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Abstract: The implementation issues of digital controllers with finite word length (FWL) 
considerations are addressed. Both the shift and delta operator parameterisations of a general 
controller structure are considered. A unified formulation is adopted to derive a computationally 
tractable stability related measure that describes FWL closed-loop stability characteristics of 
different controller realisations. Within a given operator parameterisation, the optimal FWL 
controller realisation, which maximises the proposed stability related measure, is the solution of a 
nonlinear optimisation problem. The relationship between the z-operator and &operator controller 
parameterisations is analysed, and it is shown that the 6 parameterisation has a better FWL closed- 
loop stability margin than the z-domain approach under a mild condition. A design example is 
included to verify the theoretical analysis and to illustrate the proposed optimisation procedure. 

1 Introduction 

Modern controllers are typically implemented digitally, 
and it is well known that a designed stable control 
system may achieve a lower than predicted performance, 
or even become unstable when the control law is imple- 
mented with a finite-precision device due to FWL effects. 
For many industrial and mass-market consumer applica- 
tions, fixed-point implementations are more desirable for 
reasons of cost, simplicity, speed, memory space and power 
consumption. With a fixed-point processor, however, the 
detrimental FWL effects are markedly increased due to 
reduced precision. The FWL effects on the closed-loop 
stability depend on the controller realisation structure. This 
property can be utilized to ‘select’ controller realisation in 
order to improve the ‘robustness’ of closed-loop stability 
under controller parameter perturbations. Currently, two 
approaches exist for determining the optimal controller 
realisations under different criteria, namely pole sensitivity 
measures [ 1-41 and complex stability radius measures 

In the first approach, the pole sensitivity measures based 
on an l2 norm [2] and an I, norm [ 3 ]  are used to quantify 
the FWL effects on closed-loop stability. This approach 
leads to a nonlinear and non-smooth optimisation problem 
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in finding an optimal FWL controller realisation. The need 
to solve for such a non-convex and non-smooth optimisa- 
tion problem had been seen as a disadvantage, as conven- 
tional optimisation algorithms [7, 81, which are better 
known to the control community, may not guarantee to 
find a true optimal realisation. However, the efficient 
global optimisation techniques to tackle this kind of 
difficult optimisation problem [9-141 are now widely 
available. More recently, Fialho and Georgiou [6] used 
the complex stability radius measure to formulate an 
optimal FWL controller realisation problem that can be 
represented as a special H ,  norm minimisation problem, 
and solved with the method of linear matrix inequality [ 15, 
161. In this second approach, the FWL perturbations are 
assumed to be complex-valued. Although this assumption 
is somewhat artificial, the approach based on the complex 
stability radius measure has certain attractive features and 
requires further investigation. 

Most studies on the FWL stability issues only consider 
the closed-loop systems with output feedback (OF) 
controllers. It is well known that there exists another 
class of controllers, namely observer-based (OB) control- 
lers [ 17, 181. Because state-space methods and observer 
theory are combined to form a direct multi-variable 
approach to linear control system synthesis [ 181, the 
design of OB controllers is more transparent and simpler 
than the design of OF controllers. Li and Gevers [19] have 
studied the’ sensitivity and the roundoff noise gain of the 
closed-loop system transfer function with an FWL imple- 
mented full-order OB controller. A recent study [20] has 
investigated the effects of FWL implementation on the 
closed-loop stability for full-order OB controllers. The first 
contribution of this paper is to develop a new framework of 
optimal FWL controller realisations for the generic digital 
controller structure that includes all the OF and OB 
controllers. A computationally tractable stability related 
measure is employed for the unified controller structure, 
using the well-tested pole sensitivity measure with the I, 
norm [3]. 

In most of the above-mentioned studies, digital control- 
ler structures are described and realised with the usual shift 
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operator z .  A discrete-time system can also be described 
and realised with a different operator, called the delta 
operator 6 [21]. Two major advantages are known for the 
use of &operator parameterisation: a theoretically unified 
formulation of continuous-time and discrete-time systems, 
and better numerical properties in FWL implementations 
[I]. The benefits of using the 6-operator as opposed to the 
shift operator in signal processing and control applications 
have been investigated [22-2.51. In particular, a recent work 
has addressed the FWL closed-loop stability issues of OF 
controller structures using the S-operator formulation [26]. 
The second new contribution of this paper is to adopt a 
unified formulation to include both the z and 6-operator 
parameterisations of the generic finite-precision controller 
structure, and to analyse the underlying relationship 
between these two controller parameterisations. 

