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AbstrAct
Benefiting from huge bandwidth resources, 

millimeter-wave (mmWave) communications pro-
vide one of the most promising technologies for 
next-generation wireless networks. To compensate 
for the high pathloss of mmWave signals, large-
scale antenna arrays are required both at the base 
stations and user equipment to establish direc-
tional beamforming, where beam-management is 
adopted to acquire and track the optimal beam 
pair having the maximum received power. Natural-
ly, narrow beams are required for achieving high 
beamforming gain, but they impose enormous 
training overhead and high sensitivity to blockages. 
As a remedy, deep learning (DL) may be harnessed 
for beam-management. First, the current state-of-
the-art is reviewed, followed by the associated 
challenges and future research opportunities. We 
conclude by highlighting the associated DL design 
insights and novel beam-management mechanisms.

IntroductIon
According to Ericsson’s mobility report [1], the 
worldwide total monthly mobile data traffic will 
increase by 30 percent each year and reach 143 
exabytes in 2026. To meet the ultra-high data traf-
fic requirement, the enhanced Mobile Broadband 
(eMBB) mode of the fifth-generation (5G) wireless 
network has been designed for supporting high-
speed access for users in hot-spot areas. Millime-
ter-wave (mmWave) communications, benefiting 
from abundant bandwidth resources spanning 
from 30GHz to 300GHz, have the potential of 
supporting Gigabits-per-second data rates.

However, mmWave carriers suffer from higher 
pathloss than those of conventional low-frequen-
cy communication systems. Fortunately, the short 
wavelength of mmWave signals allows more anten-
nas to be integrated into both the base stations 
(BSs) and user equipment (UE). Therefore, large-
scale antenna arrays can be used at the BS and UE 
sides to implement directional beamforming, so 
that the high pathloss can be compensated by the 
beamforming gain. To provide seamless high-quali-
ty services, beam-management has to be adopted 
to acquire and track the optimal BS and UE beam 
pair having the maximum received power.

However, these narrow beams impose 
beam-management challenges. On the one hand, 
numerous narrow candidate beams have to be cre-

ated for covering the whole angular space, but this 
imposes substantial beam-training overhead. As a fur-
ther challenge, narrow beams are sensitive to block-
ages, making accurate beam-tracking more difficult.

Inspired by the stunning breakthroughs that deep 
learning (DL) has achieved in computer vision and 
natural language processing, DL has also been har-
nessed in wireless communications. Compared to 
mathematical model-based methods, DL enjoys a pair 
of key advantages. Firstly, mathematical tools general-
ly rely on idealized assumptions, such as the presence 
of pure additive white Gaussian noise, which may not 
be consistent with practical scenarios. By contrast, 
DL adaptively learns the features of the channel in 
support of reliable beam-management. Secondly, the 
parameters of DL models capture the high-dimen-
sional features of the propagation scenario, such as 
blockage locations and shapes in support of reliable 
beam-management, as detailed in the article.

Based on these motivations, we survey the state-
of-the-art by pursuing two avenues. Firstly, DL is 
utilized for extracting the nonlinear features inher-
ent in the angular domain and time domain for 
implementing super-resolution beam-prediction and 
low-overhead beam-tracking along with predictive 
beam-switching [2–6]. Secondly, DL is adopted for 
learning the high-dimensional environmental features 
from side information and from the environmen-
tal feedback for supporting environment-specific 
beam-management [7–11]. Finally, future research 
challenges and opportunities are summarized, where 
we provide design insights in support of practical 
implementations, and envision novel beam-manage-
ment mechanisms relying on DL.

Why dL for beAm-mAnAgement?
To illustrate DL’s superiority in beam-manage-
ment, we compare DL to three conventional 
beam-management methods, as summarized in 
Table 1 at a glance.

Beam-Search-Based Methods: Since the numbers 
of candidate beams at the BS and UE sides are usu-
ally limited, a straightforward technique of finding 
the optimal beam pair is exhaustive search, which 
sweeps all the candidate beam pairs and selects the 
best one. However, this method may impose exces-
sive overhead. To address this problem, twin-level 
lower-overhead beam-search based on a hierarchi-
cal multi-resolution codebook is widely adopted [3, 
4], where the first-level search aims for finding the 
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optimal wide beam. Then the second-level search 
confirms the specific optimal narrow-beam direction 
within the limited range of the selected wide beam. 
Another low-overhead scheme is the interactive 
beam-search [4], where the candidate transmit and 
receive beams are swept separately. Nevertheless, 
these conventional beam-search-based methods 
do not model the intrinsic nonlinear relationships 
among the received signals of beam-training, lead-
ing to considerable overhead. By contrast, DL is able 
to extract these intrinsic nonlinear features to pre-
dict the optimal beam pair by only measuring a few 
beam pairs, so that the huge training overhead can 
be effectively reduced.

Model-Based Methods: Generally, the opti-
mal beam pair is aligned with the angle-of-arrival 
(AoA) and angle-of-departure (AoD) of the stron-
gest path. Therefore, finding the optimal beam pair 
can be formulated as an angle estimation problem 
according to the mathematical properties of the 
channel model. For example, compressed sensing 
has been broadly applied to estimate the AoA and 
AoD based on the angular sparsity of the mmWave 
channel [12]. Nevertheless, these model-based 
methods normally rely on priori assumptions, such 
as the channel’s sparsity and quantization of the 
AoA/AoD. This makes their feasibility uncertain in 
practical scenarios. By contrast, DL is an end-to-end 
approach that does not require any model assump-
tions. Based on the back-propagation algorithm, 
the parameters of the DL models can be adaptively 
optimized in a data-driven manner for tackling the 
specific user scenarios.

