises this information to 
improve performance. Adaptive implementation 
of this Bayesian decision feedback equaliser 
includes identifying the channel model using the 
least mean square algorithm and estimating the 
co-channel states by means of an unsupervised 
clustering scheme. Simulation involving a binary 
signal constellation is used to compare both the 
theoretical and adaptive performance of this 
Bayesian decision feedback equaliser with those 
of the maximum likelihood sequence estimator. 
The results obtained indicate that, in the presence 
of severe co-channel interference, the Bayesian 
decision feedback equaliser employing the 
proposed simple scheme to compensate co- 
channel interference can outperform the 
maximum likelihood sequence estimator that only 
treats co-channel interference as an additional 
coloured noise. 

1 Introduction 

Adaptive equalisers for combating channel intersymbol 
interference (ISI) and noise can be classified into two 
categories, namely sequence estimation and symbol 
decision equalisers. The optimal solution for the class 
of sequence estimation equalisers is the maximum like- 
lihood sequence estimator (MLSE) [I]. The MLSE pro- 
vides the lowest error rate att,ainable for any equaliser 
when the channel is known but is computationally very 
expensive. A widely used symbol decision equaliser is 
the conventional decision feedback equaliser (DFE) [2] 
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which has a very low computational complexity. The 
conventional DFE, however, does not achieve the full 
performance potential o f  the symbol decision DFE 
structure, and the optimal symbol decision DFE is 
known to be the Bayesian DFE [3]. 

In the previous study [3-51, we have compared the 
Bayesian DFE with the conventional DFE and the 
MLSE extensively. In terms of computational require- 
ments, the adaptive Bayesian DFE is more complex 
than the conventional DFE but is less complex than 
the adaptive MLSE. The adaptive MLSE requires 
sophisticated processing capability while the implemen- 
tation o f  the Bayesian DFE is relatively straightfor- 
ward. For stationary channels, the performance of the 
adaptive Bayesian DFE is much better than the con- 
ventional adaptive DFE but is inferior to that of the 
adaptive MLSE. The adaptive Bayesian DFE however 
has significant advantages over the adaptive ML!SE for 
rapidly time-varying channels. Extensive simulation 
results have demonstrated that the adaptive Bayesian 
DFE actually outperforms the adaptive MLSE in terms 
of error rate for severely fading channels. It has been 
suggested that the adaptive MLSE accumulates track- 
ing errors, which causes serious performance degrada- 
tion [5] .  

Many communication systems, such as mobile cellu- 
lar radio and dual polarised microwave radio channels, 
are impaired not only by channel IS1 but also by co- 
channel interference (CCI). It is well-known that an 
adaptive equaliser can usually do better against CCI 
than it can against the same level of noise [6]. However, 
in doing so, most of the equalisers can only treat CCI 
as an additional noise source and do not fully exploit 
the differences between the interfering signals and the 
noise. For example, a linear equaliser only exploits the 
spectral characteristics of the interference through its 
autocorrelations [6, 71. This is also the case for the con- 
ventional DFE studied in [8]. 

If both the channel and co-channels are known, it is 
possible to design the MLSE which takes into account 
both the IS1 and CCI. Such a full MLSE, although 
computationally very complex, will achieve the lowest 
possible error rate. The difficulty is that there is no 
practical way of obtaining accurate co-channel models 
needed. Unlike the case of channel identification., there 
is generally no training signals available for supervised 
co-channel identification. Even if a means of identify- 
ing the co-channels can be developed, the estimate 
errors are expected to be large. The MLSE, being a 
sequence estimation method, is more likely to accumu- 
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late the co-channel estimation errors, causing serious 
performance degradation. In the blind equalisation set- 
ting, in theory it is possible to design a joint data detec- 
tion and channelico-channels estimation based on the 
MLSE approach. Such an approach will certainly be 
computationally too expensive to implement. In prac- 
tice, interfering signals are often treated as an addi- 
tional coloured noise in the standard MLSE. 

