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ABSTRACT The ever-increasing demand for broadband Internet access has motivated the further devel-
opment of the digital subscriber line to the G.fast standard in order to expand its operational band from
106 to 212 MHz. Conventional far-end crosstalk (FEXT)-based cancellers falter in the upstream transmission
of this emerging G.fast system. In this paper, we propose a novel differential evolution algorithm (DEA)-
aided turbo channel estimation (CE) and a multi-user detection (MUD) scheme for the G.fast upstream,
including the frequency band up to 212 MHz, which is capable of approaching the optimal Cramer—Rao lower
bound of the channel estimate, whilst approaching the optimal maximum likelihood MUD’s performance
associated with perfect channel state information and, yet, only imposing about 5% of its computational
complexity. Explicitly, the turbo concept is exploited by iteratively exchanging information between the
continuous value-based DEA-assisted channel estimator and the discrete value-based DEA MUD. Our
extensive simulations show that 18-dB normalized mean square error gain is attained by the channel estimator
and 10-dB signal-to-noise ratio gain can be achieved by the MUD upon exploiting this iteration gain. We also
quantify the influence of the CE error, the copper length, and the impulse noise. This paper demonstrates
that the proposed DEA-aided turbo CE and MUD scheme is capable of offering near-capacity performance
at an affordable complexity for the emerging G.fast systems.

INDEX TERMS Digital subscriber line, far-end crosstalk, G.fast upstream, vectoring, turbo channel
estimation and multi-user detection, differential evolution algorithm.

I. INTRODUCTION
The demand for high-speed broadband Internet access has

exploiting the spectrum beyond 30 MHz inevitably imposes
significant electromagnetic coupling between the neighbor-

motivated the construction of the hybrid digital subscriber
line (DSL) and optical fiber infrastructure, which has been
standardized as G.fast by the International Telecommu-
nication Union Telecommunication Standardization Sector
(ITU-T) [1]. G.fast still relies on the copper access network
and in-premises wiring for its last hundred meters, because it
is prohibitively expensive to replace copper by optical fiber.
The G.fast standard has already exploited a broad spectrum
spanning up to 106 MHz, while the band up to 212 MHz has
been planned for future broadband access [2], [3]. However,

ing twisted-pairs, which is referred to as crosstalk. There
are two types of crosstalk, depending on the specific source
of coupling. Explicitly, coupling originating from transmit-
ter co-located with a receiver is called near-end crosstalk
(NEXT), while the coupling arriving from the opposite side
of the duplex link is known as far-end crosstalk (FEXT) [4].
NEXT can be avoided by employing frequency duplexing
division and transmission synchronization for separating the
downstream and upstream transmissions [4], or by vector-
ing the source signals for the sake of increasing the total
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throughput of the cable [5]. By contrast, FEXT remains a
significant impairment that hampers achieving high data rates
for G.fast systems [1].

A. EXISTING SOLUTIONS FOR MITIGATING

FEXT IN THE DOWNSTREAM

FEXT is generally mitigated by using spectrum shaping and
vectoring [6] in the downstream transmission. The vector-
ing technique has also been standardized in G.993.5 by the
ITU-T [7] and it was further developed with the objec-
tive of approaching Gigabit rates [1]. More specifically,
in the downstream, the transmitters are co-located at the
central office (CO) or at the optical network unit (ONU).
Hence vectoring (precoding) can be applied to the transmit-
ted signals. As a powerful nonlinear precoding scheme, the
Tomlinson-Harashima precoder (THP) [8] was demonstrated
to approach the single-user bound for a bandwidth of up
to 17.6 MHz. However, the THP is incompatible with the
previous version of G.fast. Hekrdla er al. [9] developed a
dynamic ordering-based THP by taking into account the spe-
cific G.fast channel statistics. Zhang et al. [10] conceived
the concept of expanded constellation mapping for maximiz-
ing the received signal power, while cancelling the FEXT.
However, the THP imposes a high computational complex-
ity both on the transmitter and receiver. The investigations
of [11] revealed that the THP was also sensitive to the
channel state information (CSI) estimation error. By com-
parison, low-complexity linear precoding used in the context
of very-high-bit-rate DSL (VDSL) exhibits almost the same
performance as the more complex nonlinear ones [12].
The vectoring concept of [5] was proposed for can-
celling the FEXT by exploiting user coordination at the
either CO or ONU. Furthermore, for the second-generation
VDSL (VDSL2) system [13] zero-forcing (ZF) precoding
was adopted to mitigate the FEXT based on the column-
wise diagonal dominant (CWDD) nature of the copper
channel [5], [14], which was demonstrated to be near-optimal
below 17.6 MHz. However, ZF precoding relies on invert-
ing a matrix at each tone, which imposes an excessive
computational complexity, particularly for a large number
of copper pairs in a cable. Leshem and Li [15] simpli-
fied the ZF precoder by only exploiting the first-order and
second-order statistics of the CSI. As a further development,
Zanko et al. [6] simplified the ZF precoder by adopting the
least mean square algorithm. Adaptive precoders [16]—[18]
were also designed for cancelling the FEXT by only exploit-
ing the polarity of the symbol errors observed. Moreover,
a potent combination of precoding and dynamic spectrum
management was also conceived for downstream vectored
transmission. Specifically, Lanneer et al. [19] developed both
a linear and a nonlinear precoding-based dynamic spectrum
management, which maximizes the weighted sum-rate under
realistic per-line total power and per-tone spectral mask
constraints. Note that the FEXT-contaminated DSL system
can be viewed as a multi-user multiple-input multiple-output
(MIMO) system [20]. Therefore, the powerful multi-user
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transmission techniques originally developed for wireless
MIMO communications, such as the vectors perturbation
technique [21], [22], can be readily be invoked for down-
stream transmission in G.fast systems.

