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Abstract: The paper considers the conventional decision feedback equaliser (DFE) that employs a 
linear combination of the channel observations and past decisions. An expression of the symbol error 
rate (SER) is derived for the linear-combiner DFE with the general M-PAM constellation by utilising 
a geometric translation property of decision feedback. A method is developed to optimise the 
coefficients of the linear-combiner DFE to achieve the minimum-SER (MSER) solution. The 
performance of this MSER linear-combiner DFE is superior to the usual minimum mean square 
error (MMSE) solution. 

1 . Introduction 

Equalisation is a powerful technique for combating distor- 
tion and interference in communication links [ I ,  21 and 
high-density data storage systems [3, 41. The conventional 
DFE, in particular, is widely used in practice as it provides 
a good balance between performance and complexity. The 
conventional DFE [l] is based on a symbol-decision struc- 
ture that employs a linear combination of the channel 
observations and past decisions. We will refer to this DFE 
as the linear-combiner DFE to distinguish it from other 
DFE structures that use nonlinear combinations of the 
channel observations and past decisions [5-lo]. The Wiener 
or MMSE solution [1 11 is often said to provide the optimal 
solution for the linear-combiner DFE. However, the 
MMSE solution is not the MSER solution, the SER being 
the ultimate performance criterion of equalisation. 

It is known that decision feedback in a DFE performs a 
space translation [6, 121. Previous study [13, 141 has further 
developed this geometric translation property and derived 
the explicit recursive formula for performing the space 
translation. In the translated observation space, a DFE is 
reduced to a transversal equaliser and, furthermore, the 
subsets of the translated channel states related to different 
decisions are always linearly separable. In the asymptotic 
case of large signal to noise ratio (SNR), the hyperplanes of 
the Wiener decision boundary are orthogonal to the last 
axis of the translated observation space [14], which clearly 
illustrates why the MMSE solution does not achieve the 
full performance potential of the linear-combiner DFE 
structure. 

A new contribution of this paper is the derivation of an 
SER expression of the linear-combiner DFE for the general 
M-PAM constellation by using the geometric translation 
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approach. This allows an algorithm to be developed to 
obtain the MSER solution by minimising this SER crite- 
rion. Simulation results show that the MSER solution can 
offer a substantial SER reduction over the MMSE 
solution. A drawback of the MSER linear-combiner DFE 
is that the computational complexity increases significantly 
for high order signalling, compared with the MMSE solu- 
tion. 

In a recent work [15], an approximate MSER solution of 
the linear equaliser was derived for the special case of 
equalisable channels. Equalisability corresponds to the lin- 
ear separability of channel states related to the different 
decisions. It is well known that linear separability is not 
guaranteed when a linear equaliser is used [16]. In contrast, 
our MSER solution is exact and is not restricted to equalis- 
able channels, as the decision feedback always makes chan- 
nel states linearly separable. For the linear equaliser with 
equalisable channels, our solution is also valid. The 
approach of [15], however, does have an advantage that it 
can be implemented adaptively. 

We will assume that the channel and the symbol constel- 
lation are real-valued. For the complex-valued channel and 
modulation schemes, the results of this study are still valid. 
Specifically, the channel is modelled as a finite impulse 
response filter with an additive noise source, and the 
received signal at sample k is 

n,-1 

r ( k )  = ~ ( k )  + e ( k )  = C a,s(k - i) + e ( k )  (1) 

where U(k) denotes the noiseless channel observation; i z ,  is 
the channel length and U, are the channel tap weights; the 
Gaussian white noise e(k) has a zero mean and variance 
E[$(k)] = 02, and the symbol sequence {s(k)} is independ- 
ently identically distributed and has an M-PAM constella- 
tion defined by the set 

The SNR of the system is defined as 

t=0 

s , = 2 i - M - l  1 5 a s M  ( 2 )  

% - - l  

SNR = E[F2(k)]/E[e2(k)] = 0; (c a:) / 0," 