The probability density function (PDF) of an inter- 
fering signal is quite different from that of the noise. 
An ideal equaliser should be capable of distinguishing 
the interfering signal from the noise. In a previous 
study [7], a Bayesian transversal equaliser was derived 
which can effectively exploit the differences between 
the CCI and the noise and uses this information to 
improve performance. The adaptive version of this 
Bayesian equaliser can be implemented easily. The 
present study extends this result to the DFE structure 
and incorporates CCI compensation into the Bayesian 
DFE derived previously for combatting IS1 and noise. 
It is shown that, in the presence of severe CCI, this 
Bayesian DFE has superior performance over the 
MLSE which only treats CCI as coloured noise. Adap- 
tive implementation of this Bayesian DFE is then 
investigated. To effectively compensate for the CCI, the 
set of co-channel states are required. A simple unsuper- 
vised clustering algorithm is used to estimate these co- 
channel states. 

Fig. 1 Discrete-time model of communication system 

The system model considered in this study is depicted 
in Fig. 1. This model [9] is widely used to represent 
communication systems in the presence of ISI, CCI 
and noise. The channel Ao(z) and the p interfering co- 
channels A,(z), l s i s p ,  are modelled by finite impulse 
response filters 

n2 -1 

A,(z)  = U , , ~ Z - ~ ,  0 5 i 5 p (1) 
3=0 

where n, and ai,, are the length and the tap weights of 
the ith impulse response, respectively. The transmitted 
data so(k) and the interfering data s,(k), 1 2 i 5 p ,  are 
independently identically distributed (iid) and they are 
mutually independent. The three components of the 
channel observation, 

~ ( k )  = ? ( k )  + u ( k )  + e ( k )  (2) 
will be referred to as the desired signal, the interfering 
signal and the noise, respectively. The noise e(k) is 
assumed to be a Gaussian white noise with variance 
E[e2(k)] = 0:. 
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The Bayesian DFE [3-51 was derived for complex 
valued multilevel signals. In the extension to include 
CCI, for notational simplicity and to highlight the 
basic concepts, s,(k), 0 5 i 5 p ,  are assumed to be binary 
and to take values from the symbol set {dl) = +1, d2) = 
-1 }. The tap weights ulJ are therefore real valued. 
Application to complex valued A,(z) and multilevel 
symbol constellations are straightforward (as in the 
case of the Bayesian DFE for combating IS1 and noise) 
but the computational complexity will increase signifi- 
cantly. Let E[i2(k)] = 0," and E[u2(k)] = 0,". We define 
the signal to noise ratio (SNR) of the system as SNR= 
o!/oi, the signal to interference ratio (SIR) of the sys- 
tem as SIR = $/o;, and the signal to interference and 
noise ratio (SINR) of the system as SINR = o,'(o,' + 
o,"), respectively. 

decision 
f iitering device 

@...l+J 1-j 2-1 

Fig. 2 Schematic of decision feedback equaliser 

The structure of' the DFE considered in this study is 
depicted in Fig. 2. The equalisation process defined in 
Fig. 2 uses the information present in the observed 
channel output vector, 

and the past detected symbol vector, 

to produce an estimate &(k - d) of so(k - d). The inte- 
gers d, rn and n are known as the decision delay, the 
feedforward order and the feedback order, respectively. 
Without the loss of generality, d = no - 1 is chosen to 
cover the entire channel dispersion Ao(z), m is related 
to d by m = d + 1 = no, and n is given by n = no + m - 

r ( k )  = [ ~ ( k ) . . . ~ ( ~ ~ - r n + i - ) ] *  ( 3 )  

(4) ;b(k)  = [So(k - d - 1) . ' .  So(k - d - n)] * 

d - 2 = ~ 1 0  - 1 [3]. 