B. EXISTING SOLUTIONS FOR MITIGATING

FEXT IN THE UPSTREAM

By contrast, in the upstream, the transmitters are those of
independent users at different locations. Since there are no
physical lines connecting the distributed users, no coor-
dination is possible amongst their distributed transmitters,
and it is impossible to apply centralized transmit precod-
ing techniques. Therefore, the FEXT is typically mitigated
either at the CO or at the ONU by exploiting sophisti-
cated FEXT cancellation techniques [5], [23]. Explicitly,
Im et al. [24] proposed a joint FEXT canceller and equal-
izer, while Hormis et al. [25] viewed the FEXT-impaired
channel as a MIMO channel and proposed a soft interfer-
ence canceller for quad-wire loops based on the sequential
Monte Carlo technique. Ginis and Cioffi [5] proposed to
successively decode the received signal based on the QR
decomposed channels and on the previous decision, which
may be viewed as a special case of the ZF aided gener-
alized decision feedback equalizer (ZF-GDFE) [26]. The
achievable performance of the ZF-GDFE critically depends
on the decoding order used [27], and to achieve its full
performance potential, exhaustive search is required, which
may impose an excessive complexity. Chen et al. [27]
considerably reduced the computational complexity either
with the aid of an efficient successive ordering search
or by a modified greedy search. Their results show that
the successive ordering search aided ZF-GDFE is capa-
ble of approaching the rate of the optimal ordering based
ZF-GDFE. For VDSL2 systems, the linear ZF equalizer
of [12] is capable of closely approximating the perfor-
mance of the ZF-GDFE, despite its lower complexity.
The family of ZF-type FEXT cancellers treats the alien
cross-talk as one of the self-FEXT contributions, which
results in poor performance in the presence of alien noise.
Zafaruddin et al. [14] proposed a constrained linear
minimum-output energy receiver for cancelling both the self-
crosstalk and the alien crosstalk in the VDSL upstream.
Biyani et al. [28] proposed to whiten the alien noise contami-
nating the VDSL systems with the aid of a co-operative alien
noise cancellation algorithm. Explicitly, the co-operative
alien noise cancellation algorithm succeeds in removing the
alien noise that persists after the ZF-FEXT canceller by
invoking a sophisticated recursive scheme, which is capable
of meeting the Cramer-Rao lower bound (CRLB), provided
that the symbol decision errors are perfectly known, but
naturally its performance will erode in the face of imperfect
symbol decision error knowledge.

Similar to the ZF precoder of the downstream, the
ZF-based FEXT canceller of the upstream also requires
matrix inversion at each tone of the multi-user DSL systems
for attaining a near-optimal performance. However, unlike
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FIGURE 1. (a) Measured direct channel and crosstalk channel strengths, and (b) the average noise power amplified by the ZF FEXT canceller.

the ZF precoder, a ZF-FEXT canceller, which basically relies
on a ZF detection algorithm, will significantly enhance the
additive noise power. Quantitatively, Fig. 1(b) depicts the
average noise power amplified by the ZF-FEXT canceller,

52 . .
where we have y = %, with 002 being the power of the

original noise term, wli)ile &2 is the power of the noise
output by the ZF-FEXT canceller. Observe that the noise
power is amplified quite dramatically at higher operational
frequencies. At the time of writing, the ZF-FEXT canceller is
successfully deployed in G.fast systems operating in a band-
width spanning up to 100 MHz. However, in the near future,
the bandwidth will be increased up to around 200 MHz.
Observe from Fig. 1(b) that the noise enhancement in an
operating bandwidth of 200 MHz is 30 dB higher than that
at 100 MHz. Clearly, the existing ZF-FEXT canceller fails
to perform well in these future high-bandwidth G.fast sys-
tems because of this dramatically increased noise enhance-
ment. Moreover, the direct channels are overwhelmed by
the crosstalk in the G.fast systems in the frequency range
spanning from 100 MHz to 212 MHz, as shown in Fig. 1 (a).
Hence the ZF-FEXT canceller is no longer near-optimal,
since the channel matrix does not hold the property of being
column-wise diagonal dominant. Hence, more powerful solu-
tions for mitigating FEXT resisted in upstream G.fast systems
are needed.

C. MOTIVATIONS AND CONTRIBUTIONS

The G.fast upstream system is reminiscent of a multi-user
MIMO system, intuitively, the maximum likelihood (ML)
multi-user detector (MUD) is expected to provide the ulti-
mate optimal solution, albeit its computational complexity
increases exponentially both with the number of users and
with the modulation order. However, the ML-MUD is imprac-
tical for the G.fast system, which may support up to 24 users
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with the aid of a 4096-quadrature amplitude modulation
(QAM) constellation, because it would require 4096%* cost
function evaluations [1].

For wireless systems, evolutionary algorithms (EAs)
have been extensively applied both for downlink precoder
designs [29]-[31] as well as for uplink MUD
designs [32]-[37]. In particular, it has been demonstrated
that the EA-aided MUD solutions are capable of approaching
the optimal ML-MUD performance at a fraction of the com-
putational complexity imposed by the ML-MUD [32]-[38].
Among the various EAs, the differential evolution algo-
rithms (DEAs) [39], [40] have been shown to be partic-
ularly powerful in joint iterative channel estimation (CE)
and MUD. Explicitly, they are capable of approaching the
CRLB of CE and the optimal ML-MUD performance asso-
ciated with the perfect CSI at a fraction of the ML-MUD
complexity [36]-[38]. Furthermore, turbo CE and MUD/
decoder techniques [41]-[48] have been widely developed
for powerful wireless systems, which are capable of achieving
near-capacity performance at an affordable complexity. The
conceptual similarity between the G.fast and the wireless
multi-user uplink arises from the fact that the joint opti-
mization of CE and MUD in the both systems relies on a
similar multi-objective, multidimensional joint optimiza-
tion problem associated with continuous CE parameters
and discrete MUD parameters. Hence, it is beneficial to
appropriately adapt these reduced-complexity state-of-
the-art wireless techniques to the G.fast systems, which is
capable of jointly detecting multi-user upstream signals
relying on powerful central signal processing unit at the
central office.

Against this background, our novel contributions are:

1) We conceive a new turbo CE and MUD scheme rely-
ing on the DEA for the emerging family of G.fast
systems having an operational bandwidth spanning
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up to 212 MHz, which is capable of approaching the
CRLB of channel estimation as well as the optimal
ML-MUD’s performance associated with the perfect
CSI, while only imposing a fraction of the ML-MUD
complexity.

2) The joint optimization problem of turbo CE and MUD
proposed for the G.fast upstream is converted to
iteratively procedure of a continuous-parameter DEA
assisted channel estimator, which searches through the
channel space to find the optimal CE solution, and a
discrete-parameter DEA assisted MUD, which is capa-
ble of finding the optimal ML solution of the transmitted
data.

3) Furthermore, the continuous DEA assisted channel
estimator and discrete DEA aided MUD iteratively
exchange their extrinsic information to attain turbo gains
for both the CE and MUD. Specifically, the reliably
detected symbols are iteratively fed back to the channel
estimator to be exploited together with the pilot symbols
for further improving the accuracy of the estimated CSI,
while the enhanced CSI estimates further improve the
MUD’s detection reliability.

