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Abstract—Millimeter-wave (mmWave) communication technol-
ogy offers a potential and promising solution to support 5G and
B5G wireless networks in dynamic scenarios and applications.
However, mobility introduces many challenges as well as oppor-
tunities to mmWave applications. To address these problems, we
conduct a survey of the opportunities and technologies to sup-
port mmWave communications in mobile scenarios. Firstly, we
summarize the mobile scenarios where mmWave communica-
tions are exploited, including indoor wireless local area network
(WLAN) or wireless personal area network (WPAN), cellu-
lar access, vehicle-to-everything (V2X), high speed train (HST),
unmanned aerial vehicle (UAV), and the new space-air-ground-
sea communication scenarios. Then, to address users’ mobility
impact on the system performance in different application sce-
narios, we introduce several representative mobility models in
mmWave systems, including human mobility, vehicular mobility,
high speed train mobility and ship mobility. Next we survey the
key challenges and existing solutions to mmWave applications,
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such as channel modeling, channel estimation, anti-blockage, and
capacity improvement. Lastly, we discuss the open issues con-
cerning mobility-aware mmWave communications that deserve
further investigation. In particular, we highlight future heteroge-
neous mobile networks, dynamic resource management, artificial
intelligence (AI) for mobility and integration of geographical
information, deployment of large intelligent surface and reconfig-
urable antenna technology, and finally, the evolution to Terahertz
(THz) communications.

Index Terms—Millimeter-wave communications, 5G and B5G
mobile networks, heterogeneous networks, future space-air-
ground-sea networks, mobility models, artificial intelligence.

I. INTRODUCTION

W ITH the various emerging applications in the 5G era,
extensive mobile connections occur in all walks of

life, from technological to social activities, which exhibit two
major trends. Firstly, rapid traffic growth appears in large
cities or social life hotspots that are highly related to humans’
movement. It is predicted that by 2022 the world mobile
data traffic will reach 77 ExaBytes per month, exceeding six
times that in 2017 [1]. This capacity demand introduces a
heavy burden on the limited spectrum at sub-6 GHz. Secondly,
the construction of intelligent transportation system (ITS)
highly relies on massive mobile connections among vehicle to
vehicle, railway to infrastructure, and road station to passen-
gers. Some promising applications, such as automated driving,
impose extra concerns on low latency and high reliability
in mobile communications. Plentiful spectrum resources are
needed to fulfill these transmission demands of massive mobile
traffic at low latency in these dynamic communication scenar-
ios as well as emerging new applications [2]. Millimeter-wave
(mmWave) communications, which tap into large available
bandwidth resources of the mmWave band, are witnessed to
be a potential solution to support these trends.

Related research efforts have been made on mmWave
technology since 1990s. Initially, rapid progress emerged
in complementary metal-oxide-semiconductor (CMOS) radio
frequency (RF) integrated circuits, paving the way for
mmWave viability. For example, the fully CMOS-based beam-
forming receiver at 60 GHz achieves high performance at low
cost and has become popular in commercial applications [3].
In 2013, Rappaport et al. [4] conducted mmWave (28 GHz,
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38 GHz) channel measurement in urban environments, making
a valuable step towards the 5G cellular communications at
mmWave bands. Since then, extensive measurement cam-
paigns in mmWave frequency bands (41 GHz, 60 GHz,
73 GHz, etc.) have been conducted to characterize propaga-
tion channels. MmWave wireless communication suffers from
high path loss and must rely heavily on directional large-scale
antenna array for power concentration. This imposes a serious
challenge on how to provide reliable mmWave connections
for highly dynamic scenarios. However, there exists limited
progress on mobility support for mmWave communications
until the deployment of adaptive beamforming techniques.
Two advances are incorporated with such techniques, direc-
tional transmission with beamforming compensating for the
propagation loss of mmWave signals and robust adaptation to
the fast-changing environment for enabling beam alignment in
dynamic scenarios.

Specifically, smart motion-prediction beam alignment
(SAMBA) [5] and fast machine learning (FML) algo-
rithm [6] have recently been adopted in mmWave vehicle-to-
everything (V2X) communications. Furthermore, researchers
have exploited enabling technologies to improve the mmWave
network performance in dynamic scenarios, including com-
bining it with massive multiple-input and multiple-output
(MIMO), device-to-device (D2D) communications, relaying,
new spatial processing techniques, mobile management tech-
niques, etc. [7]–[15]. For instance, [14] and [15] prompted
coverage optimization by integrating MIMO and D2D in
mmWave systems, respectively. To date, there are already stan-
dards available for wireless networks (WLAN) and wireless
personal area networks (WPAN) at mmWave frequency, such
as IEEE 802.11ad and IEEE 802.15.3c, while the standardiza-
tion activities for mmWave V2X networks, such as 802.11bd,
are currently being promoted by IEEE [16]–[19].

Several surveys [16], [18], [20]–[22] have summarized the
progress in mmWave communications and provided insightful
understanding on the development of mmWave networks. Yet
the important research for mobility support is still ongoing,
which is facing the following challenges.

• Diverse scenarios: Mobility scenarios vary from low-
speed WLANs to high-speed railway networks, which
serve distinct applications and impose different require-
ments for interference management, beamforming design,
energy efficiency, etc. Therefore, a categorized review of
mmWave communications research conducted in scenar-
ios with different mobility levels is necessary.

• Mobility modeling: The goal of mobility modeling is to
imitate real-life mobility based on the extracted character-
istics in the underlying scenarios. Due to the complexity
of mobility data collection, filtering, and fusion in het-
erogeneous networks (HetNets), there are few works on
mobility feature analysis in the mmWave spectrum.

• Related critical issues: Mobility introduces many prob-
lems in mmWave networks, including inaccurate channel
measurement, complex channel modeling, dynamic chan-
nel estimation, frequent blockage, capacity decrease, etc.
Yet a comprehensive work is still lacking in analyzing
these problems and discussing the existing solutions. How

Fig. 1. Structure of the survey article.

to integrate the innovative techniques into the upcom-
ing mobile mmWave networks and further enhance the
system performance have not been fully considered.

Motivated by these problems, we carry out a survey to inves-
tigate the challenges and technologies to support mmWave
communications in mobile scenarios. To serve this purpose,
a deep insight is provided for the influence of mobility in
mmWave networks, and the existing solutions to key chal-
lenges are summarized comprehensively. The structure of this
paper is shown in Fig. 1. First, we introduce the mobile
scenarios where mmWave communications are exploited, in
Section II. In different mobile scenarios, mobility patterns are
different. Thus, we next introduce different mobility models to
be considered in the design of mmWave systems in Section III.
Then in Section IV, we carry out an extensive literature review
on mmWave communications and emphasize the mobility sup-
port for mmWave communications in mobile scenarios. The
challenges from the physical layer to the network layer to sup-
port mobility are also discussed in this section. Furthermore,
we list the open research issues for mmWave communications
to support mobility in mobile scenarios in Section V. Finally,
we conclude this survey paper in Section VI.

II. APPLICATIONS OF MMWAVE COMMUNICATIONS

IN MOBILE SCENARIOS

By leveraging the abundant bandwidth and directional
beamforming, mmWave communications can be applied to
a host of mobile scenarios [23]. However, serving different
applications in these scenarios brings various challenges to
the design of communication systems. To overcome these
challenges, extensive research has been conducted in channel
modeling, beamforming design, energy efficiency, standards
development, etc. The key technologies, potential solutions
and existing difficulties in different scenarios are summarized
below.

A. Indoor WLAN and WPAN

IEEE 802.15.3c and IEEE 802.11ad define the standards
for indoor WLANs and WPANs, respectively, in the 60 GHz
band [24], [25], directly enabling the application of mmWave
communications in indoor WLAN and WPAN. With huge
unlicensed bandwidth in the 60 GHz band, multi-gigabit per
second (Gbps) transmission rates can be achieved, and wide-
band multimedia applications, including high-rate data transfer
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TABLE I
RESEARCH ON MMWAVE INDOOR WLAN/WPAN

between devices, such as cameras, pads, personal computers,
etc., are available.

Research on this area is continuing. For example, the
work [26] investigated mmWave wireless link performance
in indoor environments. Chen et al. [27] carried out a joint
design of axis alignment and positioning for non-line-of-sight
(NLoS) indoor mmWave WLAN and WPANs. A link schedul-
ing algorithm was proposed for mmWave WPAN in [28],
which includes common channel interference probing scheme,
link coexistence determination scheme and link schedule algo-
rithm, to enhance the performance. The paper [29] investigated
access point (AP) placement for multi-AP mmWave WLANs.
In summary, mmWave systems coexist well with indoor
WLAN and WPAN systems. Table I summarizes the overall
research discussed in this subsection.

B. Cellular Access

MmWave communication technologies have long attracted
attention as a promising solution for next-generation mobile
communications. But not until 2013 that researchers have
found that mmWave may be suitable for cellular networks and
has advantages over microwave-based cellular networks [4].
However, as mmWave communication has different character-
istics from its microwave counterpart, the currently available
sub-6 GHz frameworks cannot be applied directly. Hence
recent works have extensively studied the application of
mmWave technology in cellular access.