2=0 

(3) 
where q2 = E[&k)] is the symbol variance. 
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The generic DFE, depicted in Fig. 1, uses the information 
present in the channel observation vector 

Space translation and linear separability 

r ( k )  = [ r (k )  . . . r(k - m + l)IT (4) 
and the past detected symbol vector 

& ( k )  = [ . ? ( k - d - 1 ) . . . . ? ( k - d - n ) l T  (5) 
to produce an estimate J (̂k - d) of s(k - d). The integers d, 
m and n will be referred to as the decision delay, the feed- 
forward and feedback orders, respectively. Without loss of 
generality, d = n, - 1, m = It, and n = nu - I wdl be used, as 
th~s  choice of the DFE structure parameters is sufficient to 
guarantee the linear separability of the subsets of the chan- 
nel states related to the different decisions (see lemma 1 in 
this Section). 

filtering 

r(k) I r(k-l)l r(k-m+l) 1 
; (k-d) 

decision 
device 

i 

t I 1 -  
t I g(k-d-n) I g(k-d-2) I ;(k-d-I) I 

Fig. 1 Schematic a’mgrm of a generk deckwn@e&k equalker 

Applying the channel model, eqn. 1, to each element of 
the observation vector, eqn. 4, yields 

where e(k) = [e@) ... e(k - m + 1)]*, s(k) = [sfT(k)sbT(k)]* 
with 

r ( k )  = F s ( k )  + e ( k )  (6) 

Sf(k) = [ s ( k ) .  * .  s(k - d)]T  
s b ( k )  = [ s ( k - d - l ) . ’ . s ( k - d - n ) l T  (7) 

and the rn x (d + 1 + n) matrix F has the form 

F = [PI F 2 1  (8) 
with the m x (d + 1) matrix Fl and m x n matrix F2 defined 

... 
by 

1” u1 una 1 

and 
r o  0 . . .  0 1 

respectively. Under the assumption of correct decision feed- 
back, that is, $&) = s&), 

r ( k )  = F l s f ( k )  + F2.%(k) + e ( k )  (11) 
Thus the decision feedback translates the original space v(k) 
into a new space ~’(k): 

(12) 
n r ’ ( k )  = r ( k )  - F&(k) 
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This property was recogmsed in [6, 121. Previous research 
[13, 141 further pointed out that the elements of r’(k) can be 
computed recursively according to: 

~ ’ ( k  - i) = z-lr’(k - i + 1) - ~ , ~ ~ - i b ( k  - d - 1) 
i = m -  1, ..., 2 , l  

r’(k)  = r ( k )  

where z-l is interpreted as the unit delay operator. 

t(k-I) r’(k-2) t(k-m+l) 

filtering 

decision 
device 

s (k-d) S (k-d-I) 

Fig. 2 Schenzatic diagram of trmlated deckwn feedback equaliser 

Based on this interpretation of decision feedback, an 
alternative DFE structure is depicted in Fig. 2. Since a 
DFE is reduced to a transversal equaliser in the translated 
space, properties of the DFE can be studied more easily in 
the translated space. We have the following result of linear 
separability for the DFE. 
Lemma I: Let the Nf = Md+’ sequences or states of sf(k) be 
sfj, 1 s j s Nf The set of noiseless channel states in the 
translated space is defined by 

A 
R’ = {T;  = F i ~ f , j ,  1 5 j 5 N f }  (14) 

This set can be partitioned into A4 subsets conditioned on 
s(k - d) = si, 1 s i s M, 

e { T i  E R’ls(k - d)  = Si} 1 I i I M 
(15) 