4) We carry our extensive investigations for the con-
vergence of DEA aided CE and DEA aided MUD,
the impacts of system bandwidth, DSL loop length,
impulse noise and channel estimation error as well as
the analysis of computational complexity. Our extensive
investigations show that 18 dB normalized mean square
error (NMSE) channel estimation gain and 10 dB MUD
signal-to-noise ratio (SNR) gain can be achieved by
exploiting this iteration gain. Furthermore, we quantita-
tively investigate the influence of both the CE error and
of the copper length as well as the impact of impulse
noise. Our results confirm that the proposed DEA aided
turbo CE and MUD scheme offers near-capacity per-
formance at an affordable complexity for the emerging
family of G.fast systems.

The rest of this paper is organized as follows. The upstream
G.fast system model is described in Section II. Section III
is devoted to our DEA assisted turbo CE and MUD. The
CRLB of the channel estimate is derived in Section IV.
Our simulation results and discussions are presented in
Section V, whilst our concluding remarks are offered in
Section VI.

Il. UPSTREAM SYSTEM MODEL

We consider the upstream of DSL within a bandwidth span-
ning up to 212 MHz, which supports L users simultaneously
transmitting their signals to the CO. Discrete multi-tone mod-
ulation is employed by each user, which occupies 2 MHz
bandwidth of N, subcarriers, each allocated 2/N. MHz.
We assume that the cyclic prefix is sufficiently long and that
the users synchronously transmit their signals. Thus, there is
no intersymbol interference and no inter-carrier interference.
Hence we can process the signals on a per tone basis. By omit-
ting the tone index, the L-user received signal vector on the
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tone of interest can be written as [5]
Y=HX+W, (D

where Y € CL is the received signal vector, X € CL is the
transmitted signal vector of the L users, and W e Cl is the
zero-mean white Gaussian noise vector with the covariance
matrix O’V%I 1 in which Iy is the L x L identity matrix, while
H e CL*L s the frequency-domain channel matrix whose
diagonal element H; ; represents the /-th direct path and the
off-diagonal elements H; ,, for m # [ represents the FEXT

coupling coefficients between lines / and m.
In traditional DSL systems, including VDSL2 [13],

the receiver only utilizes the /-th entry of Y for the direct-
path CE and for the detection of the /-th user’s data. This
single-line based detection, i.e., single-user detection (SUD),
works well for the low-frequency bands, since the magnitudes
of the FEXT coefficients are much smaller than that of the
direct path, which is also known as the ‘diagonal-dominant
property’ [14]. At the BT Lab at Ipswich, U.K., we have
measured the frequency-domain channel responses of 100 m
and 200m BT cables, consisting 10 twisted copper pairs
and each wire having a diameter of 0.5 mm. The results
are depicted in Fig. 1. The VDSL standard [12] uses the
frequency band spanning from 25kHz to 12 MHz. As seen
from Fig. 1 (a), in this frequency band, the FEXT effects are
negligible, therefore a SUD is adequate. For higher frequency
bands of up to 100 MHz, the ‘diagonal-dominant property’
of the channel matrix remains valid, but the FEXT effects
become non-negligible, as shown in Fig. 1 (a). Thus, in the
upstream transmission, the linear ZF based MUD (ZF-MUD),
i.e., the ZF-FEXT canceller, can be invoked for removing the
interference imposed by adjacent lines, which is formulated
as

X=H'Y=X+W, )

where W = H~'W denotes the noise at the output of the
ZF-FEXT canceller.

It can be observed from (2) that the efficiency of the
ZF-MUD relies on the diagonal-dominant property. When
the ratio of the direct channel magnitude to the FEXT
interference channel magnitude is high, i.e., H is well-
conditioned, the inversion H ~! is well defined and, therefore,
the ZF-FEXT canceller efficiently mitigates the interference.
Observe from Fig. 1 (a) that the higher the operational fre-
quency, the less pronounced this diagonal-dominant prop-
erty becomes, consequently the more seriously the ZF-MUD
suffers from noise enhancement, as seen from Fig. 1 (b).
Again, the emerging G.fast system will expand the band-
width up to 212MHz [2], where we observe from Fig. 1
that the direct channels are overwhelmed by the crosstalk.
Hence H is extremely poorly conditioned and consequently
the ZF-FEXT canceller suffers from an extremely high noise
enhancement, such as 60 dB. This motivates our research of
more powerful MUDs.
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FIGURE 2. DEA assisted turbo CE and MUD for upstream telecommunications over DSL. The subscripts m and c of L are associated with the MUD and
channel decoder, respectively, while the subscripts pr, po and e are used for representing the a priori, a posteriori and extrinsic information,

respectively.

1Il. DEA ASSISTED TURBO CHANNEL ESTIMATION

AND MULTI-USER DETECTION

A. TURBO CHANNEL ESTIMATION AND MULTI-USER
DETECTION

At the [-th user’s transmitter, where 1 < [ < L, the bit
sequence is first encoded by a forward error correction (FEC)
code encoder. After passing through an interleaver II, the
coded bit sequence is mapped by an M -ary modulator relying
on the modulation constellation M into the symbol sequence,
which is then transmitted upstream. At the CO receiver, the
task is to jointly estimate the channel H and to detect the data
X based on the noisy received signal Y. Thus the objective
or cost function (CF) of this joint CE and MUD is the log
likelihood function of ¥ conditioned both on H and X. Since
the noise W is white Gaussian, this CF is given by

JH,X)=|Y —HX|*. )

The joint ML CE and MUD solution in theory can be found
by solving the optimization problem:
(A.%) =ar JHX), @

min
(HeCL*L X eML)
which is unattainable owing to the need of jointly searching
the high-dimensional continuous channel space and the high-
dimensional discrete data space. Note that in the upstream of
a DSL system typically dozens of users are served and each
user employs an M -ary modulator.

A straightforward suboptimal approach, which is widely
adopted in practice, is to first estimate the CSI given the
training pilots and then to detect the data using the estimated
channel. To acquire an adequately accurate CE, however,
the number of training pilots must be sufficiently large. This
approach is therefore inherently suboptimal and significantly
reduces the achievable throughput. A much better approach
is to decompose the computationally prohibitive joint ML
CE and MUD optimization problem into an iterative CE and
MUD optimization by using a powerful turbo technique for
attaining an iterative gain, which is capable of reducing the
pilot overhead, while still attaining the optimal performance
[46]-[48]. Specifically, the joint optimization problem (4) is
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solved by the iterative procedure formulated as
(fl, X) = arg min Jnud <X‘ arg min  Jee (H!)v()), 5)
XeME HeCLxL
where the ‘inner’-optimization performs the CE conditioned
on the available data X, which has the CF
. o 12
Jee (H|X) = |¥ - HX|", ©6)
while the ‘outer’-optimization carries out MUD conditioned
on the available CSI estimate H, which has the CF
o .2
Tonud (X|H) - H Y - HXH . %)

The schematic of the proposed turbo CE and MUD procedure
solving the iterative optimization (5) is illustrated in Fig. 2.