In 2011, Andrews et al. [30] put forward an analytical
approach for analyzing coverage and rate of classic cellular
networks. Since then considerable progress has been made
to modify the model, validate its accuracy and extend its
applications to more sophisticated mobile network scenar-
ios [31]–[33]. An analytical framework for mmWave cellular
networks was studied in [34], [35]. Specifically, based on the
theory of Poisson point process (PPP), Renzo [34] leveraged
stochastic geometry to build the analytical framework. With
realistic channel and blockage models for mmWave propaga-
tion, sufficiently dense mmWave cellular networks were shown
to outperform microwave cellular networks. Rebato et al. [35]
further applied an experimental mmWave channel model
to this framework and derived the signal-to-interference
ratio (SIR) based coverage probability in mmWave cellular
networks. Moreover, the accuracy of the PPP-based frame-
work was studied in [36]. By taking realistic base station

(BS) locations, buildings footprints, and empirical mmWave
channel models into account, it was shown that this frame-
work is capable of estimating the downlink performance in
dense mmWave cellular networks. The framework was fur-
ther improved by considering other-cell interference in [37],
and Monte Carlo simulations were conducted to validate its
performance in computing the coverage of mmWave cellular
networks. In practice, however, this framework may not be
applicable for D2D communications and cognitive networks,
where users with the same demands tend to form a cluster, but
the PPP-based model fails to describe this property accurately.
Therefore, Poisson cluster process (PCP) theory considering
multiple clusters is leveraged in related research [38].

On the other hand, several system models are proposed
to overcome specific challenges in mmWave cellular
networks [15], [39]–[42]. Considering the high propagation
path loss and sensitivity to blockages in mmWave band,
Elkotby and Vu [39] employed MIMO beamforming in
mmWave cellular networks, and proposed a probabilistic
interference distribution model, in which line-of-sight (LoS)
interference power is characterized as a Gamma distribu-
tion, while NLoS interference power is modeled as a mixture
of the inverse Gaussian and inverse Weibull distributions.
Petrov et al. [40] constructed a novel methodology based on
queuing theory and stochastic geometry to solve the problems
of complex radio propagation, human mobility, and multi-
connectivity in mmWave cellular networks. Singh et al. [41]
developed a tractable model to capture the user rate distribu-
tion and to derive the rate expression in mmWave cellular
networks. With this developed model and based on simu-
lations, it was shown that mmWave cellular networks are
noise-limited and the rate heavily relies on the BS density.
Besides, Mezzavilla et al. [42] proposed a Markov deci-
sion process (MDP) model to study handover problems in
mmWave cellular networks. Umer et al. [15] analyzed the
performance of mmWave cellular networks coexisting with
microwave cells, and found that massive MIMO and densely
deployed mmWave cells significantly enhance rate and cov-
erage. Zhou et al. [43] developed a hardware-efficient hybrid
precoding scheme for mmWave systems based on novel multi-
feed reflect arrays. Based on graph theory, Sha et al. [13]
proposed a time-domain beam scheduling for the mmWave
cellular network. To give a quick view of these efforts, we
summarize significant progress on mmWave cellular networks
in Table II.

C. V2X Communications

V2X communications demand high data rates to support
more advanced vehicular applications, such as automated
driving and in-vehicle infotainment systems. It is estimated
that transmission rates in the order of gigabits per driv-
ing hour are needed [44]. However, existing technologies
cannot satisfy this demand. Current achievable data rates
for vehicle-to-vehicle (V2V) communications and vehicle-
to-infrastructure (V2I) communications are respectively 2-6
Mbps and 100 Mbps [44]. Therefore, the next-generation
mmWave technology is suggested in V2X communications
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TABLE II
RESEARCH ON MMWAVE CELLULAR ACCESS

for rate improvement. MmWave-based V2X communications
face the usual challenges, such as high propagation loss and
sensitivity to blockage. Moreover, mmWave V2X communi-
cations face extra serious challenges in that stability, secu-
rity and ultra-low latency are necessary for traffic purposes.
Numerically, [45] specified the maximum communication
latencies for automated overtake and high-density platooning
as 10 ms.

There exist many works focusing on the mmWave applica-
tion to V2X communications. Perfecto et al. [46] proposed
a distributed multi-beam association scheme for mmWave
vehicular scenarios to expand the individual sensing range
of vehicles. This proposed scheme is capable of increasing
the average volume of collected sensed information by up
to 71%. Shrivastava et al. [47] developed a vehicular ver-
sion of the shared user equipment-side (UE-side) distributed
antenna system (SUDAS), which leverages the UE-side radio
units (URUs) on the vehicle body to transform the outdoor
MIMO signal into a single-input and single-output (SISO)
signal on the mmWave channel and transmits it to the UEs.
Such a strategy enables high throughput and reliable wireless
communication in high mobility V2X scenarios.

The work [48] designed a novel redundancy-based pream-
ble transmission in order to fast acquire data transmission
opportunities in mmWave-based massive V2X communica-
tions scenarios. Brambilla et al. [49] developed a location-
assisted and subspace-based beam alignment scheme for LoS
and NLoS mmWave V2X Communications. The work [5]
proposed the novel intelligent beam control and secure sta-
ble routing scheme to address beam alignment difficulties and
routing stability issues due to rapid mobility of vehicles, in

TABLE III
RESEARCH ON MMWAVE V2X APPLICATIONS

Fig. 2. Examples of complex environments in HSTs.

order to support mmWave-based ultra-low-delay V2X trans-
missions. The paper [19] provided a detailed assessment on
the capability of mmWave V2X to support automated driving,
discussed specific challenges related to mmWave for V2X, and
pointed out the mmWave V2X standards being developed by
IEEE and 3GPP, IEEE 802.11bd and 3GPP new radio (NR)
V2X. For clarity, Table III summarizes the literature review
for mmWave V2X applications.

D. High Speed Train

In high speed train (HST) scenarios, communication con-
ditions need improvement urgently. On the one hand, HST is
becoming faster and faster (350 km/h and above), requiring
even faster disaster detection systems and imposing increas-
ingly challenging communication environments, especially
when going through complex sections illustrated by Fig. 2.
On the other hand, customers aboard HST are calling for bet-
ter online experiences. These requirements prompt a shift to
intelligent mobility management and demand high capacity
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and high data rate wireless transmission in the future HST
system.

Accordingly, growing attention has been focused on
mmWave technology owing to its wide bandwidth and high
communication rates. In order to overcome the high path
loss, however, mmWave-based HST communications require
frequent realignment and beamforming technology. Extensive
research has been carried out in the past decade. Kim et al. [50]
designed a beamforming scheme based on beam pattern, and
provided an insight of applying beamforming in mmWave-
based HST communications. He et al. [51] proposed a
beamforming scheme to improve the disaster detection effi-
ciency and decreased the false alarm rate in HST scenarios.
Cui et al. [52] presented a hybrid spatial modulation scheme
and validated its performance for HST communications. On
the other hand, conventional beam sweeping schemes and wide
beams become inefficient due to the short coherence time in
mmWave-based HST communications. Thus, Va et al. [53]
came up with a beam switching approach and investigated
the optimal choice of beamwidth, with which the mmWave
system can achieve multi-Gbps throughput in HSTs. Kim and
Kim [54] proposed a distributed antenna system for mmWave
mobile broadband communications, and showed that it is
possible to provide Gbps data services.

More recently, the research [55], [56] specifically inves-
tigated mmWave channel characteristics for HST in tunnel
and intra wagon scenarios. The work [57] presented a design
of the mmWave system dedicated to HST communications
between train and trackside. In this paper, a frame structure
was proposed for the acquirement of channel state information
(CSI) and the transmission of user data. Moreover, the chan-
nel measurement results obtained under high-speed mobile
conditions were provided, and the throughput of the system
prototype recorded during the transmission of three high-
definition video streams was presented. Cheng et al. [58]
proposed a fast beam searching scheme to reduce the num-
ber of measurements required for mmWave communications in
HSTs. For clarity, Table IV lists the research on mmWave HST
applications. In summary, mature channel models for mmWave
HST communications have not been developed yet, and beam
alignments and performance maintenance in such a high-speed
scenario are still challenging.

E. Unmanned Aerial Vehicle

Unmanned aerial vehicles (UAVs) are widely used both
in military and commercial fields, and they have become
prevalent in our daily life. Under many circumstances, like
reconnaissance, remote sensing and aerial photography, a large
amount of data from various sensors need to be sent back to
control stations as fast as possible. Therefore, high data rates
are of great significance in UAV communications. Owing to
fast deployment and flexible reconfiguration, UAV-aided com-
munications can be exploited to enhance the capacity and
services of the existing cellular network. They are also par-
ticularly useful to provide broadband services to the remote
part of the world, where communications infrastructures do

TABLE IV
RESEARCH ON MMWAVE HST APPLICATIONS

not exist. More specifically, UAVs can be employed as differ-
ent types of wireless communication platforms, such as UAV
base stations (UAV-BS), aerial relays, and UAV swarms [59].

Compared to terrestrial mmWave communications, the prop-
agation characteristics in mmWave UAV communications are
very unique because of the 3D blockage, aircraft shadow-
ing, and UAV fluctuation [60]. In addition, traditional beam
tracking methods are deficient to predict the beams with
UAVs’ rotation in 3D space [61], [62]. Thus, besides com-
mon challenges of range and directional communications,
special issues, like accurate channel characterization, fast
channel tracking, more efficient beamforming training, accu-
rate trajectory prediction and loading capacity, should be taken
into consideration [63], [64]. Recently, considerable research
efforts have been directed towards UAV-based mmWave com-
munications. Using the channel model incorporated with the
distance-based random blockage effects, which is based on
stochastic geometry and random shape theory, Jung and
Lee [65] investigated the outage performance of the mmWave
UAV swarm network. The authors also showed how to mini-
mize the outage rate by adjusting various system parameters.
Zhang et al. [66] surveyed key technical advantages, chal-
lenges and potential applications for UAV-assisted mmWave
networks. The authors of [67] developed a 3D beamforming
approach to achieve efficient and flexible coverage in mmWave
UAV-BS communications. The work [68] proposed an empir-
ical propagation loss model for UAV-to-UAV communications
at mmWave band, based on an extensive aerial measurement
campaign conducted with the Facebook Terragraph channel
sounders.