2 Notations, definitions and problem 
formulation 

Let R denote the field of real numbers and C the field of 
complex numbers. For a complex-valued matrix U E CP 4 

with elements uII we define the following matrix norm: 

1=1 j=l 

Let Vet(.) be the column stacking operator such that 
Vec(U) is a qp-dimensional vector. As usual, UT is the 
transposed matrix of U, UH is the Hermitian adjoint matrix 
of U, and U *  is conjugate to U. For a squared real-valued 
matrix M E Rp ‘ P ,  let {A,(M), 1 5 i s p }  denote its eigen- 
values. For diagonalisable M, let x,(M) be the right 
eigenvector corresponding to I,,(M), that is 

Since M is diagonalisable, the matrix 

is invertible. Define: 

y,(M) is called the reciprocal left eigenvector correspond- 
ing to x,(M) for the reason shown in the following lemma. 
Lemma I :  f(M)M = IL,(M)yf(M),Vi. 

Prooj Denote 

Clearly, MM,=M,C. It then follows from MxMy” = 
MFM, = I, the identity matrix, that My”” = CMy”, which 
leads to lemma 1. 

A discrete-time system can be described using either the 
usual z-operator or the so-called b-operator. The latter is 
defined as [213: 

a z -  1 6 = -  
h 
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where h is a positive real constant [Note 11. Let the state- 
space representation of a discrete-time system using the z- 
operator be 

where all the matrices and vectors are real-valued and are 
assumed to have proper dimensions, and zx(k) = x(k+ l), 
as z is the forward shift operator. We can describe the same 
discrete-time system by 

using the &operator. [27, 281, where 

A; - I , Blj == -, Bz Ca = C,, D,> = D, (9) h 
AIS __ 

h 
with I denoting the identity matrix of appropriate dimen- 
sion. Obviously, eqns 7 and 8 are two equivalent represen- 
tations of the same system. The following lemma relates 
the eigenvalues and eigenvectors of A, to those of Aa . 
Lemma 2: With a proper index order, {A,(Az)} and 
{ILi(A6)} can be one-to-one mapped with 

iL,(Az) = 1 + h/Z,(A6), V i  (10) 
Let Li(A6) and Ai(A,) be related by eqn. 10. Then they have 
the same eigenvector set. 

Proof: Let x,(A,) be an eigenvector corresponding to 
A,(A,). It follows from eqn 9 that %,(A,)xi(AZ) = 
A,x,(A,) = hAaxj(A,) + xi(Az), which means that 

This, by definition, implies that (Li(A,) - I)/h is an eigen- 
value of A h ,  denoted as 2,(A6);and x,(A,) is also an 
eigenvector of Ad, corresponding to /Zi(Ad). Using the 
same procedure, one can show that if xi(A6) is an eigen- 
vector of Ibi(Ag), it i s  also an eigenvector related to an 
eigenvalue of A, given by eqn 10. This completes the 
proof. 

It is well known that the discrete-time system (Az, B,, 
C,, D,) is stable if and only if 

IAi(Az)I < 1, Vi (12) 
From lemma 2, we have the stability condition for the same 
system described using the S-operator. 
Lemma 3: The discrete-time system (A6, Bg, C6, D6) is 
stable if and only if 

(13) 

For notational conciseness, we introduce a ‘generalised’ 
operator p for the discrete-time systems. It is understood 
that p = z  or 6, depending on which operator is actually 
used. The two state-space representations (eqns 7 and 8) 
can then be unified as 

The use of this notation will avoid repeated derivations for 
the two operators in the following discussion. 