Idi), 1 s i s M, are linearly separable. 
The proof of ths  lemma can be found in [14]. Lemma 1 

shows that the mapping Fl: r’ = Fpf maps linearly separ- 
able sets in the sf space onto linearly separable sets in the 
v‘-space. This is in contrast to the case of an equaliser with- 
out decision feedback, where the mapping F: Y = Fs maps a 
large space s onto a smaller space Y. States which are line- 
arly separable in the s-space will not necessanly be linearly 
separable in the u-space (see Appendix of [16]). Notice that 
we do not specify how r(k) and ŝ &) are combined here 
and, therefore, the results are valid for any DFE. It should 
be emphasised that, even though R@, 1 s i s M, are linearly 
separable, the optimal decision boundary will generally be 
nonlinear (the Bayesian DFE [q). However, linear separa- 
bility of the channel states related to the dfierent decisions 
is a highly desirable property to have because equalisation 
performance in this case is generally much better than that 
of the nonlinear separable case. 

A simple example taken from [14] is used to illustrate the 
space translation property of decision feedback. Consider 
the two-tap channel 

a = [UO u1IT = [0.5 1.OIT with 2-PAM symbols 
(16) 
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and the DFE with d = 1, m = 2 and n = 1. The set of 
8-channel states in the original observation space u(k) is 
depicted in Fig. 3. The decision feedback s(k - 2) corre- 
sponds to a space translation, the effect of whch is illus- 
trated in Fig. 3. It can be seen that decision feedback 
effectively ‘merges’ channel states, and ths simpMies the 
decision process. This space translation property was 
adopted in [17] to derive a concise version of the Bayesian 
DFE. Iltis [lS] has developed an importance sampling tech- 
nique for evaluating the performance of the Bayesian 
equaliser, valid only for the case of linearly separable chan- 
nel states. Lemma 1 shows that this importance sampling 
technique can readily be applied to evaluate the perform- 
ance of the Bayesian DFE [Note 11. 

2 

-2 

, .. 
1 .  

~(k-2) = 1 

translated 

0 
~ ( k - 2 )  =-I 

-2 -1 0 1 2 
r(k) + r‘(k) 

Fig.3 
for channel a = [0.5 1.01 with U 2-PAM conrtellutwn 

Illustrutwn of e p t  of o!eckwnfeedbak s(k - 2) on channel states 

3 Linear-combiner DFE 

The linear-combiner DFE is based on a linear filtering of 
v(k) and i b ( k )  given by 

f ( T ( k ) ,  gb (k ) )  = WT,(k) + bT&,(k) (17) 
where 

w = [WO ’ * ’ Wm-1IT  

b = [bl . . . b,IT (18) 
are the coefficients of the feedfonvard and feedback filters, 
respectively. Since the linear-combiner DFE is a special 
case of the generic DFE depicted in Fig. 1, by performing 
the translation eqn. 12, it is reduced to the equivalent lin- 
ear equaliser: 

The decision boundary of ths equivalent equaliser consists 
of M - 1 parallel hyperplanes defined by: {U’: wTv’ = 2i - 
M } ,  1 s i s M - 1. These hyperplanes can always be 
designed properly to separate the M subsets of the trans- 
lated channel states R(n, 1 s i 5 M. One of the hyperplanes, 
{Y’: wTr’ = 0}, passes through the origin of the r’(k)-space. 
Obviously, there must exist an MSER solution wopr for the 
structure in eqn. 19. The usual MMSE linear-combiner 
DFE, however, is not this MSER solution. 

3.1 MMSE linear-combiner DFE 
The Wiener solution for the linear-combiner DFE is well 
known (e.g. [Ill). Let fi and 8 be the MMSE solutions of 
w and b. It can readily be shown that 

f ’ ( T ’ ( k ) )  = W T T ’ ( k )  (19) 

[:I = [-&I 
Note 1: CHEN, S.: ‘Importance sampling simulation for evaluating the lower- 
bound BER of the Bayesian DFE‘, submitted to IEEE Trm. Comnnm., 1998 