For a quick view of the above work, we summarize the
research on mmWave UAV applications in Table V. Future
designs could concentrate more on clustered mmWave UAV
networks, where the research on channel modeling, beam
switching and coverage analysis are in its initial phase.
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TABLE V
RESEARCH ON MMWAVE UAV APPLICATIONS

Fig. 3. The space-air-ground-sea network [71].

F. Space-Air-Ground-Sea

Even when 5G implementation is only started in few coun-
tries, researchers are already thinking the next-generation
mobile network. To extend the terrestrial 5G to cover every
part of the world, Chen [69] proposed the concepts of aero-
nautical ad hoc network (AANET) to realize Internet above
the cloud and oceanic ad hoc network (OANET) to realize
Internet above the wave. Although 5G is still in its infancy
with most people around the world are still on 4G, the race
towards 6G has already started. On November 6, 2020, China
launched the world’s first 6G test satellite into orbit to verify
the Terahertz (THz) communication technology in space [70].
As illustrated in Fig. 3, the future 6G will be the space-air-
ground-sea (SAGS) network, combining satellite, air, sea and
terrestrial communications to offer seamless coverage and sta-
ble broadband services for users any where and any time.
This grand SAGS network will integrate the world’s satel-
lite networks, terrestrial networks, aeronautical networks and
oceanic networks into a single unified network covering every
part of the world and extending into space.

As enormous data processing request has emerged with
newly proposed applications like ship navigation, position-
ing, remote real-time sensing, cooperative detection, and
information fusion, mmWave technologies are naturally uti-
lized in ground-to-ground, air-to-air, and air-to-ground, air-
to-sea links [72]. However, unlike existing heterogeneous

Fig. 4. Categories of mobility models relevant to mmWave communications.

networks, in each layer of SAGS there exists extensive dynam-
ics, posing great difficulty to network planning. Extensive
investigations are called for. Hong et al. [73] noticed the effect
of UAV on mmWave channel characteristics in new applica-
tion scenarios. Di et al. [74] designed an integrated network
architecture to enable network access at both satellite and ter-
restrial communications. Moreover, the authors of [75], [76]
optimized the performance in UAV-aided systems. The recent
research [77] laid out the grant vision of the SAGS network
for 6G, and discussed in detail new paradigm shifts. It is clear
that mmWave technology will be one of the key enabling
technologies for this future generation network.

III. MOBILITY MODELS

Mobility models as efficient tools to characterize mobile
patterns have drawn considerable attention in communica-
tion systems [78], [79]. Extracted from large-scale data, these
models allow researchers to predict the influence of mobility
factors: speed, direction, congestion, social interaction, place
preference, etc., on network performance [80]–[82]. Several
representative mobility models relevant to mmWave commu-
nications are reviewed in this section, which include human
mobility model (HMM), vehicular mobility model (VMM),
high speed train mobility model (HSTMM), and ship mobility
model, which are illustrated by Fig. 4. As an essential part,
their applications and new trends are summarized as well.

A. Mobility Models

1) Human Mobility Model (HMM): As mobile commu-
nication technologies connect both the physical world and
human social life, researchers are increasingly exploiting
human mobility properties as a fundamental tool in solving
a variety of critical problems ranging from people’s behav-
ior observation, social relationships analysis, epidemic spread
tracking, etc. Various HMMs [83] can be categorized into four
types, random models, social-aware models, geographic-based
models, and trace-based models.

a) Random mobility model (RMM): RMMs capture the
random movement patterns of human, and have been widely
used in the evaluation and design of mobile networks, includ-
ing mmWave networks. These models include random way-
point (RW) [84] and its two variants, random walk (RL) [85]
and random direction (RD) [86], as well as Levy walk model
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Fig. 5. A Markov chain based SMM with the representative locations and
transition probabilities [94].

(LW) [87]. Among them, RW models initially work as a refer-
ence in evaluating mobile ad hoc network (MANET) routing
protocols and applications, and they are subsequently used to
describe people’s mobility with constraints of maximum veloc-
ity and pause time [88], [89]. Owing to their simplicity, RMMs
are frequently used in simulating human mobility but they usu-
ally suffer from the drawbacks of speed decay and failing to
describe steady status in the simulation.

To eliminate or mitigate these unrealistic features, RMMs
are integrated with temporal dependency and spatial depen-
dency to better realize randomness and unpredictability. For
example, probabilistic random walk (PRW) model [90] and
semi-Markov smooth (SMS) mobility model [91] have been
used for years. However, applying RMMs in mmWave mobile
communications faces some inherent difficulties because peo-
ple’s movement and communication action are tightly cor-
related with the environment and social relationship, which
cannot be depicted accurately by pure random models.

b) Social-aware mobility model (SMM): Statistic results
suggest strong correlations between mobile communication
and social network (SN) [92], [93]. SMMs are based on the
topological measures of proximity and social interactions for
mobile users in SN that reflect features in both space and time
dimensions. In the time domain, human moves in a social
context-sensitive manner and may pause for certain social
interactions, so that movement duration can be divided into
contact time and inter-contact time, respectively, which mea-
sures the human encounter frequency and the time interval
between encounters [92], [93]. Similarly, in the space domain,
humans always show certain habits and preferences for places
during their social interactions or daily life [92], [93].

By means of clustering from real data, Fig. 5 depicts a
Markov chain based SMM, where the representative locations
and transition probabilities indicate the location correlation of
human traces [94]. Essentially, SMMs capture the social nature
of humans and are suitable for real-life applications. In par-
ticular, as humans are social creatures, they tend to gather in
groups and address problems collaboratively. Therefore, the
community-based mobility models (CMMs) explore deep rela-
tionships among people in social communities [92], [95]. Since
each member in CMM is largely affected by the other users
that belong to the group, the co-location information and the
relative influences between users are the key parameters to

characterize mobility. For example, the encounter frequencies,
the human popularity, and online social browse preference
make it possible to predict the formation of new social
ties [92], [96]. SMMs offer higher precision in choosing
context to be offloaded and cached, and they are frequently
used to enhance the energy efficiency as well as the overall
performance of mmWave networks [92], [93], [97].

c) Geographic restriction mobility model (GRMM):
GRMMs describe humans’ movement in bound-aware areas,
e.g., campus, shopping center, subway station, etc. In these
areas, movement action may be directed by pathways or be
obstructed by location congestion, which indicates that mobil-
ity patterns are subject to geographic restriction. There are
three categories of GRMMs that can be selected to characterize
the movement of mmWave users in real life.

Path-driven models characterize users’ mobility patterns
when they are moving along a predefined route or city
map [98]. Event-driven models play an essential role in
predicting/characterizing human movement in environmental
or local events [99]. They have wide applications for mmWave
communications under accident or disaster situations, where
the different roles of people may inspire converse movement.
Based on the captured feature among mobility users, properties
driven models (PMs) are formed [100]. There are two unique
properties in human mobility. Asymptotically, users frequently
return to certain locations, such as offices to workers and
classrooms to students. These places are called hot spots. The
other one is that the appearance of obstacle nodes interrupts
users’ predefined route, leading to movement change. These
obstruction spots should be integrated into mobility models,
while their effect on radio propagation should also be con-
sidered. Additionally, physical quantities among mobile users
such as distance, spatial cosine similarity, co-location rates
are utilized in the foundation of PMs, working together as an
optional strategy for mmWave users’ mobility description and
prediction.

d) Trace-based mobility model (TBM): Detailed analy-
sis shows that the basic statistical properties, such as visiting
frequency and popular places, recorded in human mobility
traces matter very much in building accurate human mobil-
ity models. This significant finding is documented in [101].
Recent exploration by multiple disciplines have concentrated
on real-world traces collection systems, including global
positioning system (GPS) [87], cellular networks [81], and
WLAN [83] as well as the data processing field that related to
machine learning and data mining techniques [80]. Due to this
progress, TBMs can accurately represent the mobility patterns
of mobile users in mmWave scenarios.

2) Vehicular Mobility Model (VMM): V2X communi-
cations have great potential to enable future intelligent
applications, such as smart cities and intelligent transport
systems, and exploiting vehicle mobility is of great impor-
tance in designing efficient V2X protocols and applications
[79], [82], [102], [103]. By now, researchers have understood
the main features in various V2X scenarios and have built
novel VMMs [78], [104], [105]. Based on the characteristics
of models and the priorities of different applications, VMMs
can be categorized into the following cases.
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a) Stochastic model (SM): In SMs, vehicles move in
a random manner. Although owing to limited interactions
between vehicles, SMs, such as Reference Point Group
Mobility Model (RPGM), Freeway Model, and Manhattan
Model, have limitations in accurately modeling the com-
plicated vehicular ad hoc network (VANET) applications.
However, these models are capable of capturing the stochastic
nature of traffic arrivals as well as the complicated movements
of vehicles in an ITS [106]. The stochastic vehicle mobil-
ity model of [104] considered the direction and velocity of
the user mobility and was capable of adapting to the traffic
condition and type of the street. The work [107] emulated
the network throughput with the Manhattan model, and the
study [108] leveraged a stochastic VMM in the dynamic
optimization of D2D communications. The authors of [109]
considered mmWave networks for highway vehicular commu-
nications, where heavy vehicles, like buses and lorries in slow
lanes, obstruct LoS paths of vehicles in fast lanes, causing
blockages.

b) Behavioral model: There are two categories of behav-
ioral models. The first category focuses on human behaviors in
vehicular scenarios in that they are participants of transporta-
tion, playing roles of drivers, pedestrians, or passengers [110].
These models also help to investigate how the human follows
traffic advices under emergent situations such as traffic jam
and accident [111].