[Note 11 In [21], h is limited to the sampling period. This constraint is 
removed in [24]. 
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Consider the discrete-time, closed-loop control system 
depicted in Fig. 1, where the linear time-invariant plant P 
has a state-space representation 

which is assumed to be strictly proper, completely state 
controllable, and completely state observable, with 
A, ER" '", B, E Rnxp and C, E W x n ,  and the digital 
stabilising controller C is described by the state-space 
representation 

where F, E RI" I", G ,  E R"' q ,  J, E R P  m, M, E R P  4 

and H, E R " ' ~ P .  The controller depicted in Fig. 1- is 
generic and includes all the OF and OB controllers: C is 
an OF controller when H,, = 0; a full-order OB controller 
when F, =A, - G,C,, M, = 0 and H, = B,: a reduced- 
order OB controller, otherwise [17, 181. 

It is a basic property of linear system theory that the 
state-space realisation (F,, G, , J,, M, , HJ of the general 
controller C is not unique. Assume that a realisation (F,,, 
G,, , J,, , M,, , H,,,) has been designed through a control- 
ler design procedure for C. All the realisations of C form a 
realisation set: 

S, {(F,, G,, J,, M,, H,) : 

F, = T i  ' F,,T,, G, = T i  G,, . 

J, = JpoT,, M, = M,,, H, = T,'H,,} (17) 

where T,] E R"' is any real-valued, non-singular matrix, 
called a similarity transformation. Any two realisations in 
S,  are completely equivalent if they are implemented with 
infinite precision. Let 

where N = ( m  ;tp)(m + q)  + inp. We also refer to wp as a 
realisation of C. The stability of the closed-loop system in 
Fig. I depends on the eigenvalues of the transition matrix 

A(w,) 

A, + BPM,C, 

G,C, + H,M,C, F, + H,J, 

A, + B,'M,OC, 

G,oC, + q,oM,ocp F,o + H,oJ,o 

Let us define the 'stability margin' of A,(&(w,)) as 

1 - I;!,(A(wJl, i f p = z  

- - liI(A(wa)) + 1, if p = 6 
StMa(%,(A(w,))) 1 1 

(20) 
L 

It follows, from the fact that the closed-loop system is 
designed to be stable, that 

SthfQ(~~,(A(w,))) ~th!fCZ(A,(A(W,o))) > 0,  

V i €  { I ,  . . . ,  m + ~ }  (21) 

which implies that all the different controller realisations 
wP E S,  achieve exactly the same closed-loop poles if they 
are implemented with infinite precision. 

In practice, however, a controller can only be implemen- 
ted with finite precision. Different realisations will have 
different FWL characteristics. When w, is implemented 
using a fixed-point processor, it is perturbed into 
wy + Aw,. Assume that the fixed-point processor uses Bf 
bits for the fractional part of a number. Define 

= 2 - 4  (22) 

Then, each element of Aw, is bounded by f €12, that is 

WiLh the perturbation Aw,, Ai(&(-w,)) is moved to 
Ai(A(w, + Aw,)). If an eigenvalue of A(w, + Aw,) crosses 
over the stability boundary, the closed-loop system, origin- 
ally designed to be stable, will become unstable. Intui- 
tively, different controller realisations will have different 
degrees of robustness to FWL effects. It is highly desired 
to be able to quantify how robust a controller realisation is 
in terms of its closed-loop stability under FWL implemen- 
tation 

3 FWL stability related measure 

Roughly speaking, how easily the FWL error Aw, can 
cause a stable control systeE to become unstable is 
determined by how close Ai(A(w,)) are to the stability 
boundary, and how sensitive they are to the controller 
parameter perturbations. The first factor is determined by 
the stability margins of the eigenvalues, and the second 
factor is characterised by the derivatives of the eigenvalues 
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with respect to the controller parameters. In this paper, we 
consider the following stability related measure [26]: 

Heuristically, the use of p,(w,) as a stability measure of wp 
can be justified as follows. When the FWL error Aw, is 
small, we have 

V i €  (1 , . . . ,  m + n }  (25) 
It then follows that 

- StMa(il;(A(w, + Aw,))) 

(26) 

(27) 

If ~(Aw,,) < prl(wil), from eqns. 24 and 26, we have 

StMa(iL,(A(w, + Aw,))) > 0 

This means that the closed-loop system remains stable 
under the FWL error Aw,. In other words, for a given 
realisation w,, the closed-loop stability can tolerate those 
FWL perturbations Aw,, whose elements have magnitudes 
less than pil(wp). The larger p,(wp) is, the larger FWL 
errors the closed-loop system can tolerate. 