2 

In the presence of the IS1 and noise, the optimal solu- 
tion for the symbol decision structure of Fig. 2 is the 
Bayesian DFE [3-51. This Bayesian DFE is first sum- 
marised. This will naturally lead to the Bayesian solu- 
tion in the presence of CCI. A new version of this 
Bayesian DFE is then presented which has certain 
practical advantages. Given the channel model Ao(z), 
the value of the noiseless channel output vector, 

is specified by the symbol sequence s(k) = [s,@) sZ(k)lT, 
where 

Bayesian DFE in the absence of CCI 

f(k) = [ ? ( k ) .  . . ? ( k  - m + 1)]* (5) 

] (6) 
Sf(k) = [so@).  . . so(k - d ) ] T  

~ b ( k )  = [sO(k - d - 1) . . . sO(k - d - n)lT 
Under the assumption that the given feedback vector i s  
correct, that is, Ob(k) = sb(k), the state of i(k) is deter- 
mined by sf(k). Since sf(k) has N, = 2d+1 = 2" combina- 
tions, i (k )  has N, states. Let N, sequences of sAk) be 
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Sf ,3  

The corresponding states of i(k), denoted as rJ, are 
given by: 

r, = [F” F’][sfT,,,(k) G:(k)IT, 15 j 5 N,  (8) 

= bS,3  ( k )  . ’ . S f , j  ( k  - w, 1 F j L Ns ( 7 )  

where the m x (d + 1) matrix IT” has the form: 

- 

and the m x n matrix F’ has the form 

0 1  . . .  r o  0 

The states of i(k) can be grouped into two subsets 
according to the value of so(k -- 9: 
~ ( 2 )  = {t(k)  = ry)Iso(k - I-I) == s ( t ) } ,  1 5 i 5 2 (11) 
Each R(j) contains iV,(j) = N,/2 = 2d states. 

The PDF of r(k) conditioned on so(k ~ d) = is 
N;tJ  

pr(r(k)lso(k-d) = s ( ~ ) )  = 1 a!i)pe(r(k)-rj), 1 I i I 2 

(12) 
j=1 

where ri E R(j), aii) are a priori probabilities of ri, and 
p,( . )  is the PDF of the noise vector e(k) = [e(k) ... e(k - 
m + l)]‘. Since all the channel states can be assumed to 
be equiprobable and the noise PDF is Gaussian, 
eqn. 12 leads to the Bayesian decision variables: 

N p  

vi(k,ao) = 1 e x p ( - l / r ( k )  -r,jl12/2cz), 1 I i I 2 (13) 

Here a. = [ao,oao,l ... ao,no.,]r i:; included in the expres- 
sion to emphasise that the channel states are computed 
based on the given channel ;ao. The minimum error 
probability decision is defined by 

j=1 

which provides the optimal solution for the equalisa- 
tion structure o f  Fig. 2 in the absence of CCI. 

For the above version of the Bayesian DFE origi- 
nally derived in [3] ,  a different set of the channel states 
is required at each sample k even when the channel a. 
is constant because the feedback vector $,(k) is different 
at different k.  That is, different Bayesian equalisers are 
used for different decision feedbacks. Analysis and 
implementation of the Bayesian DFE becomes easier if 
the following space translation is made. Define: 

The elements of r’(k) can be computed recursively: 
r’(k) = r(k) - F’Gb(k) 

r’(k - 2 )  = z - l r ’ (k  - 2 + 1) - ao,,,_1S(k - d - 1) 

r’(k)  = r ( k )  

(15) 

i i = m - 1,. . . , 2 , 1  

(16) 
In the new translated space, the channel states are 
given by 
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ri = F ’ ’ S ~ , ~  ( k ) ,  1 5 J 5 N ,  (17) 
The Bayesian DFE consists of computing the decision 
variables: 

q2(k,ao) = 1 exp(-llr’(k) - r;112/2a,2), 1 5 i 5 2 (18) 

and making the decision according to eqn. 14. 
This version of the Bayesian DFE realises the same 

optimal solution as the original one for the equalisation 
process defined in Fig. 2. It, however, has certain 
advantages over the original version. It removes the 
requirement of different Bayesian equalisers for differ- 
ent decision feedbacks, and has clear advantages in 
hardware implementation. Using the proposed transla- 
tion, analysis of the Bayesian DFE can be redwed to 
one of studying an equivalent Bayesian equaliser ‘with- 
out decision feedback’. Schematic diagram of this alter- 
native Bayesian DFE is depicted in Fig. 3. 