The other category believes that the movement of each
vehicle is determined by social interactions so that social
networks should be exploited in VMMs [92]. Gao et al. [112]
investigated the impact of human selfishness on D2D commu-
nications underlaying mobile networks.

c) Trace-based model: Massive researches have been
conducted on designing and collecting vehicle mobility
traces, from which important VMMs’ parameters can be
extracted and the capability of these VMMs can be evalu-
ated [78], [113]–[115]. Based on large-scale real-life vehicular
trace data, the study [113] revealed the exponential and power-
law distribution of contact duration in VANETs, which is very
different from the case of human mobility.

The work [114] modeled the macroscopic-level vehicular
mobility as a Markov jump process, and used two large-scale
urban city vehicular motion traces to validate the proposed
vehicular mobility model. Three important metrics related to
vehicular mobility and system performance were obtained,
which are vehicular area distribution, average sojourn time
and average mobility length, and two applications demon-
strated the effectiveness of the proposed model in analyzing
system-level performance for vehicular networks. By utiliz-
ing two large-scale urban city vehicular traces, Li et al. [115]
proposed an effective vehicular mobility model to analyze the
predictability limits of large-scale urban vehicular networks.
The findings of [115] reveal that there is strong regularity in
the daily vehicular mobility, which can be exploited in design-
ing vehicular networks. The connectivity of moving vehicles
is one of the key metrics in VANETs that critically influ-
ence the performance of data transmission. Hou et al. [78]
modeled and investigated the impact of mobility on the con-
nectivity of vehicular networks using a large-scale real-world

urban mobility trace. Important findings in this study
provide helpful guidelines in the design and analysis of
VANETs.

In summary, research on vehicular trace-based mobility
models has advanced significantly. Many of these models and
findings can be adopted to mmWave communications in the
V2V scenarios.

d) State-of-the-art vehicular mobility model: Since tradi-
tional models may not meet well the different fine-grained
requirements in mmWave applications, a promising direc-
tion is to construct self-adaptive VMMs. To date, the latest
big data analysis [81], [116] as well as deep learning based
techniques [117] have been widely adopted in the VMM
research, hence equipping VMMs with big-data driven self-
learning capability and enabling a wide range of emerging
V2X applications. For example, the work [102] proposed the
edge-assisted vehicle mobility prediction model (EVM), which
not only adopts a hybrid neural network architecture to process
massive mobility data but also allows each vehicle to fine-tune
its customized mobility prediction model in a transfer learning
manner, thus significantly outperforming traditional models.

Moreover, VMMs based on traffic simulators, such
as CORSIM [118], LIMoSim [119], PARAMICS [120],
SUMO [121], TRANSIM [122], VISSIM [123] and etc.,
are growing popular in mobility analysis for mmWave V2X
networks. Such models can describe the realistic mobility pat-
terns of different entities in detail (waiting at intersections,
turning, crossing, etc.), and therefore they are superior to
traditional models in terms of accuracy [124].

3) High Speed Train Mobility Model (HSTMM): HST as a
sustainable ground transportation method has been developed
in many countries. The rapid growth of HST services demands
better and more reliable wireless communication systems for
the train control data transmission as well as passenger Internet
access and broadband services. The work [125] investigated the
challenges in developing such HST wireless communications.
Fig. 6 depicts the HST communication system comprising train
to infrastructure (T2I), infrastructure to infrastructure (I2I), intra
train, and train to train (T2T) links. Defined by the International
Union of Railways (UIC) E-Train Project, the T2I wireless
systems provide services for train control and monitoring while
the intra train wireless systems offer Internet connections to
passenger smart devices [126]. To optimize mmWave network
design in HSTs, HSTMMs are constructed based on mobility
features and propagation characteristics associated with HST
wireless communication systems.

Firstly, HSTs always move along pre-constructed tracks,
and the location and motion direction of a HST are pre-
dictable. Lei et al. [126] formulated the mobility model of
the HST system as a semi-Markov process. The work [127]
addressed the challenging task of frequent handover for each
communicating user, due to the high mobility of the train.

Secondly, humans are the main customers for the service of
railway systems, and their mobility patterns can be analyzed
from two perspectives. At the macroscopic level, thanks to the
increasing availability of big data, the authors of [128]–[131]
were able to analyze the client flows with a deeper understand-
ing. For example, Hasan et al. [131] proposed an urban human
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Fig. 6. HST communication systems: T2I, I2I, T2T, and intra train.

mobility model for visiting location prediction by observing
the smart subway card transactions, while Soh et al. [129] con-
structed a complex weighted network for Singapore clients by
noticing the traffic flows on hub nodes. From a microscopic
perspective, human trails in railway systems may be driven by
both observed factors (e.g., schedules, the station facilities)
and hidden factors (e.g., social interaction, emergent issues).
Modeling these complicated factors with machine learning can
be further used to quantify human travel on HSTs.

Thirdly, T2T links illustrated in Fig. 6 form crucial safety
measures for train control to avoid collision accidents for HSTs
running at high speed. There have been some preliminary
channel models designed for this purpose [132]. However,
further investigations on mobility control are still required.

4) Ship Mobility Model: Recognition and understanding of
ship mobility patterns have great significance for intelligent
maritime applications. The mobility pattern of the ships con-
ducting wireless transmissions is one of the three key factors
influencing wireless communication performance in the ocean
environment [133]. To complete the global SAGS network,
it is crucial to develop ship mobility models. The authors
of [134] studied the mobility pattern of ships based on the
mobility traces of more than 4000 fishing and freight ves-
sels. The results of [134] provided useful guidelines on the
design of data routing protocols for OANET. The work [135]
proposed a long-term fine-grained trajectory prediction algo-
rithm for ocean ships, called L-VTP, which takes into account
trajectories’ sparsity of ocean ships, the different mobility pat-
terns of the same ship during the day and the night. Extensive
experiments were conducted based on two years of real-world
trajectory data for more than two thousand ships.

B. Applications and New Trends

Various mobility models reviewed in the previous subsection
are all relevant to mmWave mobile communication scenarios.
This is because although many of these mobility models pre-
date mmWave mobile communications, mobility models are

typically application scenario specific and they are not tied to
particular carrier frequency used. Therefore, they have been
used in mmWave research. Several representative applications
are summarized in Table VI, with the relevant references and
key system characteristics of frequency, scenario, and mobility
speed highlighted. Two findings can be drawn from Table VI:

1) Although some researchers are investigating the inte-
gration of learning-based mechanisms in mobility modeling,
simple stochastic/random models are still among the most
widely used ones in mmWave research, where behaviors,
traces, social relationships, and other specific features of
objects are not fully considered.

2) Similar to the examples in [139], [141], hybrid applica-
tions of mobility models have drawn increasing attention in
the upcoming era since a single movement pattern/mobility
model can no longer describe the complex mobility mode in
HetNets.

IV. KEY CHALLENGES AND EXISTING SOLUTIONS

The mmWave band covering 30-300 GHz is regarded as a
solution to enable Gbps transmission and support emerging
mobile applications. However, there are several major techni-
cal challenges for mmWave mobile communications in the 5G
era and beyond, including channel measurements, channel esti-
mation, anti-blockage method, and so on. To understand these
challenges deeply, the current problems and existing solutions
are discussed concretely in the following.

A. Channel Measurements and Modeling

1) Channel Measurements: Extensive channel measure-
ments help to understand the physical characteristics of
mmWave bands, which are also essential for channel
modeling and system design. However, many measure-
ment campaigns were conducted in quasi-static scenarios
[143]–[147], and consequently the channel data collected
failed to characterize mobile mmWave channels. For example,
Blumenstein et al. [145] measured the static channel impulse
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TABLE VI
APPLICATIONS OF MOBILITY MODELS IN MMWAVE MOBILE COMMUNICATIONS, DIVIDED BY MODEL CATEGORY

response (CIR) at 55-65 GHz band in the intra vehicle envi-
ronment, where the receiving node (RX) and the transmitting
node (TX) were fixed inside the vehicle. Similarly, in the mea-
surement experiments of [144], TX and RX were relatively
static.

With the progress in measurement theory and hardware
design, several mobility-aware measurements in mmWave
bands were carried out recently, and the performed mea-
surement campaigns are listed in Table VII. In this table,
the mobility patterns are divided into three types accord-
ing to the mobility of TXs and RXs as well as scatters,
specifically, 1) mono-mobility: one of TXs, RXs, and scat-
ters is mobile; 2) dual-mobility: two of them are mobile,
and 3) multi-mobility: more than two of them are mobile.
It is worth noting that these measurements were mainly con-
ducted in HST and V2X scenarios while MIMO measurements
were rare. Additionally, much more extensive mobility-aware
measurements should be carried out in new application scenar-
ios, including smart agriculture, Industrial Internet of Things
(IIoT), UAV, SAGS, etc., which provide brand-new services
for 5G and beyond (B5G) [160].

2) Channel Modeling: Channel models are of significance
to the development of mmWave ultra-wideband mobile com-
munications and they are subjected to intensive study. In
recent decades, several mobility-support mmWave channel
models have been proposed [160]–[162], which can be classi-
fied roughly into stochastic models and deterministic models.
A more detailed classification of various mmWave mobility
channel models is provided in Fig. 7.