Let us denote the iteration index by the superscript .
In the first iteration, the available data X 0 represents the pilot
symbols allocated by the system. The i-th iteration starts by
performing the CE:

ﬁ(i) =arg min Je (H|)v((i71)), ®)
HE(CLXL
followed by the MUD:
X = arg min Jnud (X‘ ; (i)). ©)
XeME

Then soft decoding takes place by iteratively exchanging soft
extrinsic information between the MUD and the soft channel
decoder of Fig. 2.

Specifically, each detected data symbol X of the I-th user,
where the user index [ is omitted for simplicity, is converted
into log likelihood ratios (LLRs) by a soft demapper [49],
denoted by Ly, p,, which represents the a posteriori soft
encoded bit information calculated by the soft MUD. After
subtracting the a priori information L, ,, of the encoded
bits, the extrinsic information delivered by the soft MUD is
formulated as

Lm,e = Lm,po - Lm,pr~ (10)

This is passed through the de-interleaver IT~!, which
becomes the a priori soft information L. ,, entered into the
soft decoder. The decoder then decodes L. p, to provide the
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FIGURE 3. Flowchart of the continuous DEA assisted channel estimation.

a posteriori soft information L p, for the decoded bits. The
resultant extrinsic information provided by the soft decoder

Lc,e =Lc,po (11)

is then passed through the interleaver IT, and becomes the
new a priori information of the encoded bits. The iterative
soft de-mapping and decoding continues until the process
converges, typically after a few iterations. After the con-
vergence of the soft MUD/decoding process, the decoder
outputs the hard bits, and this iterative detection/decoding is
denoted by C X ). The decoded hard bits are re-encoded and
re-modulated into the data symbols

X = (e (%))

which becomes the data available for the next iteration
between the CE and MUD. Since the soft channel decoder

- Lc,prv

12)
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is capable of producing a reliable bit steam after the con-
vergence of the soft MUD/decoder, X @ represents ‘virtual
pilot symbols’, and this iteration gain of the soft channel
decoder will be fully exp101ted by the CE to deliver a more
accurate channel estlmate H , which in turn generates an
even more reliable X . The iteration gain of this turbo
CE and MUD process allows us to gradually approach the
optimal solution of (4).

B. CONTINUOUS DEA ASSISTED CHANNEL ESTIMATION
The optimization (8) of searchlng the high-dimensional chan-
nel space to find the optimal H ® can be efficiently carried out
by the continuous DEA. We now elaborate on this continuous
DEA aided CE, whose flowchart is shown in Fig. 3. For
notational convenience, we stack the columns of H € CL*L
and convert it into a vector b € CL’.
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1) Initialization. At the first generation g = 1, the initial
population of Py members izg’px IS (CL2 for1 < ps <
P is randomly and uniformly generated. The mean
value of the crossover probability C, is initialized to
nc, = 0.5, while the location parameter of the scaling
factor A is initialized to wy = 0.5. The archive that
preserves the B best population members is initialized
to be empty, where B = pP; and 0 < p < 1 is the
greedy factor. The archive is introduced for preserving
the best ‘genes’ of the population.

2) Mutation. Each individual ilg’px, 1 < pg < Py, has
the CF value 7, (fI a.ps) calculated using (6), where
H g.ps 1s the channel matrix corresponding to itg,ps.
Each population member h, , is mutated by adding
two scaled difference-vectors, namely h g.best.r] — h o,

and hg ,, — hg s, tO it

hep, = i’g»ps + Ap, (’A’g,best,rl - i'g,ps)
+ Ap (i’g,rz - i’g,m)’ (13)

where izg, pest,r, 15 randomly selected from the archive,
ie. r; is randomly selected from {1,2,---,B},
rp and r3 are two values randomly selected from
{1,2,---,(ps = ), (ps + 1), -+, Pg}, while &, €
(0, 1]is arandomly generated scaling factor according
to the following procedure. Draw a random number
y according to the Cauchy distribution [50] with the
location parameter p; and the scale parameter oy:
If y <0, re-draw y;if y € (0, 1], thenset A, = y;
if y > 1, then use A, = 1. The ‘mutated’ individual

hg . 1 < ps < Py, has the CF value Jeo(H g, p, ), where
H, . is the channel matrix corresponding to g ..

3) Crossover. The continuous DEA generates a ‘trial’
individual izg’ps by exchanging some elements of
the ‘target’ individual izg‘ps with the corresponding
elements of the ‘donor’ individual i’g,px' Explicitly,

the crossover operation on the «-th element is given by

A hgvvaol’

rand, (0, 1) < C
hg’Ps,Ot =

) s (14)
otherwise,

hg,ps,o{ )

where rand, (0, 1) denotes the random number drawn
from the uniform distribution in [0, 1] for the «-th
element, while Crps e [0, 1] is the crossover prob-
ability, which is randomly generated according to the
following procedure. Draw a random number y accord-
ing to the normal distribution with the mean uc, and
the standard deviation oc,: If y < 0, re-draw y; if
y € [0, 1], then set C,m = y;if y > 1, then use
Cy,, = 1. In Fig. 3, this crossover operation for p; = 1
is illustrated. The trial individual Ivzg,ps, 1 <ps <P,
has the CF value Jce (ﬁ 8,173)’ where again the matrix
H ¢.ps corresponds to itg, s

4) Selection. The selection operation decides whether the
target vector h ¢.p, OF the trial vector h ¢.ps Will survive
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to the next generation according to their CF values

il _ hg,pys -.,Zce(Hg,pJ) = jce(Hg,ps)s (15)
sHP T, otherwi
2.Ds> Wi1s€e.

The archive is replaced by the 100 pP;% best individ-
P

uals of the new population [ﬁgﬂ,ps} ' X
Ps=

5) Adaptation. To keep up with the ‘evolution’, the mean

of the crossover probability pc, and the location

parameter of the scaling factor u, are adaptively

updated according to

uc, = (1 —0o) - pc, +c-meana(Sc,), (16)
i = (1 —c)- s+ c-meany (Sy), (17)

where ¢ € (0, 1] is the adaptive update factor con-
trolling the rate of the parameter adaptation, mean4(-)
and meany (-) denote the arithmetic-mean and Lehmer-
mean [51] operators, respectively, while S¢, and S,
denote the sets of the successful crossover proba-
bilities Cy, and scaling factors A, of generation g,
respectively.