N p  

3=1 

r ’ (k )  r ’ (  k-I) r ’( k-2) r ‘ ( k-m +I ) 

Bayesian equaliser 1 

3 

The Bayesian DFE can now readily be extended to 
cover CCI. The key to this extension is the fact that 
similar to the desired signal i ( k )  the interfering signal 
u(k) can only take some finite number of values. With- 
out loss of generality, we will assume that only one 
CCI (p = 1) is present. The interfering signal u(k) then 
has Nu,$ = 2nl scalar states {ui, 1 5 j 5 Nu,s}. Therefore, 
the interfering signal vector, 

has Nu = 2n*+n1-1 states. The set of these co-channel vec- 
tor states is denoted as U = {uj, 1 5 j 5 N u } .  

In the presence of this CCI, the PDF o f  r(k) condi- 
tioned on so(k ~ d) = s(l) is 

N; jJ  N,, 

p,(r(k)lso(k - d)  = s(1)) = x a ! ! p e ( r ( k )  - r j  - ul) 

(20) 

Bayesian DFE in the presence of CCI 

u(k)  = [ u ( k ) .  . . u ( k  - m + l)IT (19) 

,,=1 1=1 

l 5 i 5 2  

where ri E R(j), ul E U and ay/ are a priori probabilities 
of rj + U/. Because all the rj + U1 are equiprobable and 
the noise PDF is Gaussian, the minimum error proba- 
bility decision is achieved by computing the Bayesian 
decision variables: 

N.iZ1 N,, 

(21) 
vt(k,ao) = xexp(-IIr’(k)  -ri - u l 1 1 ~ / 2 d  

j=1 1x1 

1 5 2 5 2  
and making the decision according to eqn. 14. 
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The computational complexity of the Bayesian DFE 
without CCI compensation is an order of N, [3, 51. The 
complexity of the Bayesian DFE with full CCI com- 
pensation is thus an order of N, x Nu. To reduce the 
complexity, an approximation of this full Bayesian 
DFE can be adopted which only approximates co- 
channel states. The approximation can easily be 
achieved due to the symmetric structure of co-channel 
states, and this will be illustrated using an example. 
Another reason for adopting the approximation is due 
to practical considerations. The scalar co-channel states 
U[ can only be estimated based on unsupervised learn- 
ing. The resolution of unsupervised learning is limited, 
and it is not always possible to resolve all the co-chan- 
ne1 states. In such a situation, it is natural to consider 
an approximation. Carrying out the approximation to 
an extreme and approximating the CCI as an addi- 
tional noise, we obtain the Bayesian DFE with the 
decision variables: 

Vz(k,a,) = exp(-llr'(k) - r;1l2/2a2), 1 5 i I 2 (22 )  

where rs2 = 0: + 0;. This has the same form as the 
Bayesian DFE in the absence of CCI. 

N p  

j=1 

Table 1: Scalar co-channel states for A,(z) h(0.50 + 
0 . 8 1 ~ '  + 0 . 3 1 ~ ~ )  

NO. SI ( k )  SI (k-  1)  S, (k-2)  U, 

1 1 1  1 1.62 (h) 
2 1 1  -1 1 .oo (1) 
3 1 -1 1 0.00 (1) 

5 -1 1 1 0.62 (1) 
6 -1 1 -1 0.00 (h)  
7 -1 -1 1 -1 .oo (h)  
8 -1 -1 -1 -1.62 (h) 

4 1 -1 -1 -0.62 (h) 