Stochastic models describe channel parameters by cer-
tain underlying probability distributions, and they are
mathematically tractable and can be adapted to various

Fig. 7. Classification of mmWave mobility channel models.

scenarios. As shown in Fig. 7, they are categorized as two
types, geometry-based stochastic model (GBSM) [163] and
non-geometrical stochastic model (NGSM) [164]. GBSMs
characterize the propagation environment with mathematical
relations among geometric points and clusters. Standard mod-
els like QuaDRiGa, 5GCMSIG, MG5GCM, and mmMAGIC
are GBSMs, which cover statistical characteristics in dif-
ferent mmWave frequency ranges [162]. However, GBSMs
suffer from two shortcomings. First, since the multipath com-
ponents from measurement data are extracted by clustering
methods, there lacks clear understanding of the multipath
physical nature. Second, measurement data themselves have
limitations. This is because the bandwidth used in measure-
ment campaigns is around 1 GHz rather than up to 8 GHz
bandwidth as planned by ITU, and most measurements were
conducted under quasi-static channels, which are quite dif-
ferent from real mmWave applications. NGSMs characterize
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TABLE VII
MMWAVE MOBILITY CHANNEL MEASUREMENT CAMPAIGNS, DIVIDED BY THE TARGET NETWORK

the channels in a purely statistical manner without exploiting
geometrical information. Typical NGSMs include tapped-
delay-line (TDL) channel models, which model the CIR with
taps at certain delays [165]. They have been widely used
in modeling non-wide-sense-stationary-uncorrelated scattering
(non-WSSUS) V2V channels due to their low complexity and
acceptable accuracy [166].

Deterministic models can reflect certain propagation charac-
teristics of mobile channels accurately, e.g., the large Doppler
frequency in high mobility scenarios. In the HST case, lots of
the existing research works have difficulty in describing the
dual mobility characteristics of the mmWave ultra-wideband
channel accurately. Ray-tracing (RT) simulation as a tool
for propagation prediction becomes popular in HST com-
munication systems. Based on the geometrical optics (GO)
theory and uniform theory of diffraction (UTD), RT is capa-
ble of studying multipath phenomena caused by reflection,
scattering, diffraction and can provide solutions to spatial
characteristics collection [167]. Thus, RT offers a promising
modeling approach to future wireless communications, owing

to its three advantages. 1) Compared to the measurement-
based random channel modeling, RT modeling is less affected
by the bandwidth and frequency band, enabling its use in
the study of channel characteristics from sub-6 GHz to the
THz band. 2) The output of the RT simulator provides high
spatial resolution, satisfying the requirements for high chan-
nel resolution in beamforming and beam-tracking. 3) Due
to the limitations of hardware equipment, permission issues,
and manpower scheduling, measurement campaigns in time-
varying and MIMO channels encounters great difficulties. RT
simulation helps to mitigate these difficulties and to offer a
scenario-specific solution. Another class of deterministic mod-
els are map-based models [168], which are obtained using RT
methodology in a simplified three-dimensional (3D) scene of a
propagation environment, and have a nature of spatial consis-
tency. Nevertheless, the key obstacle in deterministic modeling
is that it is computationally intensive and its accuracy highly
depends on the modeling scenario.

From the above discussion, it can be seen that stochastic
models generally have low complexity but less accuracy, while
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deterministic models have better accuracy but are computa-
tionally expensive. Therefore, it is highly desired to derive
quasi-deterministic (Q-D) modeling methods by combining
both stochastic and deterministic approaches, which enjoys
the advantages of both stochastic and deterministic models.
Specifically, based on the mmWave CIR representation, this
hybrid approach models the Q-D strong rays (D-rays) in a
deterministic manner as well as models the relatively weak
random rays (R-rays), originating from the static surfaces
reflections, and the flashing rays (F-rays), originating from
dynamic objects reflections, in a stochastic method. Thus a
Q-D model is no longer highly dependent on the detailed
scenario description and achieves higher accuracy than pure
statistical models [169], [170]. Fig. 7 lists two Q-D chan-
nel models: MiWEBA [169], [171] and IEEE 802.11ay [172],
which support outdoor channel modeling at 60 GHz. Besides,
GBSM and map-based modelings can be used together in
IMT-2020 [173], 3GPP [174], and METIS [175].

B. Channel Estimation

With the explosively increasing requirements for data
exchange in mobile communications, MIMO technique and
hybrid network architecture are necessary for mmWave
systems. However, the synchronization among multiple anten-
nas in a complex network makes it challenging to obtain
accurate channel estimation (CE) [20]. To cope with this
problem, Alkhateeb et al. [176] proposed a mmWave CE
method that exhibits superior performance in complicated
multipath channel environments, making it applicable to multi-
flow multiplexing scenarios. By exploiting the compressive
sensing (CS) technique and hybrid precoding method, Al-
Nimrat et al. [177] proposed a low-complexity CE scheme
for mmWave Massive MIMO systems in the dense urban
environment. Specifically, by analyzing the sparse nature of
multipath components (MPCs), the authors of [177] designed
a transmission model and a precoding scheme with a com-
bination of matched filter (MF)/zero-forcing (ZF)/minimum
mean square error (MMSE) to improve the system capac-
ity. Liao et al. [11] developed a closed-loop (CL) sparse
CE scheme for wideband mmWave full-dimensional mas-
sive MIMO systems, which harnesses the channel sparsity
in both angle and delay domains. This CE scheme is capa-
ble of acquiring the super-resolution estimates of both the
uplink and downlink angles of arrival (AoAs)/angles of depar-
ture (AoDs) and delays of sparse MPCs as well as the
least-squares estimates of the path gains with low training
overhead. Compared with the existing state-of-the-art CS-
based CE schemes [178]–[182], the solution of [11] offers
better CE performance while imposing lower computational
complexity.

In recent years, considerable research efforts have been
focused on combing machine learning (ML) with beamspace
CE for mmWave MIMO CE. The related works [183]–[187]
have revealed that applying machine learning tools, like
Bayesian learning, deep learning, etc., is capable of
designing robust and adaptive CE mechanisms suitable for
time-varying MIMO channels, which outperform their more

TABLE VIII
MMWAVE CHANNEL ESTIMATION APPLICATIONS

conventional signal processing based counterparts. For exam-
ple, Zhang et al. [187] proposed a fully convolutional
denoising approximate message passing (FCDAMP) algo-
rithm for mmWave massive MIMO systems, which attains
more accurate CE and higher achievable sum rate, especially
under low-SNR conditions. Moon et al. [186] proposed a
deep learning-based CE and tracking algorithm for vehicular
mmWave communications. Specifically, for CE, the authors
applied a deep neural network to learn the mapping func-
tion between the received omni-beam patterns and mmWave
channel with small overhead.

For fast-changing mobile channels, the channel tracking
(CT) becomes necessary, which exploits the temporal cor-
relation and supports real-time updating for channel status
information (CSI). Common CT methods include improved
beam tracking, data-aided and geometric relationship based
schemes [20]. Beam tracking methods [188], including
Kalman filtering (KF)-based channel tracking, extended
Kalman filtering (EKF)-based beam tracking, and least mean
square (LMS)-based beam tracking, have lower computational
complexity and are explored to track channel parameters, such
as AoA and CSI. Furthermore, the power of deep learning can
be harnessed for CT. For example, the work [186] applied the
long short-term memory (LSTM) network to track the channel,
after the initial CE.

Table VIII summarizes the literature review for mmWave
CE applications. In summary, CE and CT schemes incorpo-
rating with the state-of-art techniques are important to signal
detection and demodulation procedures in mmWave mobile
communications. Additionally, although the application of
MIMO leads to synchronization issues, the correlated sparse
nature of mmWave massive MIMO channels in both angle and
delay domains is worth further investigating.

C. Anti-Blockage

As mmWave signals suffer from high penetration loss, com-
munication networks are vulnerable to dynamic blockage,
which may cause link interruptions and lead to loss of data.
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Fig. 8. Examples of mmWave connection maintenance techniques.

The study [189] revealed that dynamic blockage in the envi-
ronment may introduce sharp drops (up to 30-40 dB) to the
received signal strength. Therefore, it is crucial to account
for the blockage effect in performance evaluation or network
planning for mobile mmWave communications. The authors
of [154] studied the blockage effect of human body and vehicle
for mmWave signal, giving the lower bound and upper bound
of the attenuation based on the knife-edge diffraction (KED)
model and geometrical theory of diffraction (GTD) model.
The work [189] modeled human body blockage in a moving
mmWave system. As illustrated in the work [190], the aver-
age blockage duration in a highway scenario can range from
100 ms to even a few seconds. These studies provide meaning-
ful insights and guidance for future mmWave indoor hotspot
and vehicular network applications.

More importantly, different solutions have been proposed
to maintain reliable connections in mobile scenarios. Fig. 8
illustrates three main categories of anti-blockage approaches,
including multi-connectivity (MC), beamforming (BF), and
relay assistance.

1) Multi-Connectivity: Multi-connection as an available
approach for session maintenance in mobile mmWave
networks, has been standardized by 3GPP [191]. MC enables
the UE to access multiple BSs simultaneously so that data
transmission can be maintained, even one of the connec-
tions is interrupted by the blockage. Taking vehicle V2 in
Fig. 8 as an example, although its connection to roadside unit
2 (RSU2) is blocked, it can continue to communicate with
RSU1. Obviously, network capacity as well as outage probabil-
ity can be improved in a MC-aided mmWave system. However,
how to balance the system complexity and the achievable
performance remains a problem that requires further exploring.
On the analytical level, the work [192] offered a closed-form
upper bound on the cumulative distribution function (CDF) of
capacity for the mmWave cellular system supporting MC capa-
bilities, which can be utilized as a benchmark result for the
performance evaluation in realistic scenarios. On the technical
level, extensive works [40], [193]–[195] assessed the indica-
tors related to performance optimization, which covered the
MC structure design, strategies selection, deployment density
and resource allocation.