IEE Proc.-Commun., Vol. 146, No. 6, December 1999 

with 

y q =  Eap-+:tn:h(ll O < q < r n - l  

(24) 
and s(q) is the discrete Dirac delta function. Since fiTF2 = 
-bT, we have 

GT‘r(k) + L T S b ( k )  = hT‘r ’ (k )  (25) 
It merely confirms the space translation nature of decision 
feedback. Thus, when examining the MMSE linear-com- 
biner DFE, we can simply study the feedforward part of 
the solution. In the asymptotic case of SNR - 03, we have 
the following result for fi. 
Lemma 2: In the noise-free case, 

W Z  0 0 . . .  0 ‘ I T  [ a0 
(26) 

This result can be derived by setting 0,‘ -+ 0 in eqn. 20, 
but an alternative proof is given in [14]. In the limit case of 
SNR - a, the hyperplanes of the MMSE solution are 
always orthogonal to the last axis of the v’(k)-space, which 
cannot be the optimal solution of eqn. 19 for any channel. 
Consider the example given in Fig. 3. The decision bound- 
ary of the Wiener solution for S N R  -+ 60 is depicted in 
Fig. 4. The best possible h e a r  decision boundary can eas- 
ily be constructed for this example, which is very different 
from the MMSE solution. The true optimal Bayesian deci- 
sion boundary in the asymptotic case is also illustrated in 
Fig. 4. 

G(k-l)=l 

s (k-I)=-1 ‘ I  A 

\ 
\ 

-2 I I I I 
-2 -1 0 1 2 

r’ (k) 
Fi .4 Asymptotic decirion b o d r k s  corresponding to h g e  SNRfor chun- 
ne?a = [0,5 I.0IT with a 2-PAM constellation mddec&-wnfeedback 
~ optimal Bayesian 
_ _ _  best hear  approximation 
_ _ _ _  Wiener solution 
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When the noise is added, the hyperplanes of the MMSE 
linear decision boundary will rotate and are no longer 
orthogonal to the axis u'(k - 4. Consider the example of 
Fig. 4 again. When SNR - 0, the Wiener decision bound- 
ary will rotate towards the line with a slope -2 ($;idGI = 2), 
and there is no difference between the MMSE and MSER 
solutions. However, for meaningful SNRs, the difference 
between the MMSE decision boundary and the best linear 
boundary can be large. For example, given SNR = 15dB, 
the Wiener decision boundary is the line with a slope of 
-0.28, but the best linear decision boundary obtained by 
minimising the SER has a slope of -1.03. In general the 
MMSE solution is different from the MSER solution, and 
searching for the latter is worthwhile at least for certain 
channels. 

3.2 MSER linear-combiner DFE 
For the given channel model a = [a0 ... aiTc,-l]T and the noise 
variance 02, the following lemma shows how to compute 
the SER of the linear-combiner DFE. 
Lemma 3: Let 1 = MI2 + 1. The SER P d w )  of the linear- 
combiner DFE, with the weight vector w subject to the 
constraint 

m-1 

i=O 

is given by 

where 

00 

1 
Q ( x )  = / - exp (-g) dx (30) G 

2 

- v)Twl 

llwll 
(31) 

2 
P3,1 + P A 2  = - 

llwll 
P3J = 

and v can be any point in the hyperplane wTr' = 0. Since 
this hyperplane passes through the origin of the r'(k) space, 
we can always choose v = 0. 

The derivation of this SER expression is given in the 
Appendix (Section 7.1). R(0 is the subset of channel states 
related to s(k - d) = sI = 1, and the number of states in R(0 
is NfIM = M'lu-l .  Obviously, the MMSE solution does not 
minimise PAW). Notice that the elements of w are not line- 
arly independent. The constraint eqn. 27 is introduced to 
express the SER neatly in the form of eqn. 28, and it does 
not change the SER. It is worth pointing out that the low 
noise Wiener solution, eqn. 26, satisfies the constraint 
eqn. 27. The following algorithm can be employed to 
obtain the optimal weight vector wept for the MSER linear- 
combiner DFE. 
Algorithm: 
Step 1. Use a channel estimator to obtain a channel model 
and an estimate of the noise variance. 
Step 2. Compute the subset of translated channel states R(0 
and use the low noise Wiener solution, eqn. 26, as the ini- 
tial value of w. 
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Step 3.  Solve the optimisation problem, 