We now use an example to illustrate the above dis- 
cussion and to compare the theoretical performance of 
the Bayesian DFE with that of the MLSE which only 
treats the CCI as noise. The channel and the interfering 
co-channel are given by 

} (23) 
Ao(z) = 0.34 + 0.88x-l + 0 . 3 4 ~ - ~  
Al(z) = X(0.50 + 0 . 8 1 ~ - ~  + 0 . 3 1 ~ ~ ~ )  

where the value of the parameter h dictates the SIR 
requirement. For example, h = 0.32 gives rise to a SIR 
= 1OdB. The set of the scalar co-channel states are 
listed in Table 1. The symmetric structure of the co- 
channel states is apparent in Table l. In general, this 
symmetric structure is expressed by the relationship: 

UN,,,--l+l = 1 5 1 5 Nu,s/2 (24) 
The set of the vector co-channel states U is obtained by 
expanding the scalar states. In this example, U contains 
32 vector states as listed in Table 2. The rule to expand 
the set of the scalar co-channel states into the set of the 
vector co-channel states can be seen from Table 2. In 
general, in the table of the vector co-channel states, the 
last column (corresponding to u(k - m + 1)) is repeat- 
edly filled with 

Z 0  Z 0  20 

QQ--Q 

the column corresponding to u(k - m + 2) is repeatedly 
filled with 

21 21 21 
AA - 
UlUl U2U2 ' . ' UN,,,uN,>, 

..., and the first column (corresponding to u(k)) is filled 
with 

2 T T - l  2m- l  2 m - l  -- - 
U 1  ' ' ' U 1  U 2  ' ' ' U2 ' ' UN,>, ' ' * UN,,, 

Table 2: Vector co-channel states for A,(z) h(0.50 + 
0 . 8 1 ~ '  + 0 . 3 1 ~ ~ )  

No. 