Envisaged programmable MC offers potential for
application-level resource scheduling, serving for quality
of experience improvement [196]. With the help of statistical

TABLE IX
RESEARCH ON MMWAVE MULTI-CONNECTION

Fig. 9. Hybrid Beamforming.

theory, queueing theory, and powerful simulation tools, MC
as a promising technology is capable to assess session-level
dynamics of typical mmWave deployments [40]. Table IX
summarizes the related research on mmWave MC. However,
current research is mainly conducted in the urban envi-
ronment, and there are more typical application scenarios
that are worth investigating in the future [197]. Besides,
the performance evaluation on scenario-specific upper-layer
protocols should be considered in realistic systems [193].

2) Beamforming: As an alternative anti-blockage method,
BF steers the majority of signals generated by the transmitting
antenna array toward an intended angular direction, form-
ing the directional beam to mitigate the interference effect,
enhance the transmission robustness, and achieve superior
performance [198], [199]. BF is growing popular in mmWave
mobile scenarios like V2X, HST and UAV. In [200], a random
beamforming scheme suitable for the fast time-varying situa-
tion has been designed for mmWave non-orthogonal multiple
access (NOMA) transmission. This approach yields significant
performance gains while reducing the amount of feedback to
one bit.

In practice, most of mmWave systems rely on large-scale
antenna arrays for high beamforming gains, and consequently
powerful full digital BF is impractical as it requires a RF chain
for each antenna element. Therefore, hybrid beamforming
(HBF) is particularly relevant in mmWave applications, which
can combine both the advantages of digital BF in the base-
band/digital domain and analog BF in the RF/analog domain.
HBF is illustrated in Fig. 9, where the analog stage works to
generate high beamforming gains from the large antenna array
while the digital part can implement digital precoding to sup-
port multiple data streams with a very small number of RF
chains. This allows designers to deploy a very large number
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TABLE X
APPLICATIONS OF HYBRID BEAMFORMING IN MMWAVE MOBILE COMMUNICATIONS

TABLE XI
RELAY APPLICATIONS IN MMWAVE MOBILE COMMUNICATIONS

of antenna elements for the required high beamforming gains,
while reducing energy consumption and system complexity.

Many researchers [201]–[206] have focused on various HBF
solutions for the mmWave architecture configuration, signal
processing, RF system implementation, etc. More specifi-
cally, Roh et al. [201] conducted a feasibility study of HBF
for mmWave 5G, while Zhai et al. [202] studied HBF for
mmWave backhaul networks. The work [203] studied the HBF
based on the MMSE design for mmWave systems, and the
work [204] proposed a hardware-efficient HBF design for
mmWave MIMO. Furthermore, the work [205] proposed a
HBF design for multi-cell multi-user multi-stream mmWave
systems by leveraging coordinated multipoint (CoMP), while
performance analysis of HBF for multi-user mmWave massive
MIMO systems was provided in [206].

The state-of-art HBF helps to meet the specific require-
ments of mmWave applications, including throughput, quality
of service (QoS), latency, sum rate, etc. For example, the
study [207] designed a two-phase algorithm to perform sum-
rate maximization. The first phase realizes a feasible optimal
beamformer in the blockage-free scenario, and the second
phase invokes different strategies to tackle different blockage
scenarios. Likewise, the works [202], [208] leveraged joint or
adaptive HBF schemes to optimize throughput, power con-
sumption, and antenna gain. Table X summarizes some key
applications of HBF for mmWave mobile networks. However,
several problems, including hardware limitations, fast time-
varying channel, beam alignment and frequent handover,

still exist in BF applications, and how to obtain desired
performance-complexity trade-off remains a challenging task.

3) Relay: As another anti-blockage alternative, relay-aided
communications help to circumvent obstacles and extend cov-
erage as well as to save transmit power and offer higher data
rates than direct links. Fig. 8 shows an example of relay-
ing, where RSU3 attempts to communicate with person B but
the direct transmission link is blocked by the Cafe. Relaying
through V3 provides an alternative path for communication.
Table XI lists various relay applications in mmWave mobile
communications, in which relay nodes include BSs, vehicles,
UAVs and one or a group of UE.

Mobility behaviors of communication entities may cause
frequent handover among relay stations, resulting in complex
scheduling, increased energy consumption, potential delay,
and even link interruptions. To address these problems, there
are strict requirements for relay selection, placement, and
scheduling. The design requirements of these issues are often
inherently connected. For example, [218] optimized the time-
slot level throughput by deploying a dynamic relay position-
ing policy and designing a tractable beamforming approach.
Likewise, the work [7] achieved power saving and robust-
ness enhancement by proposing a joint solution for relay
selection and power allocation under mixed LoS and NLoS
conditions. Also, some researchers address these problems
not through hybrid strategies but based on obstacle analy-
sis. For instance, considering that the presence of dynamic
obstacles at surroundings causes unpredictable fluctuations to
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TABLE XII
SCHEDULING-BASED THROUGHPUT OPTIMIZATION FOR MOBILE MMWAVE APPLICATIONS

channel quality, the work [138] proposed a relay selection
scheme for D2D communications through obstacle learning,
in order to assign smart links. Likewise, based on the cap-
tured uncertainty introduced by dynamic obstacles, a simple
stationary policy is derived in [219] to guide relay switch
decisions.

In summary, anti-blockage techniques have emerged as key
solutions to provide link maintenance, effective coverage, and
dynamic capacity in mmWave communication systems.

D. Capacity Enhancement

MmWave communications should be mobility-adaptive with
the aid of various techniques, to achieve efficiency and relia-
bility, and especially to maintain network capacity. Two key
aspects of capacity-aware research are discussed below.

1) Throughput Optimization: Mobility imposes serious
challenges to mmWave communications. For example, by
sharing spectral resources with cellular communication, D2D
communication exploits good local channel quality to offer
high throughput services. But complex interference induced
in mobile D2D links may on the other hand decrease
the system capacity. Extensive research has focused on
interference mitigation. By minimizing the mutual interference
(MUI) among D2D and cellular users, the joint resource
allocation scheme of [220] maximized the total throughput
in the network. Reducing MUI enables concurrent trans-
mission while self-interference (SI) cancellation makes it
possible for full-duplex (FD) systems, which incur poten-
tial gain in mmWave mobile systems. Users’ mobility
information is utilized by Yang et al. [221] to perform
capacity optimization. Specifically, by capturing the distri-
bution regularity of mobility users’ popular contents, the
authors proposed a low-complexity algorithm for download-
ing. Similarly, the work [222] demonstrated that the D2D
multicast scheme produces more effective transmission by
utilizing both the physical and social properties of mobile
users, resulting in throughput maximization and fair alloca-
tion of the overall network. In future research, content-sharing
intelligent D2D communication will receive more attention
and mobility characteristics will play an increasingly impor-
tant role [79], [223], [224]. For example, the work [224]
leveraged multi-UAVs for wireless powered communication
network (WPCN), to jointly optimize transmit power and
energy transfer time.

Mobility also causes uncertainties for scheduling in multi-
hop communications, especially in multi-cell scenarios.
Liu et al. [225] proposed a throughput-efficient service
scheduling scheme, but it is unsuitable for delay-sensitive
services. Some researches have addressed the scheduling
problem from the network viewpoint. The work [226]
proposed an efficient multicast scheduling for D2D commu-
nications in mmWave small cells. The work [227] designed a
distributed coordinated beam scheduling to mitigate inter-cell
interference, which does not require any information exchange
between the user and the BS. The authors of [228] designed
highly efficient multicast scheduling for mmWave networks
by jointly exploiting the relaying and spatial sharing gains.
Table XII summarizes some key schemes of scheduling-based
throughput optimization for mobile mmWave applications.

2) Energy Efficiency: As the transmission demand for data
streaming increases tremendously, power consumption has
become a critical issue in mobile communication networks.
Choosing a short transmission path between TX and RX is
a typical way to enhance energy efficiency (EE) in mmWave
networks. However, since mobility introduces many varying
factors, e.g., flow delay, dynamic topology, frequent switch-
ing, etc., into the system, there is no guarantee that choosing a
short path will always lead to energy saving. What we need are
practical mechanisms for EE performance optimization. Up to
now, such mechanisms have been carefully designed, most of
which are realized by solving the associated EE optimization
problems. For example, the authors of [229] focused on
power allocation and user association to achieve EE improve-
ment. The work [230] proposed the use of hybrid precoding
to maximize EE in mmWave multi-user systems. Similarly,
the work [231] developed an EE enhancement design for
the mmWave NOMA-UAV network by optimizing the UAV
placement, hybrid precoding and power allocation.

Notice that for complicated joint design problems with strict
constraints, mathematical tools, including graph theory, game
theory, convex optimization, deep learning, queuing theory,
etc., are widely used to obtain the solutions. For example,
leveraging subchannel grouping, the work [232] proposed a
closed-form EE solution for the MIMO orthogonal-frequency-
division multiplexing (MIMO-OFDM) mobile system with
QoS constraint. The work [233] designed an efficient
multicast scheduling scheme for mmWave small cells, referred
to as CONMD2D, which allows concurrent transmissions.
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TABLE XIII
ENERGY EFFICIENCY OPTIMIZATION FOR MOBILE MMWAVE APPLICATIONS

Compared to standard time division multiple access (TDMA),
the CONMD2D allocates more time resources to data flows by
spatial reuse, and consequently reduces the transmission power
of each flow while achieving the same or higher throughput.
Similarly, the work [234] proposed a D2D-enabled multicast
scheduling to minimize energy consumption in mmWave
cellular networks. To enable cost-effective and flexible het-
erogeneous cellular networks (HCNs), the power consumption
in mmWave backhauling of densely deployed small cells was
investigated in [235], while the work [236] further extended
the results to FD communication scenarios. Furthermore, the
authors of [32] performed energy-spectral-efficiency analy-
sis and optimization for HCNs, while the work [33] car-
ried out mobile-traffic-aware energy and spectrum efficiency
optimization for large-scale D2D-enabled cellular networks.