minPE(w),  subject to wTareV = 1 ( 3 2 )  
W 

to obtain a wept. 
In the above algorithm, only step 1 involves channel 

observations. Once estimates of the channel model and 
noise variance are obtained, the optimisation eqn. 32 is car- 
ried out without involving any channel observation. This 
off-line optimisation problem can be solved, for example, 
using the augmented Lagrangian method [19], and an algo- 
rithm is given in the Appendix (Section 7.2). Computa- 
tional complexity of this MSER linear-combiner DFE is 
much more than that of the standard MMSE linear-com- 
biner DFE. However, the performance gain can justify the 
increase in computation. Some of the channel states r20 are 
far away from the decision hyperplanes and contribute little 
to the SER. Computational requirements can be reduced 
by neglecting these states from the optimisation procedure 
with little performance degradation. For example, consider 
the case of Fig. 4. By just using the single state at (0.5, 0.5) 
in the optimisation, little performance degradation will 
occur, compared with using the full subset R(*) of the two 
states. 

4 Numerical examples 

Three examples were used to compare the MSER and 
MMSE solutions of the linear-combiner DFE. The optimal 
weight vector wept for the linear-combiner DFE was 
obtained using the algorithm described in the preceding 
Section. All the SERs were evaluated with detected sym- 
bols being fed back. The first example was the two-tap 
channel with 2-PAM symbols defined in eqn. 16. Fig. 5 
compares the SERs of the MSER linear-combiner DFE 
with those of the MMSE linear-combiner DFE for a range 
of SNR conditions. For ths  example, the MSER linear- 
combiner DFE is superior and, at the SER of lo4, it has 
an SNR gain of -2dB over the Wiener solution. 

-1 - 

8 -2 
- 

L 

- 
2 -3 
E 
2 
z 
g -4 

- 

- 
- - 

-5 - 

-6 I I I I I I I I I I  

0 4 a 12 16 20 
signal to noise ratio, dB 

Fi .5 
bo f with detected symbols t%g,fed buck 
MMSEIMSER: MMSWMSER linear-combiner DFEs 
-0- MMSE 
-f- MSER 

P e f o m c e  corn misonfor c h w l  a = [ O S  I.OIT (Md2-PAMsyn- 

The second example was a 5-tap channel with the 2- 
PAM constellation: 

a = [0.227 0.466 0.688 0.466 0.227IT 
with 2-PAM symbols ( 3 3 )  
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The structure of the DFE was chosen to be d = 4, rn = 5 
and n = 4. The SERs of the MSER and MMSE linear- 
combiner DFEs with detected symbols being fed back are 
plotted in Fig. 6, where it can be seen that the performance 
of the MSER linear-combiner DFE is sigmfkantly better 
than that of the MMSE solution. At the SER of lo4, the 
MSER solution has an SNR gain of -1 dB over the MMSE 
solution. 

-1 

h 

2 -2 E 
e 
b 
0 -3 n 

L 

- 

5 
1 z 
8 -4 - 

-5 

. 

’ 

’ 

’ 

’ 

-6 I I 

8 10 12 14 16 18 20 22 
signal to noise ratio, dB 

Fig.6 
O.227lT mud 2-PAM syinhof \th kected syinhols beingfed buck 
MMSWMSER: MMSEiMSER linear-combiner DFEs 
-0- MMSE -+- MSER 

Perjormunce coin atison or clumnel a = 10.227 0.466 0.658 0.466 

The third example was a 3-tap channel with the 4-PAM 
constellation: 

a = [0.3482 0.8704 0.3482IT 
with 4-PAM symbols (34) 

The structural parameters of the DFE were set to d = 2, rn 
= 3 and n = 2. The SERs of the MSER and MMSE linear- 
combiner DFEs with detected symbols being fed back are 
depicted in Fig. 7. Again, the MSER solution is superior 
and has an SNR gain over 1dB at the SER of l p ,  com- 
pared with the MMSE solution. 