1 
2 

3 

4 
5 
6 
7 

8 
9 
10 
11 

12 

13 

14 

15 

16 

17 

18 
19 
20 
21 

22 

23 

24 

25 

26 

27 

28 

29 
30 

31 

32 

- 
SI ( k )  ST (k-1) ~1 (k-2) SI (k-3) S, (k-4) U, 

1 1  1 1 1 U1 U1 U1 

1 1  1 1 -1 U1 U1 Y 

1 U1 U2 U3 1 1  

1 1  1 -1 -1 U1 U, U, 

-1 1 1 U? U3 U5 1 1  

1 1 -1 1 -1 U* U, U6 

1 1 -1 -1 1 U, U4 U1 

1 1 -1 -1 -1 U, U, U, 

1 -1 1 1 1 U3 U5 U1 

1 -1 1 1 -1 U, U, U, 

1 -1 1 -1 -1 

1 -1 -1 1 1 U4 U7 U5 

1 -1 -1 1 -1 U, U, U, 

1 U, U8 U7 

1 -1 -1 -1 -1 U, U, U* 

-1 1 1 1 1 U5 U1 U1 

-1 1 1 1 -1 U, U,  U, 

1 -1 1 U5 Y U3 -1 1 

-1 1 1 -1 -1 U5 Y U4 

-1 1 -1 1 -1 U6 U3 U, 

-1 1 

-1 1 -1 -1 -1 U, U, U, 

-1 -1 1 1 1 U7 U5 U1 

-1 -1 1 1 -1 U7 U5 U, 

-1 -1 1 -1 -1 U, U6 U, 

-1 -1 -1 1 1 U8 U7 U5 

1 -1 

1 -1 1 -1 u3 

u3 

-1 -1 1 -1 

-1 1 -1 1 u6 

-1 -1 u4 

-1 -1 1 -1 u6 

-1 -1 -1 1 -1 u7 

1 ' 8  ' 8  ' 7  -1 -1 -1 -1 

-1 -1 -1 -1 -1 U, U, us 

In this expansion, to obtain correctly the set of the 
vector co-channel states as shown in Table 2, we need 
to know the correct order of the scalar co-channel 
states as indicated in Table 1. The clustering algorithm 
described in the next Section can only identify the val- 
ues of the scalar co-channel states and does not provide 
the information regarding their order. The order of the 
scalar co-channel states can be sorted out with the help 
of the state transition diagram. For the case of the 
eight scalar states, Fig. 4 depicts the state transition 
diagram. After the set of the eight scalar states has 
been obtained, by observing a sequence of states 
through time, their order can easily be arranged 
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according to the state transition diagram. The symmet- 
ric structure of the state transition diagram and the 
relationship of eqn. 24 helps to speed up this ordering 
process. 

-1 

-2 -  
m. 
0 

2 -3-  
01 

v 
Fig. 4 State transition diagram for case of eight scalar co-channel states 

- 

-! 

- .  

Rearrange the eight scalar co-channel states of 
Table 1 into 
(1.62X,1.00X,0.62X,0.00~,-0.00X,-0.62X,-1.00X,-1.62X) 

( 2 5 )  
We may approximate (1.621, 1.001) by its mean 1.311 
and (0.621, 0.OOh) by 0.311,. This results in four 
approximated scalar co-channel states: 

The number of resulting approximated vector co-chan- 
ne1 states is 16. This approximation may also be viewed 
from a different angle. The order of the co-channel is 
n1 = 3. Suppose that we only have an approximated co- 
channel order n^, = 2. This will give us four scalar co- 
channel states, and each of these approximated states is 
the mean of a pair of the true states. These four 
approximated scalar co-channel states are listed in 
Table 3 in the correct ordering, and the state transition 
diagram for the case of the four states is shown in 
Fig. 5. The Bayesian DFE with decision variables 
described by eqn. 22 may be viewed as the result of 
choosing 6, = 0. 

(1.31X,0.31X, -0.31A, -1.31X) (26 1 

Table 3: Approximated scalar co-channel states assum- 
ing nl = 2 for Al(z) h(0.50 + 0 . 0 1 , ~ ~  + 0 .31~-~ )  

1 1 1  1.31 (h)  
2 1 -1 -0.31 (1) 
3 -1 1 0.31 (h) 
4 -1 -1 -1.31 (h) 

Fig.5 
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State transition diagram for case of four scalar co-channel states 

Table 4: SIR, SNR and SlNR values used to obtain the 
results of Figs. 6-8 

Fig. SIR SNR SlNR 

6 5dB 2 - 28dB 0.3 - 5.0dB 
7 10dB 2 - 25dB 1.4- 9.8dB 
8 15dB 2-21dB 1.8- 14.0dB 

-51 4 I I I I i 
0 5 10 15 20 25 30 

S N R ,  dB 
Theoretical performance for SIR = 5dB 

MLSE treating CCI as noise 
Bayesian DFE with approximated CCI compensation (SI = 2 )  
Bayesian DFE with full CCI compensation (SI 7 n l  = 3) 

Fig.6 
-+- 
-0- 
-x- 
Bayesian DFE without CCI compensation (rfl = 0) is similar to -+- 

-1 , I  
-1 - 

-2 - 
[r 
w 
m -  
0 

-0 - 3 -  
01 

Fig.7 
-0- 

-0- 
-+- 
-x- 

I I 1 I 

0 5 10 15 20 25 
SNR, d 6  

-5 1 

Theoretical performance for SIR = 1OdB 
Bayesian DFE without CCI compensation (rf, = 0) 
MLSE treating CCI as noise 
Bayesian DFE with approximated CCI compensation (ril = 2) 
Bayesian DFE with full CCI compensation (rfl = nl = 3) 