Research also paid attention to reducing the excessive
energy waste in IoT nodes, service terminals, or infrastruc-
tures. For instance, the high power consumption of radio
frequency front-end (RFFE) is a salient and serious issue for
mmWave-based mobile devices. To address this problem, the
work [237] enabled discontinuous reception (DRX) to main-
tain both EE and link reliability, which can be applied to other
mmWave terminals and even THz wireless systems. At the
network level, the work [238] proposed a heuristic embedding
algorithm with better coordination between the power-aware
nodes and link mapping phases, which exhibits superior EE
performance. Although this approach has considered realis-
tic factors, including different baseline power consumption of
physical nodes and a variety of network equipment at each
node, how to extend it to the power-aware migration scenario
with flexibility still needs further exploring. The work [79]
proposed the concept of Jamcloud, a system to collect and
aggregate the computation capacities of congested vehicles in
the city. By outsourcing the BS’s baseband signal process-
ing to a nearby vehicular cloudlet, rather than the remote
cloud center, substantial energy can be harvested from the
jammed vehicles, which would otherwise be unused or wasted.
Table XIII summarizes some key schemes of energy efficiency
optimization for mobile mmWave applications.

In recent years, researchers have shown that the mobil-
ity of users affects the energy consumption of devices

Fig. 10. The mobile communication system towards future.

and have conducted some targeted evaluations. For exam-
ple, the authors of [239] compared resource consumption of
Epidemic, PRoPHET, and Spray-and-wait protocols under dif-
ferent mobility models, and especially observed remaining
energy, delivery probability, and overhead ratio performance.
In the future, it is believed that EE can be further improved
based on the statistics features extracted from mobility behav-
iors and big data analysis on mobility patterns [80], [81].

V. FUTURE RESEARCH AND OPEN ISSUES

Although the mobility support technologies for mmWave
systems have been widely researched in the past years, there
are specific issues over the future communications owing to the
newly proposed requirements and upcoming applications. We
list several open directions that deserve further investigation.

A. MmWave Enabling HetNets

As illustrated in Fig. 10, future mobile connections will be
extended to aerial and maritime, supporting aerial to aerial
(A2A), aerial to ground (A2G), aerial to sea (A2S), sea
to sea (S2S), sea to ground (S2G), and ground to ground
(G2G) communications. Essentially, the future global SAGS
mobile network is composed of huge variety of HetNets
[69], [73], [76], [77]. MmWave technology plays a key role
in mobile communications for 5G and beyond. In particular,
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mobile mmWave communications are suitable candidates for
many of these future component HetNets. Although mmWave
signals are unsuitable for long-range propagation, mmWave
communications can coexist with various existing and upcom-
ing HetNets, having a wide range of applications in smart
agriculture, intelligent industry, ITS, smart medicine, UAV,
and maritime system. Specifically, various existing mmWave
solutions discussed in Section IV can be extended to these
future HetNet applications but technical issues will become
much more challenging than those outlined in Section IV.
Compared to conventional terrestrial networks, the applica-
tions of mmWave technology to these future HetNets impose
further requirements for measurement, channel modeling, and
new approaches of frequency planning as well as interference
management.

Additionally, mobility management is one of the research
hotspots in mmWave enabling HetNets. In the upcoming era,
mobility not only exists among smart terminals, e.g., sensor
nodes, smart cellphones, and wearable devices, but also covers
aerial access points and various mobile relay nodes. Therefore,
mobility modeling is in complex 3D space and should incor-
porate the characteristics of application scenarios, such as the
mobility patterns of aircraft’s trajectory and the aerodynamic
constraints. Furthermore, several essential factors, e.g., colli-
sion avoidance, delay constraint, and handover control, in such
complex HetNet architecture have drawn attention [22], [240],
and more research efforts are warranted to investigate the
effective corresponding solutions.

B. Network Security

As explained in the previous subsection, mmWave tech-
nology offers a promising solution to various future mobile
HetNet applications. Different from static communications,
mobility introduces more challenging requirements on network
security, which mainly includes twofold.

1) Efficient Authentications: To provide reliable services
for mmWave networks, message authentication is an essen-
tial technique. However, mobility introduces frequent handover
among mmWave small cells/HetNets, and therefore multiple
authentications between different small cells/tiers/networks are
required, which imposes high communication costs and unnec-
essary latency [241]. Accordingly, authentication schemes are
required to be more efficient and several representative meth-
ods have been developed. Duan and Wang [242] proposed
a software defined networking-enabled (SDN-enabled) fast
authentication method by leveraging weighted security context
transfer, to realize the increase of authentication accuracy and
the decrease of latency. Cooperative message authentication
for a V2X network was proposed and analyzed in [243], where
authentication units are the fleet rather than vehicles, thus
reducing authentication messages and saving communication
resource. In the future, bringing intelligence and programma-
bility into further optimization of handover authentication will
be useful for both attack defence and EE enhancement.

2) Flexible Security Mechanisms: Since the mobility
speeds and computation capability of mobile devices in
mmWave networks differ greatly, flexible security mechanisms

are necessary. For example, mobile sensor nodes are power
constrained, thus acquiring for energy efficient and lightweight
security algorithms in their microcontrollers, while for high-
speed services like self-driving automobile, efficient security
techniques of ultra-reliability and low latency are vitally
important. Therefore, as one of the key approaches to ensure
security in various mmWave networks, flexible security mech-
anisms need to be further developed in the future.

For individual mmWave links, physical layer security
(PLS) approaches offer effective means of secure communi-
cations [244]–[246]. The work [247] exploited a cooperative
diversity scheme to achieve a superior secrecy rate in an
energy-constrained cognitive radio network (CRN). The stud-
ies [217], [248] considered aerial mmWave communications,
where part of UAVs worked as jammers to eavesdropping
channels, to realize a cooperative security mechanism. As
mobile mmWave applications in the future are diverse, it
is necessary to further develop flexible and effective PLS
mechanisms.

C. Performance Optimization

Two new directions for performance optimization in
mmWave mobile networks are highly desirable. The first one
is to achieve performance improvement by enhancing hard-
ware efficiency, while the second one is to conduct resource
management dynamically for performance enhancement.

1) Hardware-Algorithm Co-Design: Due to the short wave-
length of mmWave signals, a large antenna array can be
packed into a small physical dimension to enable the deploy-
ment of massive MIMO systems for mobile devices [204].
Massive MIMO technique helps to solve the spectrum conges-
tion problem and support high data rate in mobile mmWave
network. In practice, however, it requires a trade-off between
spectral efficiency and hardware efficiency, because power
consumption and hardware complexity of beamformer are
proportional to the number of phase shifters. Therefore,
it is highly desired to achieve a cost-effective mmWave
transceiver solution by designing hardware-efficient hybrid
precoding/beamforming architecture. Inspired by this idea, the
work [249] proposed a hybrid precoding method, which pro-
vided a flexible way to trade off spectral efficiency with
hardware complexity.

2) Dynamic Resource Management: Mobility introduces
high Doppler spreads and frequent handover among small
cells in the mmWave networks, which decrease the system
capacity and energy efficiency. To cope with these problems,
highly effective dynamic resource management mechanisms
are needed for mobile mmWave systems [250].

Mobile mmWave terminals have limited battery life and
computational capacity, which imposes a significant diffi-
culty for supporting the ever-growingly intensive computation
demands in the mobile process. Emerging offloading and
content-aware caching offer effective methods for battery
saving, which in turn, however, may introduce enormous
network traffic and significant communication delay, harm-
ful to delay-sensitive critical applications including automatic
driving, IIoT, railway control, etc. Therefore, dynamic resource
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management is essential to achieve a balanced solution to
this challenge for future intelligent mobile mmWave termi-
nals. The promising rate-aware smart resource scheduling for
mobile devices can compensate for adverse effects caused by
frequent switching and save power.

From the system perspective, the evolution of classic self-
organizing networks to intelligent self-organizing networks
is called for, in order to cope with the mobility-caused
dynamic routing, complex interference, coverage problem, and
capacity maintenance. Therefore, big data analysis function-
ing and artificial intelligence (AI) enabled controllers are
currently integrated into networks to dynamically and intel-
ligently manage resources. As an example, by finding the
best user association with Q-learning, the work [251] signif-
icantly decreased handover frequency in mmWave networks
with dense small cells. Besides, to overcome the spectrum
crunch, cognitive spectrum sharing will also be an essential
part of network resources management and optimization.

D. AI Integration

Another future research direction is utilizing AI techniques
in mmWave mobile communications. Typically, mmWave
bands are considered as the de-facto candidate for the Gbps
transmission demand to support future mobile applications like
self-driving automobile in V2X, real-time sensing in IIoT, and
online videos of mobile users. However, mobility introduces
several new challenges in the system, which can no longer be
well solved by traditional methodologies.

1) Beam Alignment Maintenance: Dynamic conditions
make it challenging to maintain beam alignments between
mobile devices since frequent and adaptive beam alignments
are required [252]. This is a critical issue for mmWave,
THz and free-space optical (FSO) communications that use
directional communications with sharp beams, but only for
mmWave systems the hardware components and beam man-
agement algorithms have been progressed sufficiently to be
leveraged on commercial platforms. In particular, learning-
based algorithms offer a flexible solution. For example, the
work [6] incorporated FML in a dynamic mmWave vehicu-
lar network to conduct beam selection. Facilitated with the
ability of autonomous exploration, learning, and adaptabil-
ity to the environment, mobile BSs/UEs can conduct optimal
beam selection, which maximizes the overall network capac-
ity [6]. Likewise, Satyanarayana et al. [253] designed a deep
learning-aided beam-alignment scheme in a mmWave vehic-
ular scenario, to achieve the target performance with lower
complexity. Ma et al. [254] developed a deep learning-assisted
calibrated beam training approach, which achieved signifi-
cantly higher beamforming gain with smaller beam training
overhead compared with the conventional and existing deep-
learning based counterparts. This scheme was also capable of
handling mobile scenarios. Generally speaking, research in this
field is still limited and mainly concentrates on V2X commu-
nications. How to enable intelligent beam alignments in high
speed mobility requires further efforts.