- 16 18 20 22 24 26 28 

2 . 7  Peflomuuiw cornpurison jbr c l m l  a = (0.3482 0.8704 0.3482IT 
signal to noise ratio, dB 

CPAM symbols with rktecied synrbols bemg fed buck 
MMSEJMSER: MMSUMSER linear-combiner DFEs 
-0- MMSE 
-+- MSER 
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5 Conclusions 

We have derived an SER expression of the linear-combiner 
DFE for the general M-PAM constellation. This is made 
possible by utilising a geometric translation property of the 
decision feedback in the DFE structure. Basically, the deci- 
sion feedback performs a space translation that maps the 
DFE onto an equivalent transversal equaliser in the trans- 
lated observation space and, furthermore, the subsets of 
translated channel states corresponding to the different 
decisions are always linearly separable. In particular, 
viewed from the translated observation space, the linear- 
combiner DFE is reduced to a linear equaliser and, moreo- 
ver, the hyperplanes of the Wiener solution under very low 
noise conditions are orthogonal to the last axis of the trans- 
lated space. This shows that the MMSE solution does not 
achieve the full performance potential of the linear-com- 
biner DFE structure. An algorithm is proposed to obtain 
the MSER solution by minimising the SER criterion. 
Numerical examples have been included to illustrate the 
better performance of the MSER linear-combiner DFE 
over the MMSE solution for certain channels. A drawback 
of this MSER solution is a significant increase in computa- 
tional complexity compared with the Wiener solution. 

The algorithm presented in this paper for obtaining the 
MSER solution is an off-line algorithm. For communica- 
tion links, practical application of this algorithm is limited 
to the initial set-up of the DFE. This MSER linear-com- 
biner DFE in its present form is more suited for data stor- 
age systems, as in many commercial disk drives the 
equalisers are trained at the factory floor and then are 
‘frozen’ before shipping. Ongoing research will investigate 
how to implement this MSER linear-combiner DFE adap- 
tively, so that it can be applied to fast time-varying 
channels. 
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7 Appendixes 

7. I Derivation of SER expression 
Consider the hear-combiner DFE, eqn. 19. The M - 1 
hyperplanes {U': wTv' = 2i - M } ,  1 s i s M -  1, partition the 
m-dimensional v'-space into M regions: 

z(2) i2 {r' : 8(5 - d )  = Si} 1 5 i 5 M ( 3 5 )  
The SER of the linear-combiner DFE is a function of w 
and can be expressed as 

M 

3 r ' 3 Z ( * )  

where p,'(v'lv,(n) is the probability density function of v'(k) 
conditional on the received channel state being v-3, f i ( l1 is 
the a priori probability of P,@ and 3 denotes 'not in'. 
Taking into account the fact of symmetry and equiproba- 
ble states, eqn. 36 is reduced to 

t=1 r ( t )  ER(%) 

(36) 

where 

p, ( r (4  ) n - / prl ( T ' I T ~ ~ ) )  dr' (38) 
r'32(') 

is the conditional error probability when the received chan- 
nel state is vj'" E R(Q. 