The assumption that the controller coefficient perturba- 
tions are small is generally valid. For example, with a 10- 
bit accuracy for Br, the FWL errors are bounded by 0.5%. 
The stability related measure pp(wp) is computationally 
tractable. To compute p,(w,J, we need aJ-,(A(wp))/awil,, 
which can be calculated with the following theorem. 

Theorem I :  Let A = MO + M, XM, E R”’ n1 be diagonali- 
sable, where X ER‘‘‘ and MO, M ,  and M, are indepen- 
dent of X with proper dimensions. Let h, (A) denote the ith 
eigenvalue of A, and let x, (A) and yI (A) be the right and 
reciprocal left eigenvectors corresponding to /Z,(A), respec- 
tively. Then 

rw _ _ _  ___ a 4  (A) 1 

From eqn. 19, we know that 

Applying theorem 1 gives rise to 

The proof of this theorem can be found in [26]. 

Remark 1 :  When A has no repeated poles, all the eigen- 
vectors corresponding to ,$(A) can be characterised as 
x,(A) = gixio(A), where g i  is a nonzero complex-valued 
constant and xio (A) is a given eigenvector of /,,(A). It is 
then easy to show that the corresponding reciprocal left 
eigenvector is y,(A) = 1 /$yio(A>, with yio(A) the recipro- 
cal left eigenvector corresponding to xio(A). Therefore, 
y,*(A)x’(A) = Y:~(A)X~(A), which means that though 
each eigenvalue has different eigenvectors, its sensitivity 
given by eqn. 28 is unique. In the sequel, the closed-loop 
system is assumed to have no repeated poles. 
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(33) 

With these derivatives, pp(wp) can easily be computed 
using eqn. 24. 

It is obvious that the proposed measure (eqn. 24) is a 
generalisation of the pole sensitivity measure based on an 
1, norm [3]. A brief comparison of this measure with other 
existing measures is given here. Ultimately, when consid- 
ering the FWL effects on closed-loop stability, it would be 
desirable to find the largest open ‘sphere’ in the controller 
perturbation space, with size or ‘radius’ defined by 

pO(wp) inf{p(Aw,) : A(w, + Aw,) is unstable} (39) 
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However, computing the value of po(wP) is an unsolved 
open problem. A practical approach is to consider lower- 
bound measures of pO(wp) in some senses, which can be 
computed easily. Obviously, the closer a computationally 
tractable measure is to po(w,,), the better. The pole sensi- 
tivity measure based on an l2 norm [2] is such a lower- 
bound measure. The measure (eqn. 24) has been shown to 
be a better lower bound of pO(wp) than the one based on the 
l2 norm [3]. 

Fialho and Georgiou [6] used the complex stability 
radius measure to formulate an optimal FWL controller 
realisation problem that can be represented as a special H ,  
norm minimisation problem [Note 21. It can also be shown 
that the measure based on the complex stability radius can 
be regarded as a lower bound of /io under certain condi- 
tions. As these conditions are different from those for the 
measure (eqn. 24), it is difficult to say which measure is 
less conservative in estimating the FWL closed-loop stabi- 
lity robustness. It will be case-dependent. We have exam- 
ples, for some of which the complex stability radius 
measure produces more accurate results, and for others 
the measure (eqn. 24) is more accurate. Thus, the complex 
stability radius measure, like the pole sensitivity approach, 
is a conservative (lower bound) measure, and the approx- 
imation in this case comes from the artificial assumption of 
complex-valued controller perturbation and the use of a so- 
called statistical word length formula. The most important 
advantage of the complex stability radius measure is that 
the corresponding optimisation problem can be posed as a 
linear matrix inequality problem, which is easier to solve 
for than the optimisation problem based on the pole 
sensitivity approach. The approach based on the complex 
stability radius measure, however, in its present form, can 
only be applied to OF controllers with z-operator para- 
meterisation, and it is not known yet how to extend the 
method to the generic controller structure of Fig. 1. 