Figs. 6 to 8 plot the performance curves of the Baye- 
sian DFE without CCI compensation (n^, = 0), the 
MLSE which treats CCI as noise, the Bayesian DFE 
with an approximated CCI compensation (Al = 2) and 
the Bayesian DFE with the full CCI compensation (GI 
- nl = 3 )  for three different SIR conditions respec- 
tively. Table 4 summarises the SIR, SNR and SINR 
values used to obtain the results shown in Figs. 6 to 8. 
The performance of the Bayesian DFEs were obtained 
with detected symbols being fed back. When the ( X I  is 
negligible, the MLSE has superior performance over 
the Bayesian DFE, as can be seen from the results of 
Fig. 8. However, in the presence of severe CCI, the 

- 
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Bayesian DFE with an effective compensation of the 
CCI can outperform the MLSE that only treats the 
CCI as noise, as clearly shown in Figs. 6 and 7. 

no-1 \ 

E(k) = r ( k )  - E ti()& - l ) s o ( k  - j) 

P(k )  = s;(k - j )  

& , j ( k )  = 60,Jk - 1) + -€(k)So(k  - j) 

J=O 

no-1 

j = O  

Sa 

P(k )  
0 5 j 5 120 - 1 1 

0 I I I I 1 

> (27)  

-61 I I I I 
0 5 10 15 20 

Theoreticalperfbrmance for SIR = 15dB 
Bayesian DFE without CCI compensation (f ,  = 0) 
MLSE treating CCI as noise 
Bayesian DFE with full CCI compensation (n", = nl = 3) 

SNR,dB 
Fig.8 
-+- 

where g,  is an adaptive gain. Given the channel esti- 
mate go, it is straightforward to calculate the set of the 
channel states r? from eqn. 17. 

The equaliser does not have access to the interfering 
data {s,(k)} or its estimate, and supervised learning 
such as the NLMS algorithm is not applicable for iden- 
tifying the co-channel states. In the previous study [7], 
the unsupervised K-means clustering algorithm [ 101 is 
used to estimate the co-channel states. The ti-means 
clustering algorithm is known to be sensitive to the ini- 
tial positions of the cluster centres. Recently, an 
enhanced K-means clustering algorithm has been pro- 
posed [ I  11, which overcomes , this drawback. This 
enhanced ti-means clustering algorithm is optimal in 
the sense that the variances of every cluster are equal 
after convergence. This property is particularly relevant 
for the application to estimate co-channel states since 
all the cluster variances in this case should be equal. 
Using this enhanced K-means clustering algorithm, we 
propose the following procedure to estimate the co- 
channel states: 
(i) Compute the channel residual 

n o - 1  

E(k) = r ( k )  - E & o , j S o ( k  - j )  ( 2 8 )  
j = O  

where go = [bo,o...80,no-r]r is the current channel esti- 
mate. 
(ii) Compute the cluster variance weighted squared dis- 
tances between the residual ~ ( k )  and the scalar co-chan- 
ne1 states ui(k 11, 1 5 I S  G,5 

G(k) = U l ( k  - l)C/(k) 
= ~ l ( k  - l ) ( ~ ( k )  - ~ l ( k  - 1))2, 1 5 1 5 fiu,s(29) 

where I$,s = 2'l, 6, is an estimate of the co-channel 
order, vl(k - 1) is the current variance of the Ith cluster 
and <,@) is the squared distance between ~ ( k )  and ul(k 
- I). Find the minimum weighted distance: 

i;- ( k )  = min{cl(w' 1 5 1 I fiu,s} (30) 
(iii) Update the l*th and (G,, 
states: 

1* + 1)th co-channel 

where gu is an adaptive gain. The cluster variances are 
then updated according to the rule: 

ul ( k )  = Q.UL ( I C  - 1) ,1< 1 < f iu , ,  and I # 1 * , fiu+ - I" + 1 I U ,q u,,qpl*+l(k) = 211" ( k )  = Q('uL* ( k  - 1) + (1.0 - a)C1* ( k )  
(32) 

where a is a positive- constant slightly less than 1 .O. The 
initial vXO), 1 C 15 &,, can be set to a same small value. 
Setting ~;~,.+,*+,(k) = v,*(k) together with the rule 
~ i ? j ~ , ~ - ~ * + ,  = -u,*(k) exploits the symmetric structure of 
the co-channel states, and this accelerates convergence. 