I '0' 

Fig. 8 Computation of conditionul error probability 

Consider the subset of channel states R(o, where 1 = MI2 
+ 1. RO is separated from other subsets by two hyperplanes 
wTv' = 0 and wTv' = 2. Referring to Fig. 8, an orthogonal 
transformation x = Lv' can be constructed whch rotates 
the bases so that one of the transformed bases, say xo, is 
parallel to w, the normal of the decision hyperplanes. Since 

352 

LLT = I and the whte noise e(k) has a Gaussian distribu- 
tion, the conditional error probability Pe(r)o) can be com- 
puted as 

00 00 

P,(r:l)) = / pz(zo)dzo / P z ( z l ) d z l  

+ / pz(z0)dzo / P z ( z l ) d z l  

P3,I  -00 

. . .  7 pz ( z m - 1  )dxm-l 
-00 

00 03 

P3>2 -00 

00 

00 

- - / &exp (-z) dx 
20: 

P3>1 

00 

1 exp (-5) 2a,2 dx 
P3.2  

Q ( F) + Q ( F) 
(39) 

where pj,l and pj,2 are the Euclidean distances between vjo 
and the hyperplanes wTv' = 0 and wTv' = 2, respectively. It 
can easily be seen that 

I(?-?) - Z))TwI 
(40) 

2 

llwll 
Pj,l + Pj,2 = - l l 4 l  P j , l  = 

and v can be any point in the hyperplane wTr' = 0. 

R('+') is a translation of R(Q: 
From eqns. 9, 14 and 15, it is obvious that the subset 

R(Z+l) = di) + ( s z+1  - Si)[U,,-l . f * U l U O ] T  

= R(i) + 2arev (41) 
where urev = [ana-l ... alaolT. Notice that the elements of w 
are linearly dependent. Specfiically, if we impose the follow- 
ing constraint: 

m - 1  

i=O 

the (i + 1)th hyperplane is the translation of the ith hyper- 
plane by the amount 2urev. As illustrated in Fig. 8, it 
becomes evident that 

and 

(44) 

Thus the SER of the linear-combiner DFE is given by 

PE ('UI) 

(45) 
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The feedforward weights of the equaliser are subject to the 
constraint eqn. 42. 

7.2 Algorithm for solving the optimisation 
problem 
Define the augmented Lagrangian function 

~ E ( w ?  A ?  = pE(w) + A ( W T a r e u  - 1) 

+ CL(wTa,ev - (46) 
The following algorithm [19] can be used to solve the opti- 
misation problem, eqn. 32. 
Initialisation. Choose A, p > 0 and w(0); give a termination 
scalar E > 0; set t = 1. 
Loop. Solve the unconstrained optimisation problem 

w(t) = min W PE(w, A, p)  (47) 

If ~wT(t)ur,, - 11 < E : goto stop; 

goto Loop; 

2p(Wqt)u,,, - l), t = t + 1, goto Loop. 

Else if $vT(t)ure,, - 11 > 0.251wT(t - I)ure, - 11 : p = 1O.Op, 

Else if IwT(t)u,,,, - 11 I 0.251wT(t ~ l)ure, - 11 : A = A + 

Stop. w(t) is the solution. 
The unconstrained optimisation problem, eqn. 47, is 

solved using a simplified conjugate gradient method. For 
convenience, drop A and p in BE, and define the gradient 
vector 

= VPE(w)+Aa,e,+2p(wTa,e, - 1 ) a r e v  

(48) 
Initialisation. Choose a small step size a > 0 and a termina- 
tion scalar p > 0; given w(1) and d(1) = -VPE(w(1)); set j  = 
1. 
Loop. If IlVPE(w(j)>ll < p : goto stop. 

WO' + 1) = WO] + CY&), 

@ = ll~~~~(i+1))112~11~~Ei~03)112 
d(j + 1) = @@j] - Vpdwg' + 1)) , j  = J  + I ,  goto Loop. 

The derivatives of P d w )  with respect to wj, 0 5 i 5 m ~ 1, 
Stop. wfj] is the solution. 

are 

a p E  ('U)) 

d W i  

(49) 
with 

(50) 
and 

(51) 
where I = MI2 + 1, s a ( . )  is the signum function, v, and r,;,(o 
are the ith elements of v and r>o, respectively, v is any point 
in the hyperplane wTiJ = 0, and pJ,l and pJ,2 are defined in 
eqn. 31. 
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