4 Optimal FWL controller realisation 

Since the stability related measure ,u,(w,) is a function of 
the controller realisation w p ,  we can search for an 'opti- 
mal' realisation that maximises pLp(wp). Such a realisation 
is optimal in the sense that it has a maximum closed-loop 
stability robustness to the FWL effects. Given an initial 
design (F,,, G,, , J,,, M,, , H,jo), any realisation (F,, G,, , 
JP, M,, HP) can be characterised with eqii 17. Thus, the 
optimal controller realisation wpopt is the solution of the 
optimisation problem 

We now derive the detailed optimisation procedure. 
Ii E 1, . . . , m + n,  we paztition the eigenvectors of 
A(W,,O)> X'CA(W,,,>> and Y,(A(wpo))3 into: 

[Note 21 Fialho and Georgiou's ACC99 paper [6] only contained a two- 
page summary. A full derivation of the approach is very lengthy and 
beyond the scope of this paper 
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where T, E 72"' "' and det(T,) # 0. Applying eqn. 42 to 
eqns. 34-38 results in 

(43) 

Then the problem (eqn. 40) of finding an optimal controller 
realisation wpopt is equivalent to obtaining an optimal 
similarity matrix that is the solution of the following 
nonlinear optimisation problem: 
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To find a Tpopt, we will adopt an iterative optimisation 
procedure to generate a sequ%nce {T,,, T y l , .  . . 1, which 
converges to Tpopt. Define R = { T, E R"' *':det(T,) = O}. 
As I2 is only a manifold in E"' "', starting from a T," Q 
it is rare for an iterative sequence {T,;} to move into 52. 
Thus, in the iterative procedure, the constraint det(T,) # 0 
can practically be ignored, leading to an 'unconstrained' 
optimisation problem: 

The possible pitfall of violating the constraint can readily 
be avoided by monitoring the singular values of T,. If a 
singular value of T, is too small, a small perturbation y I  is 
added to T, so that T, + y I  f R. This small perturbation, 
which is rarely needed, will not affect the convergence of 
the iterative procedure. Because f , ] (T , )  is non-smooth and 
non-convex, optimisation must be based on a direct search 
without the aid of cost function derivatives. The conven- 
tional optimisation methods for this kind of problem, such 
as Rosenbrock and Simplex algorithms [7, 81, generally 
can only find a local minimum. We will adopt an efficient 
global optimisation strategy based on the adaptive simu- 
lated annealing (ASA) algorithm [12-141 to search for a 
true global optimum Tpopt. With Tpopt, we can readily 
obtain the optimal controller realisation wpopt. The detailed 
implementation of the ASA algorithm is given in [14]. 

5 Comparison between z and 6 realisations 

The z-operator controller realisation w, is completely 
equivalent to the &operator realisation wg under infinite- 
precision implementation. We analyse the underlying rela- 
tionship between these two parameterisations of the 
controller structure and investigate their FWL implementa- 
tion characteristics. We will assume that h in the 6 operator 
has an exact FWL representation, e.g., h = 2*, h = 2-6. 
Thus, the source of FWL errors comes solely from the FWL 
implementation of wg. Define a map g,  from S, to Sa: 

F, - 1 
I F , = -  

MO = M, I =k HZ 

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 
log2 h 

Fig. 2 Comparison of values of stabiliv related measure for optimal ii 
reulisutiorr w,,, , 6 realisation w, =gh(wz,,,f) urd optimal z r-eulisutiorr 
w=opt 

--- V,j(h) 

-f@) 
"z 
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On the otherhand, V i ~ { l ,  . . . ,  m f n } :  

When h < 1, comparing eqn. (58) with eqn. 59 leads to 

V i €  {l ,  . . . ,  m + n ]  (60) 
which means that pn;(gh(w,)) 4 p,(w,). The results for h = 1 
and h > 1 can similarly be proved. 

For U, = ~ , L , ( W , ~ ~ ~ )  and I I ~  = ,u6(waopt), based on lemma 4, 
we have the following. 