6) Termination. The ideal stopping criterion would be the
convergence of the population. In practice, we opt for
halting the optimization procedure, when any of the
following two stopping criteria is met:

o The pre-set maximum number of generations Gpax
has been exhausted.

o A, generations have been explored without any
reduction in the CF value associated with the best
individual in the population.

Otherwise, set g = g + 1, and go to 2) Mutation.

The scale parameter o) of the scaling factor and the
standard deviation oc, of the crossover probability should
be set to a small value, e.g., 0, = 0.1 and o¢c, =
0.1. The remaining algorithmic parameters to be set are
the population size P;, the greedy factor p, the adaptive
update factor ¢, the maximum number of generations Gmax
and/or the value of A, for terminating the continuous DEA
aided CE.

C. DISCRETE DEA AIDED MULTI-USER DETECTION

Clearly, it is impractical to find the optimal ML solution X for
the optimization (9) by exhaustive search, when the number
of upstream users served L is large and/or the modulation
order M is very high. However, the optimization (9) of search-
ing the high-dimensional data space to find the optimal X
can be carried out by a discrete DEA, at a fraction of the
computational complexity imposed by the exhaustive-search
based optimal ML-MUD. This discrete DEA assisted MUD
is depicted in Fig. 4. We will denote the bit vector mapped to
the symbol vector X by b = [b1 by - - bAb]T, where each bit
b; takes the value of 1 or 0, and A, = L - log, M.

1) Initialization. At the first generation of g = 1, the dis-
crete DEA randomly initializes its population of Py
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2)

3)
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individuals

A ~ ~

R T
by, = [bg,px,l bgps2- "bg,ps,Ab] . l=ps =Py

i.e., every bit l;g,pm,- is randomly assigned 1 or 0. The
mean of the crossover probability C, and the location
parameter of the scaling factor A are initialized to
ne, = 0.5 and u; = 0.5, respectively. The archive
that preserves the B best individuals of the previous
generation is set to empty.

Mutation. Each individual I;g,pw 1 < ps < Py, cor-

~b .
responds to a modulated symbol vector X, , associ-

ated with the CF value J,,,4 (X Z’ ps) that is calculated
using (7). The discrete DEA mutates each base popu-
lation vector i’g,m by adding two appropriately scaled
and randomly selected difference-vectors to it. Note
that in the binary arithmetic, the scaling or multiplying
operation is represented by the bit-wise exclusive-AND
operator ®, while the addition or difference operation
is represented by the bit-wise exclusive-OR operator @.
Explicitly, the ‘mutated’ individual is given by

~

bop =bop @ (zfis ® (Bg,best,,l @13&,,3,))
& (t, ® (ber ®@be)). (19)

where I;g, pest,r; 18 randomly selected from the archive,
I;g,rz and I;g,r3 are randomly selected from the rest
of the current population, while the bit-scaling fac-
tor zﬁx = [Zﬁx,l zbsyz = 'Z;;,Ab]T is the Ap-length
binary-valued vector generated randomly according to
the following procedure. First, the real-valued vector
Zp, = [Zps,1 Zpe2 " -zps,Ab]T e R4 is generated,
whose elements all obey the Gaussian distribution of
zero mean and unity variance. Then the scaling factor
Ap, € (0, 1] is generated according to the Cauchy
distribution with the location parameter w; and the
scaling parameter of o,, similar to the generation of
the scaling factor in the mutation step of the continuous
DEA. By comparing the elements of z,, with A, the
elements of zf,x are determined according to

b _ ]’ iprS’[ < )“ps’ 20
Zp i= . ( )
5 0, otherwise,

for 1 < i < Ap. Each ‘mutated’ individual Eg,ps’

. ~b
1 < ps < Py, has the associated CF value J,q4 (X e p_v),

where X Z’ », 18 the symbol vector corresponding to the
bit vector b gD -

Crossover. The discrete DEA generates a trial vec-
tor I;g,p{ by replacing certain elements of the target
vector b, with the corresponding elements of the
donor vector l;g, ps- There exist diverse variants of this

crossover mechanism [39], [40], and we adopt the uni-
form crossover algorithm. Specifically, the a-th ele-
ment of b ,, is determined according to

. bg pya» 1andy(0,1) < C
bgsPSaa I

: 2
bg p,.a» Otherwise,

where C,ps € [0, 1] is the crossover probability, ran-
domly generated according to the normal distribution
of mean pc, and standard deviation o, , similar to the
generation of the crossover probability in the crossover
step of the continuous DEA. This crossover operation
for p; = 1 is depicted in Fig. 4. The trial individual

. < b
bep,, 1 < ps < Py, has the CF value Jyuuq(X g,ps)’

whvere X ;ps denotes the symbol vector corresponding
to by p, .

4) Selection. Whether the target vector i’g,ps or the trial
vector l;g, p, survives into the next generation is decided
according to their associated CF values. Specifically,
for I < ps < P,

y b o b
i’g+l oy = ég,p“ jmud(Xg,ps) = jmud(Xg,pS)s

" |bgp,. otherwise.
(22)

The archive is replaced by the B = 100 pP;% best
Py

individuals of the new population {I; o1, ps}

5) Adaptation. Similar to the continuous DEAlethe mean
of the crossover probability pc, and the location
parameter of the scaling factor u, are updated accord-
ing to [40]

pe, = (1 =¢)- e, +c-meany(Sc,), (23)
wp =0 —=¢) up+c- meanL(S)L), (24)

where again ¢ € (0, 1] is the adaptive update factor,
meany(-) and meany (-) denotes the arithmetic mean
and Lehmer mean, respectively, while Sc, and S
denote the sets of the successful crossover proba-
bilities C,, and scaling factors 4, of generation g,
respectively.

6) Termination. The optimization procedure is halted
when any of the following two stopping criteria are
met:

o The pre-set maximum number of generations Gax
has been exhausted.

o A, generations have been explored without any
reduction in the CF value associated with the best
individual in the population.

Otherwise, set g = g + 1, and go to 2) Mutation.
Similar to the continuous DEA, the scale parameter o)
of the scaling factor and the standard deviation oc, of the
crossover probability can both be set to 0.1. The user has to
set the population size Pg, the greedy factor p, the adaptive
update factor ¢, the maximum number of generations Gmax
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Archive

< Cy, randal(o, 1) <G,

bg,1,3 ¢ bg71,Ab

: bg,lyl / Eg,l,?
|
! randlﬁ(o7 1)>C,

bg,Pg

b
jmud(Xg,Ps)

X, X, |

Termination: ¢ > Gmax  or  Jopud ( Xg,best) = jmud( Xg N Ambest)

NO,g=9g+1

' YBS X=X

,best

FIGURE 4. Flowchart of the discrete DEA assisted multi-user detection.

and/or the value of A, for terminating the discrete DEA aided
MUD.