2) AI-Enabled Network: The future global SAGS network
is highly dynamic and extremely complex due to its scale,

Fig. 11. AI-enabled network architecture for 5G and beyond.

density and diverse mobility scenarios, where traditional
optimization approaches are no longer capable of achiev-
ing system optimization. A recent new trend is to optimize
mmWave systems with AI techniques [255]. For mobile appli-
cations like ITS, although mmWave communications enable
Gbps transmission rates for the sensor data, traditional edge
nodes of limited power and computational capability are
incapable of achieving massive content delivery and data
fusion.

A practical solution is to enable intelligent mobile com-
puting, i.e., collaborating the capacity of cloud with edge
nodes to handle the requirements of devices adaptively, which
can fully utilize the processing capability of the overall
system. Therefore, future mobile networks shown in Fig. 11
are incorporated with cloud-edge-collaborated AI for better
services. There are three layers, including mobile applica-
tions layer, network layer and cloud layer in the architec-
ture, where mmWave technique enables efficient transmission
of application data, while intelligent nodes accomplish bet-
ter training of learning model and cooperated data center
prompts smart data fusion to realize dynamic system-level
optimization. As an advantage, this cloud-edge-collaborated
AI architecture fully utilizes the virtualization and flexibility
for mobile network layering, and therefore it offers numer-
ous new network services according to different network
functionalities and mobility patterns [256]. For example, to
save power, the recently proposed deep neural networks
(DNN) partitioning technology [257] optimizes the com-
putation offloading between the mobile devices and the
cloud, to provide opportunities for system-level optimization.
Additionally, to handle data efficiently while also preventing
key information from leakage, common data with extensive
computational requirements can be uploaded to the cloud
with the mmWave technique for model training but the sen-
sitive information is kept at the mobile terminals to protect
privacy.

As future mobile systems are highly heterogeneous,
extensive further research is warranted to investigate how
to make intelligent scheduling among various devices
and processing cores, how to process big data effi-
ciently, and how to make accurate mobile predictions with
AI [258], [259].
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E. Integration of Geographical Information

In recent years, mmWave based A2G communication has
become a promising candidate for critical mobile applications,
such as emergency rescue, mobility prediction, and transporta-
tion planning, due to its high reliability, excellent flexibility
and large bandwidth availability [64]. In these critical appli-
cations, the geographical information is crucial. First of all,
geographical information is an important part of interaction
messages among terminals and aerial networks, which is
transmitted through aerial mobility management cores with
mmWave technique to help reducing unnecessary switches
and to achieve an effective update mechanism in aerial
networks [260]. For example, in mmWave satellite commu-
nication networks, binding the tracking area with geographic
location can avoid frequent updates of tracking area caused by
moving satellites. Secondly, time-space features together with
geographical information pave the way for the development
of intelligent cruising algorithms which enable a UAV to fly
out of a blockage zone and establish LoS mmWave communi-
cations with mobile users, resulting in system performance
improvement [64]. Last but not least, mmWave provides
Gbps transmission rates for the aerial devices to collect and
transmit the massive trajectory data containing geographical
information of mobile terminals. By analyzing these trajectory
data, the mobility pattern of users can be revealed, paving the
way for ITS construction.

In summary, there are three applications of integrating geo-
graphical information in future mmWave HetNets. Firstly,
when executing measurement, cell selection or reselection,
the real-time positions of satellites/aerial nodes captured at
terminals can be introduced as a specific condition for trigger-
ing measurement reports or as an assistant for the decision
at the network side [261]. Another promising perspective
hopes to reveal the correlation-relationship between user pref-
erence, mobility regularity, social connection, and time-space
feature [262]. Finally, relying on mmWave transmission and
together with big data analysis, it is feasible to reveal the
dynamic nature of modern cities [80], [81].

F. Smart and Controllable Communication Environment

Some researchers improve the performance of mmWave
mobile networks not by the existing wireless link adaptation
techniques at the TX/RX but from modifying the wireless
channel between them. Such technology provides a new degree
of freedom to performance enhancement, which is realized
mainly through two approaches [263].

1) Deployment of Large Intelligent Surface: Large intel-
ligent surface (LIS) enables the communication environment
to become intelligent and controllable, and it offers a new
approach for transmission improvement in mmWave and THz
frequency bands [263], [264]. Its applications in future mobile
systems can be considered from three aspects.

• Coverage expansion: As mmWave and THz frequency
signals exhibit inferior transmission and diffraction capa-
bilities compared with their microwave counterparts, the
communication links in B5G and 6G era are subject
to obstructions. By providing forwarded signal beams

between TX and RX, LIS technology optimizes the wire-
less propagation, expands the coverage, and provides
continuous service [264], [265].

• Integration with MIMO: Due to the ever-increasing
mobile data traffic, traditional MIMO technology can no
longer meet future traffic requirements. By combining
LIS with massive MIMO, enormous spatial multiplexing
gains can be achieved [266], [267].

• Flexible deployment: LIS technology can be incorpo-
rated with the existing access points or infrastructures
flexibly to provide ubiquitous access for mobile termi-
nals, emerging as an important part of future intelligent
networks [263], [264].

However, the properties of LIS-based systems have not been
fully grasped, and further efforts are still needed in the future
dynamic LIS design. In particular, three fundamental physical-
layer challenges, namely, CSI acquisition, passive information
transfer, and low-complexity robust system design, have to be
tackled in order to incorporate LIS fully into future mmWave
HetNets. Other promising research directions of LIS include
edge intelligence and physical-layer security.

2) Deployment of Media-Based Modulation: An alternative
to LIS for making the communication environment intelligent
and controllable is media-based modulation (MBM) [268].
While LIS enhances wireless transmission by optimizing the
wireless propagation to expand the coverage and increase the
reliability, MBM performs the transmission of information by
altering the far-field radiation pattern of reconfigurable anten-
nas through adjusting the on/off status of its available RF
mirrors. This creates a completely new dimension of encoding
information bits, namely, wireless channel fade realizations
themselves through the unique signature of received signals
can be utilized to convey information. MBM is one of the
newest and the most prominent members of the index mod-
ulation family [269]. A single reconfigurable antenna with
N RF mirrors, which only requires a single RF chain, can
support the index set of 2N channel realizations, and this
index set itself can convey N information bits. Contrasting
this with the spatial modulation with N transmit antennas –
its antenna index set can only convey log2(N ) information
bits.

MBM combined with massive MIMO enables massive
machine-type communications for increasing the throughput,
supporting a large number of IoT connecting devices and
enhancing the detection performance [270]. Time-indexed
media-based modulation (TI-MBM) [271] is an index mod-
ulation scheme where time slots in a transmission frame are
indexed to convey additional information bits in MBM. The
scheme decides which time slots and RF mirrors in TI-MBM
can be activated such that the achievable transmission rate is
maximized.

Future research directions include efficient CSI acqui-
sition [270], [272] to reduce pilot overhead, reliable
reconfigurable antenna design [268], [273] to fully real-
ize the potential of MBM, and effectively integrating
the MBM technology with other promising technolo-
gies [274] to optimize the performance of future mobile
networks.
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G. Evolution to THz

Driven by the requirements of extremely high data rate
and ultra-reliability in emerging applications (e.g., autonomous
vehicles, augmented reality, ultra HD video conferencing and
streaming), THz-related research has attracted significant atten-
tion [275], [276]. In particular, Hossan and Tabassum [276]
studied the feasibility of THz mobile communications in prin-
ciple. Firstly, with data rates of terabits-per-second (Tbps), it is
sufficient to transfer the required data by intermittent connec-
tivity among mobile users. Secondly, it is expected to minimize
the impact of the Doppler effect at THz bands, which is crucial
for communications in high-speed scenarios. In commercial
deployments, however, THz mobile communications are fac-
ing more unique challenges than mmWave systems. First of all,
due to high propagation and molecular absorption losses, the
communication range of THz bands is further limited, resulting
in more frequent handover during mobility [277]. In addition, to
design wideband THz transceivers is a major challenge [278].
Moreover, as large antenna arrays are deployed to overcome
the severe path loss, the codebook design for beam switching
is computationally complex [279].

Thus, THz mobile communications are still in its nascent
phase, which require the development of innovative solutions
on mobility management, device design and beam tracking.
Moreover, it is a promising direction to integrate THz com-
munications with mmWave and sub-6 GHz bands, which
provides many opportunities for realistic universal coverage
and mobility support [280].

VI. CONCLUSION

The mmWave communication technology as an effective
way to support huge mobile data traffic is developing rapidly in
mobile networks, especially in the 5G and 6G eras. Therefore,
we have presented a survey on the challenges and opportuni-
ties for mobility-aware mmWave communications. This paper
can be understood from three parts, including mobility inves-
tigation, existing research, and future outlook. Firstly, we have
summarized the mmWave applications in mobile scenarios and
then present different mobility models to characterize various
mobility patterns in different mmWave applications. Secondly,
we have introduced the challenges of adopting mmWave
systems and have surveyed the potential solutions to the
key problems, including channel measurements and modeling,
channel estimation, anti-blockage, and capacity enhancement.
Finally, we have proposed the open research issues that have
not been fully considered to conclude this paper. We hope
that the discussions presented in this paper will serve as the
reference and provide the guidelines for the researchers pur-
suing network planning and optimization for mobile mmWave
communications.
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