Corollary I :  v6 U ,  when h < 1 ; U(? = U, when h = 1 ; v6 5 U ,  
when h > 1. 

Corollary 1 shows that if h is chosen to be smaller than 
1, the optimal f i  realisation has better FWL stability 
characteristics than the optimal z realisation; if h is 
chosen to be larger than 1, the optimal 6 realisation has 
worse FWL stability characteristics than the optimal z 
realisation; if h is chosen to be equal to 1, both optimal 
realisations have the same FWL stability robustness to the 
FWL effects. We notice that 6 realisations are dependent of 
h while z realisations are independent of h. Thus, v g  is a 
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function of h, which will be denoted as us(h), while U, is 
not. Let us introduce the hnction 

f ( h )  = lEilmi:+n, (61) 

A, = 

where 

-3.2439e - 01 

1.4518e - 01 

1.6814e - 02 

1.1889e - 03 

-6.1301e - 05 

-4.5451e + 00 

4.9477e - 01 

1.6491e - 01 

1.8209e - 02 

1.2609e - 03 

and 

-4.0535e + 00 -2.7003e - 03 0 -  

-4.6945e - 01 -3.1274e - 04 0 

9.6681e - 01 -2.21 14e - 05 0 

1.9829e - 01 1.0000e + 00 0 

1.9930e - 02 2.0000e - 01 1 - Theorem 2:  U, = f (  1) and ucs(h) zf(h).  
Proo$ v,=f(l) can be directly obtained from the defini- 
tions of ,u,(w,~~~) and f(h). From the proof of lemma 4, it 
can easily be seen that ,uc~(gh(wzopt)) =f(h). Noting 
V A h )  = maxw<>sy, PdWd L ,u"bgh(Wzopt)), we conclude that 
Vdh)  I f ( J Z ) .  

Notice thatf(h) is defined in (0, CO) andf(h) decreases 
as h increases. According to theorem 2, for h E (0, l), the 
optimal 6 realisation has better FWL closed-loop stability 
performance than the optimal z realisation and further- 
more, the smaller h is, the larger v,(h) is than vz. It is well 
known that, when h -+ 0, the &operator representation 
approaches the continuous-time representation. It is there- 
fore expected that f(h), and hence v,(h), will approach 
certain limit values as h + 0. 

B, = 

6 Design example 

We present a numerical example to illustrate the proposed 
optimisation approach and verify the theoretical results 
given in the previous Section. The plant model used is a 
modification of the plant studied in [2], which was a single- 
input, single-output system. We have added one more 
output, which is the first state in the original plant 

-1.4518e-01' 

1.6814e - 02 

1.1889e - 03 

6.1301e - 05 

- 2.4979e - 06 - 

'"1 
l o o t  

. .  
. .  . .  . .  . .  . .  . .  

. .  

-200 1 I .  I I '  I .  I 

0 250 500 750 1000 1250 1500 
k 

Fig. 3 Comparison of unit impulse response for  ideal infinite-precision 
controller implementation w , ~ ~ ~ ~  with those for  two IO-bit implemented 
controller realisations wz0 and w ~ ~ , ~ ,  

__ W,desl 

WZO 
. . . . .  
* * *  wzopt 
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model. The state-space model of this modified plant, 
represented in the z-operator, is given by: 

1 -1.5750e - 01 

0 

-4.3943e + 01 

The closed-loop poles as given in [2] were used in the, 
design, and the designed controller obtained using a 
standard design procedure [ 1 81 had a state-space form: 

3; 
I 

0 1 

-9.3303e - 01 

4.1814e - 02 

1.9319e + 00 

2.7132e + 02 [ 3.9090e - 02 1.0167e + 03 

F,o = 

G,o = 

J,, = [ 3.0000e - 04 5.0000e - 041, 
r 7.8047e + 01 1 

7.3849e + 01 1 M,, = [ 0 6.1250e - 01 1, H, = 1 
With this initial realisation wz(,, the corresponding transi- 
tion matrix A(w,,) was formed using eqn. 19, from which 
the poles and the eigenvectors of the ideal closed-loop 
system were computed. The value of the stability related 
measure for w,, is p,(wz0) = 4.0509e - 07. 