IV. CRAMER-RAO LOWER BOUND OF CHANNEL
ESTIMATION

The CRLB provides the lowest achievable mean square error
(MSE) of any unbiased estimator [52]. In the simulation
section, we will demonstrate that our DEA assisted CE is
capable of approaching the CRLB. Therefore, below we
derive the CRLB of the channel estimator. Since the CRLB
is related to the available training symbols, we will introduce
the symbol index [s]. Thus, upon recalling (1), we rewrite the
I-th received signal at the s-th symbol Y;[s] as

Yi[s] = H X[s] + Wilsl, (25)

where H|;.| is the [-th row of the channel matrix H, X[s] =
[Xi[s] Xa[s]--- X [s]]T is the transmitted signal vector at the
s-th symbol, and W;[s] is the [-th element of W[s].
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Since W[s] € C represents the white Gaussian noise with
covariance o;%, the conditional probability density function
(PDF) f (Yl[s] |H[1;]) is given by

( |¥,[s] —H[I;]X[s]|2>
exp | — .

2
20/

f(ilsliHy:y) = ol

w

(26)

Thus, the joint conditional PDF over the S consecutive
OFDM symbols, f (Yl[l], Y21, --- ,Yl[S]|H[l;]), can be
formulated as

F (2l - YilS1Hy: ;)

S 2
1 Yi[s] — Hy X
=H<2ﬂ02 P <_| - 20[21‘] “l )) 0
s=1 w w

33119




IEEE Access

J. Zhang et al.: DEA-Aided Turbo CE and MUD for G.Fast Systems in the Presence of FEXT

TABLE 1. Default algorithmic and system parameters.

Initialization Randomly Initialization Randomly Channel code Turbo
Population size Ps 100 Population size Ps 100 Code rate 172
DEA assisted | Greedy factor p 0.1 DE assisted | Greedy factor p 0.1 System Memory length 16
CE Adaptive factor ¢ 0.1 MUD Adaptive factor ¢ 0.8 parameters | Polynomial (3,[7,5])
Gmax 100 Gmax 100 Users 4
Agmax 20 Agmax 20 Modulation 16-QAM

The Fisher information matrix is defined as [52]

2 .. .
I(H[l:]) - _¢ 9~ logf (Yl[l], Yi[2], 7Y1[S]|H[l.])
BHU:]E)HEI:]
1 S
= 57 LE[RI "} o8)

where £ { } denotes the expectation operator.
The CRLB for the estimate of H{;. is defined as

CRLB (Hy;.)) = Tr (I_I(H[l:])>

S —1
= 20 Tr <Z€{X[s](X[s])H}) 7

s=1
(29)

where Tr(-) denotes the matrix trace operation. Since the opti-
mal training symbol sequence satisfies £ {X [s] (X [s])H} =
EJIy, where I denotes the L x L identity matrix and Ej
is the average power of the transmitted data symbol. Thus,
the CRLB can be expressed as

202

) = R (30)

Furthermore, the normalized CRLB (NCRLB), which repre-
sents the lower-bound of the achievable NMSE, is given by

NCRLB (H )—LV%
1) = 5 (31)
SEs |Hy |

CRLB (Hy

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
DEA assisted turbo CE and MUD for upstream G.fast sys-
tems operated in the frequency range of 2 MHz to 212 MHz,
which are split into 4096 tones. The channel was character-
ized by the measurements of BT’s twisted copper lines at
the BT Ultra-Fast lab. The number of simultaneous upstream
users has the default value of L = 4 and each user employs
the same 16-QAM scheme combined with a half-rate turbo
channel code of memory 16 using the octal generator poly-
nomials of (3, [7, 5]). The total number of CF evaluations
for the ML-MUD is 16* = 65536. The default loop length
of the DSL lines is 100 m. The iterative procedures of the
inner turbo decoding is automatically terminated, when they
have converged. The number of iterations between the DEA
assisted CE and the DEA aided MUD is set to 6 in our inves-
tigation. Note that our proposed scheme is readily applicable
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to systems supporting a number of users and higher-order
modulation. However, since we use the optimal ML solution
as the ultimate benchmark of our proposed scheme and we
can only compute the optimal ML solution for the system
supporting a low number of users associated with relatively
low-order modulation, we restrict our simulation study to

= 4 and 16-QAM modulation. The default algorithmic
parameters used for the continuous and discrete DEAs and
the system parameters are summarized in Table 1. Unless
otherwise specified, these default parameter values are used
throughout.

We first investigate the per subcarrier performance and
the convergence performance of the individual continuous
DEA aided CE and discrete DEA aided MUD components,
respectively, as well as the impact of the system bandwidth
on the achievable performance. Both the least square (LS) CE
and the NCRLB are used as the benchmarks for evaluating
the continuous DEA aided CE (DEA-CE), where the NCRLB
indicates the best achievable performance of the channel
estimator. Furthermore, the SUD, the ZF-MUD and the
ML-MUD are used as the benchmarks of the discrete DEA
aided MUD (DEA-MUD), where the ML-MUD provides the
best achievable detection performance. Then the performance
of the proposed turbo DEA-CE and DEA-MUD is inves-
tigated for quantifying the achievable iterative gain of this
turbo CE and MUD scheme. Furthermore, the impact of the
impulse noise as well as that of the CE error and the loop
length on the detection performance are also investigated.

A. PER SUBCARRIER NMSE AND SER PERFORMANCE

OF NON-TURBO CE AND MUD

Let us now consider the non-turbo DEA-CE and DEA-MUD,
where the channel estimator relies purely on the pilot symbols
only, while the turbo MUD and the decoder perform iterative
detection and decoding based on the perfect CSI. This enables
us to investigate both the NMSE of the DEA-CE and the ideal
symbol error ratio (SER) of the DEA-MUD, separately, on
each subcarrier. Note that the interleaving operation makes
it impossible for us to investigate the bit error rate (BER) of
each individual subcarrier.