The scalar co-channel states are then arranged in the 
correct order and expanded to obtain the set of the vec- 
tor co-channel states, U. Alternatively, the vector co- 
channel states can be estimated directly using the same 
ti-means clustering algorithm. This however requires 
longer learning, since the number of the vector co- 
channel states is much larger. An advantage of the lat- 
ter is that there is no need to order the vector states. 
The resolution of the above unsupervised clustering 
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algorithm obviously depends on the noise and the co- 
channel itself. A common-sense rule based on the 
amplitude of the channel residual can be adopted to 
choose the number of scalar co-channel states needed. 
For example, if the channel residual lieSAin the range (- 
0.1, O.l) ,  it is unnecessary to choose- &,s > 8. In this 
case, it may be sufficient to choose = 4, regardless 
of the true number of the scalar co-channel states. 

For the system defined in eqn. 23 with SIR = lOdB 
and SNR = 15dB, the combincd NLMS and clustering 
learning was used to estimate the channel model and 
the scalar co-channel states. The channel order was 
assumed to be known and only an estimated co-chan- 
ne1 order vil = 2 was assumed to be available. This gave 
rise to the four scalar co-channel states. The gain of the 
NLMS algorithm was chosen to be g,  = 0.08. The 
parameters of the clustering procedure were set to: a = 
0.999, gu = 0.05 and ~ ~ ( 0 )  = 0.000001 for all 1. Fig. 9 
depicts a typical set of the scalar co-channel state tra- 
jectories obtained, where the lines indicate the expected 
values. 

0.2 -i 

I 1 
0 20 40 60 80 100 
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Trajectories of scalar co-channel states obtained using clustering 

- 1  

Fig. 9 
algorithm 
Lines indicate expected values 

-1 I 
c 

t 
\ i  t 1 
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-0- Bayesian DFE without CCI compensation (6, = 0) 
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Bayesian DFE with approximated CCI compensation (t, = 2) 

For the same system (eqn. 23)  with SIR = lOdB, Fig. 
10 compares the adaptive performance of the Bayesian 
DFE without CCI compensation (Z1 = 0), the MLSE 
which only treats CCI as noise and the Bayesian DFE 
with an approximate CCI compensation (uil = 2). In the 
first two cases, the NLMS algorithm used 100 training 
pairs (channel observations and transmitted symbols) 
to identify the channel model. For the last case, in 
addition, the clustering algorithm used 100 channel 
observation samples to estimate the four scalar co- 
channel states. The adaptive performance of the Baye- 
sian DFE with an approximate CCI compensation ir very 
close to its theoretical performance, and is significantly 
better than that of the MLSE without CCI compensation. 

5 Conclusions 

Adaptive equalisation in the presence of ISI, additive 
Gaussian white noise and CCI has been investigated. It 
has been shown that, by exploiting the nature of inter- 
fering signals, the Bayesian DFE is capable of clistin- 
guishing an interfering signal from the noise. 
Simulation results have demonstrated that, in the pres- 
ence of severe CCI, the Bayesian DFE which incorpo- 
rates CCI compensation can outperform the MLSE 
without CCI compensation. In theory, if an accurate 
knowledge of the channel and co-channels is known, 
the MLSE can be designed to take into account both 
the IS1 and CCI and hence outperforms the Bayesian 
DFE. In practice, however, adaptive implementation of 
such a MLSE is very difficult. Adaptive implemienta- 
tion of the Bayesian DFE has been studied, and a. sim- 
ple unsupervised clustering algorithm has been 
suggested to learn the co-channel states. This adaptive 
Bayesian DFE is particularly effective in compensating 
one or a few dominant interferences. A drawback of 
this adaptive scheme is that its computational complex- 
ity increases quickly as the size of the symbol constalle- 
tion increases. 
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