Using the ASA algorithm to solve for the resulting 
optimisation problem (eqn. 49) gave rise to the following 
optimal similarity transformation matrix: 

1 -1.7791e + 01 

-1.6696e + 01 

3.5665e + 00 

3.5384e + 00 
%opt = 
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The optimal z realisation corresponding to Tzopt was 50 

25 

9.5253e - 01 

7.0338e - 02 

-2.5073e - 03 

-7.83 13e - 04 

-2.5578e - 03 

9.7934e - 01 

7.8274e + 02 

3.9806e + 03 1 
Fzopt = 

Gzopt = 

- 

- 

Jiopt = [ -1.3685e - 02 2.8392e - 031, 

-3.7504e + 00 
Mzopt = [ 0 6.1250e - 01 1, Hzopt = [ ] 3.1750e + 00 

The optimal stability related measure was 
vz = ,uZ(wzopt) = 3.8927e - 06. This represents an improve- 
ment by approximately a factor of ten over the initial 
controller realisation. 

Similarly, we constructed and solved for the optimal 6 
realisation problem for h = 23 - 2-l'. Fig. 2 compares 
vg(h), the stability related measure for the optimal 6 
realisation, withf(h) and vi. It can be seen that the results 
of Fig. 2 agree with the theoretical analysis of corollary 1 
and theorem 2. As expected for h < 1, the optimal 6 
realisation has a larger FWL closed-loop stability measure 
than the optimal z realisation. 

We also computed the unit impulse response of the 
closed-loop control system when the controllers were the 
infinite-precision implemented wzo and various FWL 
implemented realisations with 1 0-bit accuracy for Bf , 
respectively. Note that any realisation w, E S,, implemen- 
ted in infinite precision, will achieve the exact performance 
of the infinite-precision implemented wzo, which is the 
designed controller performance. For this reason, the 
infinite-precision implemented wzo is referred to as the 
ideal controller realisation Figs. 3-6 compare the 
unit impulse response of the first plant output y,(k)  for the 
ideal controller Wldeal with those of various 10-bit imple- 

. mented realisations. It can be seen that the closed-loop 
became unstable with a IO-bit implemented controller 
realisation wzo. The results also clearly show the benefits 
of the proposed optimisation process, as the closed-loop 
system remained stable with the 10-bit implemented wZopt 
Furthermore, the 1 0-bit implemented wgopt with h = 2- 
was able to approximate closely the designed performance 
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Fig. 4 comparison of unit impulse response for  ideal infnite-precision 
controller implementation wtdral with those .fir three IO-bit implemented 
controller realisations w~opl ,  wdopI (h =22), and wdrJPl (h = 2Y') 
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. . . . .  
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* * *  waopt(h =2-') 
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Fig. 5 Comparison of unit impulse response ,for ideal infinite-precision 
controller implementation w , ~ ~ ~ ~  with those for two 10-bit implemented 
controller realisations w~,,,,, and wgopl ( h  = 2-') 

~ W,dcal 
Wzopt . . . . .  
W h p t  ( h = 2 - ' )  0 0 0  
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Fig. 6 Comparison of unit impulse response for  ideal infinite-precision 
controller implementation wtdeUi with those for  two IO-bit implemented 
controller realisations wzoPl and wdopf (h = 2-l') 

of the ideal infinite-precision controller. With h reduced to 
r 7 ,  the 10-bit implemented wgOpt achieved the designed 
controller performance. 

7 Conclusions 

We have studied the finite-precision implementation issues 
for digital controllers. A unified approach has been 
adopted to derive a tractable FWL closed-loop stability 
related measure for both the z and &operator parameter- 
isations of the general controller structure. An efficient 
optimisation procedure has been developed for obtaining 
the optimal controller realisation that maximises the 
proposed measure. The underlying relationship connecting 
the z and 6 realisations has been investigated. Because the 
FWL stability measure for 6 controller realisation is a 
function of the operator constant h, we can always obtain 
an optimal 6 controller realisation that has a better closed- 
loop stability margin than the optimal z realisation in the 
FWL implementation. The theoretical results have been 
verified and the optimisation procedure demonstrated 
using a numerical design example. 
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