The NMSE performance of the DEA-CE at E,/Ny =
20dB and 30dB is shown in Fig. 5 (a) and Fig. 5(b), respec-
tively, where E}, is the energy per bit and Ny = aﬁ is the noise
power. Observe that the DEA-CE achieves an almost identical
estimation performance to the LS-CE relying on the same
pilot symbols. The idealized SER performance based on the
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FIGURE 5. NMSE versus the subcarrier index: (a) E5/Ng = 20dB, and (b) E, /Ny = 30dB.
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FIGURE 6. ldealized SER based on perfect CSI versus the subcarrier index: (a) Ep /Ny = 20dB, and (b) E5 /Ny = 30dB.

perfect CSI achieved by the DEA-MUD at E, /Ny = 20dB
and 30 dB is depicted in Fig. 6 (a) and Fig. 6 (b), respectively,
in comparison to the idealized SERs of the SUD, ZF-MUD
and ML-MUD. As expected, the DEA-MUD exhibits a much
better detection performance than both the SUD as well as the
ZF-MUD, and it is capable of approaching the performance
of the ML-MUD. Observe that the detection performance
improvement of the DEA-MUD over both the SUD and over
the ZF-MUD is more significant at high frequencies. Interest-
ingly, the SUD outperforms the ZF-MUD at low frequencies,
because the latter suffers from serious noise enhancement.

B. CONVERGENCE OF DEA AIDED
CE AND DEA AIDED MUD

By operating the non-turbo DEA aided CE and DEA aided
MUD, we can further investigate the convergence of the
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DEA-CE and the convergence of the DEA-MUD separately.
The convergence performance of the DEA-CE and the DEA-
MUD are shown in Figs. 7 and 8, respectively, at E;/Ng =
20dB and 30 dB. Explicitly, we investigate three subcarriers,
the 500-th, 2500-th and 4000-th tones having the central fre-
quencies of f, = 26.85 MHz, 130.35 MHz and 207.97 MHz,
respectively, where f, = 26.85 MHz is in the frequency range
of the VDSL?2 standard [13], while f, = 130.35 MHz and
207.97 MHz are in the frequency range of G.fast.

It can be seen from Fig 7 that the DEA-CE converges
to the LS-CE solution within 30 iterations at E,/Ng =
20dB and within 40 iterations at E, /Ny = 30dB, respec-
tively. At E,/Ng = 20dB, the BERs of the DEA-MUD
converge to those of the ML-MUD around 20 iterations,
as seen from Fig. 8 (a). Note that at £, /Ng = 30dB, the
BER of the SUD at f. = 26.85MHz, the BERs of the ZF-
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FIGURE 7. NMSE versus the number of iterations: (a) E, /Ny = 20dB, and (b) E;, /Ny = 30 dB.
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FIGURE 8. Idealized BER based on perfect CSl versus the number of iterations: (a) E, /Ng = 20dB, and (b) E, /Ny = 30dB.

MUD at f, = 26.85MHz and 130.35 MHz as well as the
BERs of the ML-MUD at all the three subcarriers are not
included in Fig. 8 (b), because they are infinitesimally low
based on the perfect CSI. Observe from Fig. 8 (b) that at
Ep/Ny = 30dB, the DEA-MUD converges to the ML-MUD
after 18 iterations for f, = 26.85MHz, 19 iterations for
fe = 130.35MHz and 45 iterations for f;, = 207.97 MHz,
respectively.

C. IMPACT OF SYSTEM BANDWIDTH
ON THE ACHIEVABLE PERFORMANCE
As mentioned previously, the channel quality is critically
dependent on the system’s bandwidth (BW) or the fre-
quency range. To investigate the influence of the system’s
frequency range, we consider four cases: the Ist case at
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the BW of 52.5MHz covers the first 1024 subcarriers of
the lowest frequency range, the 2nd case covers the first
2048 subcarriers with the BW of 105.0 MHz, the 3rd case has
the BW of 157.5 MHz including the first 3072 subcarriers,
and the 4th case includes all the 4096 subcarriers and covers
the total system BW of 210 MHz.

Fig. 9(a) depicts the NMSE performance of the DEA-
CE based on the pilot symbols. As expected, the NMSE
of the DEA-CE is identical to that of the LS-CE, and the
system BW has no impact on the training performance of
an unbiased channel estimator. Observe from Fig. 9 (a) that
there is an approximately 18 dB gap between the training-
based NMSE and the NCRLB, where the NCRLB is cal-
culated based on both the pilots and the data. Fig. 9 (b)
shows the idealized BER performance of the DEA-MUD
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FIGURE 10. Achievable performance of the DEA aided turbo CE and MUD: (a) NMSE versus Ejp /N, parametrized by the number of turbo iterations, and

(b) BER versus Ep /N, parametrized by the number of versus turbo iterations.

based on the perfect CSI for different system bandwidths.
As expected, the BER performance is better for the sys-
tem having a lower frequency range, because the channel
quality at a lower frequency range is better. The results of
Fig. 9(b) also confirm that the DEA-MUD and the ML-
MUD exhibit almost identical detection performance, and the
DEA-MUD outperforms both the SUD and the ZF-MUD,
particularly for the systems including higher frequencies. For
example, for the system including all the 4096 subcarriers,
the DEA-MUD attains an approximately 7 dB SNR gain over
the ZF-MUD at the BER level of 107>, For this system,
the SUD exhibits a high error floor.
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D. ACHIEVABLE PERFORMANCE OF THE DEA AIDED
TURBO CE AND MUD
We now investigate the achievable performance of the pro-
posed DEA aided turbo CE and MUD. Again, we consider the
system relying on all the 4096 subcarriers and having the total
system bandwidth of 210 MHz. The NMSE and BER versus
Ep /Ny performance of this DE aided turbo CE and MUD
scheme is parametrized by the number of turbo iterations,
as depicted in Fig. 10 (a) and Fig. 10 (b), respectively.

The results of Fig. 10 need further explanations. Initially,
given the training pilots, the DEA-CE estimates the chan-
nel, and the NMSE of this channel estimate is given by the
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FIGURE 11. Impact of loop length on the achievable detection
performance of four idealized MUDs associated with perfect CSI.

Iter = O curve of Fig. 10 (a), which is identical to that of the
training based LS-CE. Given this estimate, the DEA-MUD
and the channel decoder perform detection and decoding by
iteratively exchanging soft extrinsic information, and after
convergence, the detected data exhibits the BER represented
by the Iter = O curve of Fig. 10 (b). The detected data are
then fed back to the DEA-CE, which carries out the next CE
iteration based on both the detected data and pilots, leading to
the improved NMSE as seen from Fig. 10 (a). The enhanced
estimated CSI is in turn exploited by the DEA-MUD/channel
decoder for producing the detected data at an even lower
BER. This ‘turbo’ procedure continues until at the 6th iter-
ation and around the SNR of 27 dB, the BER of the detected
data becomes infinitesimally low. Observe from Fig. 10 (a)
that at this point, the NMSE of the DEA aided turbo CE
and MUD approaches the NCRLB. Explicitly, at the 6th
iteration and around the SNR of 27 dB, the achievable NMSE
has approached the NCRLB. This is because at this point,
the detected data becomes the true data. Not surprisingly,
at this point, the BER of the DEA aided turbo CE and MUD
approaches that of the idealized ML-MUD associated with
perfect CSI, which is also identical to that of the idealized
DEA-MUD relying on perfect CSI.

It is worth emphasizing the significance of the iterative
gain obtained. Specifically, by iteratively exchanging extrin-
sic information between the continuous DEA aided CE and
the discrete DEA aided MUD, approximately 18 dB of NMSE
gain as attained for the channel estimator and around 10 dB
of SNR gain is achieved for the MUD.

E. IMPACT OF LOOP LENGTH

Although the lengths of the users’ DSL lines are different in
practical deployments, for the convenience of investigating
the impact of loop length, we assume that all the users
have the same loop length. Fig. 11 shows the influence
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of the loop length of DSL lines on the achievable BER
performance of the four idealized MUDs based on perfect
CSIL It can be clearly seen from Fig. 11 that increasing
the loop length significantly degrades the achievable BER
performance. Observe furthermore from Fig. 11 that the
DEA-MUD attains the optimal performance of the
ML-MUD, and it considerably outperforms the ZF-MUD.
For these two systems, the SUD exhibits high BER floors.

F. IMPACT OF IMPULSE NOISE

Next we investigate the impact of impulse noise on the
achievable BER performance. When the additive impulse
noise is taken into account, the system model (1) can be
rewritten as

Y=HX+W+U, (32)

where U € CL is the impulse noise vector. An OFDM
symbol is infected by the impulse noise with the probability
of k, where typically we have x € [0.01, 0.1] [53], [54].
Note that an OFDM symbol includes the data at all the
tones, X[1], --- , X[4096], where we have re-introduced the
omitted tone index of X. We assume that the impulse noise
U obeys the complex Gaussian distribution associated with a
zero-mean vector and the covariance matrix O’MZI L. Typically,
the impulse noise is 20 dB stronger than the additive Gaussian
noise W [55], [56], that is, 101og,, (0;7/0;2) = 20 dB. In our
simulations, we consider both k = 0.01 and « = 0.1, which
can be viewed as the lower bound and the upper bound of
the probability that an OFDM symbol is infested by impulse
noise.
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FIGURE 12. Impact of impulse noise on the achievable detection
performance of four idealized MUDs associated with perfect CSI.

It can be seen from Fig. 12 that the impulse noise degrades
the achievable detection performance, particularly for high «,
where the case of k = 0 corresponds to no impulse noise.
It can also be seen that at k = 0.01, both the ML-MUD
and the DEA-MUD exhibit almost an identical performance,
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while at k = 0.1, the DEA-MUD is slightly inferior to
the ML-MUD. Not surprisingly, the DEA-MUD considerably
outperforms the ZF-MUD.
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FIGURE 13. Comparison of the achievable detection performance of four
MUDs based on LS-CE acquired by training as well as based on
perfect CSI.

G. IMPACT OF CHANNEL ESTIMATION ERROR

In Fig. 13, we compare the BER performance of the four
MUDs based on the LS-CE acquired by training to those
associated with perfect CSI. Clearly, the channel estimation
error has a significant impact on the achievable detection
performance of an MUD. Explicitly, for both the DEA-MUD
and the ML-MUD, there exists an SNR gap of around 10dB
between the idealized performance associated with the per-
fect CSI and the performance associated with the estimated
CSI, which can also be seen from Fig. 10 (b). It can also be
seen from Fig. 13, that the SNR gap is approximately 9 dB
between the idealized ZF-MUD associated with perfect CSI
and the ZF-MUD based estimated CSI.

H. COMPUTATIONAL COMPLEXITY COMPARISON

As demonstrated by the aforementioned results, given the
same CSI, the DEA-MUD is capable of attaining the optimal
detection performance of the ML-MUD. We now compare the
computational complexity of the DEA-MUD to that of the
ML-MUD. Again, the ML-MUD finds the optimal solution
by evaluating the CF values of all the ML = 16* = 65536
potential candidates on each single tone. By contrast, the dis-
crete DEA evolves a population of ‘candidates’, as detailed in
Section III-C, based on the CF values of the population. Let
Ny be the total number of CF evaluations imposed by the
ML-MUD and let Npgy be the total number of CF evaluations
required by the DEA to converge to the optimal ML solution.
We can compare the computational complexities of both the
DEA-MUD and of the ML-MUD by calculating the ratio

N
Complexity of DEA-MUD = NDEA

ML

[%], (33)
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FIGURE 14. Computational complexity of the DEA-MUD expressed as the
ratio of its required CF evaluations over the total CF evaluations imposed
by the ML-MUD. The perfect CSl is assumed.

which we use to quantify the computational complexity of the
DEA-MUD, in comparison to the ML-MUD.

Fig. 14 compares the complexities of the DEA-MUD to
those of the ML-MUD for the same four systems as specified
in Section V-C at both E, /Ny = 20dB and 30dB. It can be
seen from Fig. 14 that the DEA-MUD only requires 5% of the
computational complexity imposed by the ML-MUD, while
still attaining the same optimal solution as the ML-MUD.

VI. CONCLUSIONS

We have proposed a DEA aided turbo CE and MUD for
mitigating the adverse effects of FEXT encountered by the
G.Fast systems caused by the utilization of high frequencies
up to 212MHz. The proposed DEA aided turbo CE and
MUD is constituted by a continuous DEA aided CE and a
discrete DEA aided MUD, exchanging extrinsic information
between them. We have demonstrated that our DEA-MUD
significantly outperforms the widely adopted low-complexity
ZF-MUD, also known as the ZF-FEXT canceller. More
remarkably, we have shown that given the same CSI, our
discrete DEA aided MUD is capable of attaining the optimal
performance of the ML-MUD, while only imposing 5% of
the computational complexity associated with the ML-MUD.
In our simulation study, we have also investigated the impact
of CE error, of the impulse noise and of the loop length. Most
importantly, in this paper, we have demonstrated that by itera-
tively exchanging information between the continuous DEA
aided CE and the discrete DEA aided MUD, the DEA-CE
is capable of approaching the optimal CRLB of the channel
estimate, while the DEA-MUD based on the estimated CSI is
capable of attaining the optimal detection performance of the
idealized ML-MUD associated with perfect CSI. Specifically,
we have shown that 18 dB of the NMSE gain is attained by the
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channel estimator and 10dB of the SNR gain is gleaned by
the MUD by exploiting iteration gains. This study therefore
has demonstrated that the proposed DEA aided turbo CE and
MUD is capable of offering near-capacity performance at an
affordable complexity for the emerging G.fast systems.
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