Conventional Machine Learning (ML)-Based 
Methods: Usually, ML is used for deducing envi-
ronment-specific insight from the collected data, 
where conventional ML-based methods mainly rely 
on relatively simple models. For example, consid-
ering the limited number of candidate beam pairs, 
finding the optimal beam pair can be formulated 
as a classification task, where the powerful support 
vector machine is widely adopted to implement the 
classifier [13]. Compared to these conventional ML 
tools, DL benefits from its multi-layer structure hav-
ing a huge number of learnable parameters, and 
thus enjoys stronger fitting capability to address 
sophisticated beam-management problems in the 
face of environmental uncertainty.

To achieve higher beamforming gain and 
reduce beam-training overhead constitute funda-
mental targets of beam-management. The advan-
tages of DL inspire two research routes for these 
targets. Firstly, DL can be utilized for accurate-
ly extracting the intrinsic nonlinear angular- and 

time-domain features for both beam-prediction and 
beam-tracking, hence reducing the training over-
head while guaranteeing high beamforming gain. 
Secondly, DL can be harnessed to sense and adapt 
to the complex wireless environments for facilitat-
ing environment-specific low-overhead high-gain 
beam-management. Later, we will elaborate on the 
state-of-the-art concerning both research routes, as 
summarized in Table 2.

Note that the dataset construction is one of 
the most important issues for implementing these 
DL-assisted beam-management schemes. For 
supervised learning, the DL model optimizes its 
parameters based on the prediction loss of the 
training dataset. Specifically, each sample in the 
training dataset consists of the prediction input and 
the optimal beam label. To construct this dataset, 
the BS and UE usually perform beam-search to find 
the optimal beam pair as the label, and meanwhile 
they collect the corresponding prediction input. By 
contrast, for deep reinforcement learning (DRL), 
although no explicit training dataset is required, the 
DL model interacts with the wireless environment 
and leverages its feedback to optimize the model 
parameters. In this context, it is worth mentioning 
that Alkhateeb et al. generously provided a generic 
open-source DL dataset DeepMIMO [14]. Based 
on the environment construction and accurate 
ray-tracing, DeepMIMO succeeds in accurately 
modelling the real-world wireless features for facili-
tating DL-assisted beam-management studies.

LeArnIng nonLIneArItIes for  
beAm-PredIctIon And beAm-trAckIng

In practical scenarios, beam-management is faced 
with various sources of nonlinearities. DL is capa-
ble of accurately extracting the nonlinear features 
as the outputs at the intermediate layers of neural 
networks and exploiting them to facilitate efficient 
beam-management.

suPer-resoLutIon beAm-PredIctIon
MmWave beams are usually generated by ana-
log phase shifters, whose unit-amplitude constraint  
results in the power leakage, which is a nonlin-
ear function of the pointing angle [4]. Briefly, as 
it transpires from Fig. 1a, achieving high beam-
forming gain requires extremely accurate angu-
lar alignment. In case of misalignment, part of the 
beam’s power leaks to side lobes, but as a ben-
efit, this power leakage allows us to estimate the 
AoA and AoD of the dominant path by exploiting 
the signals received during beam-training. How-

TABLE 1. Comparison between DL and conventional beam-management methods.

Methods Key features Advantages Disadvantages

Beam-search-based 
methods

Sweep candidate beam pairs for 
beam selection

Easy to implement Considerable overhead

Model-based methods
Estimate optimal beam angles 
based on channel models

Exploit channel properties to reduce overhead
Rely on priori model 
assumptions

Conventional ML-based 
methods

Use conventional ML tools to 
deduce data-specific insight

Better performance relying on environmental 
adaptation

Limited fitting capability owing 
to relatively simple models

DL-based methods
Adopt DL to extract nonlinear 
features and adapt to wireless 
environments

• Adaptive feature extraction for reducing overhead  
• End-to-end learning without priori assumptions  
• Strong fitting capability by massive parameters

High calculational complexity
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ever, using conventional estimation methods to 
solve this problem is faced with two challenges. 
Firstly, this intrinsic nonlinear relationship is difficult 
to accurately model, and secondly, the complex 
multipath components may severely interfere with 
the angle estimation. To address these issues, DL 
may be used to accurately model the nonlinear 
power leakage and the multipath interference for 
estimating the AoA/AoD.  Since the optimal beam 
direction is generally aligned with the AoA/AoD of 
the dominant path [2, 4], the beam prediction can 
be regarded as estimating the corresponding quan-
tized AoA/AoD of the candidate beam directions, 
so that the optimal high-resolution beam direction 
can be predicted based on low-resolution beam-
search for reducing the training overhead.

An intuitive technique of reducing the 
beam-training overhead is to only consider the spe-
cific beams having a fixed angular spacing and then 
use their received signals to predict the optimal 
beam [2], as shown in Fig. 1b. Specifically, since 
the number of candidate beams is limited, this 
prediction is formulated as a classification task. A 
convolutional neural network (CNN) is used as the 
classifier, followed by a softmax function that con-
verts the output into probabilities. Then the maxi-
mum-probability beam pair is selected. Supervised 
learning is adopted for the model optimization, 

which is comprised of the training stage and the 
prediction stage. At the training stage, the BS and 
UE sweep all the candidate beams to find the opti-
mal beam label, while the corresponding received 
signals of the fixed angular-spacing beams are col-
lected as the prediction input, so that the training 
dataset is constructed. Then, the back-propaga-
tion algorithm is utilized for optimizing the model 
parameters based on the cross entropy loss of the 
training dataset. Once the model is well trained, 
supervised learning switches to the prediction 
stage. At this stage, only the fixed angular-spacing 
beams are measured to predict the optimal beam, 
so that the excessive training overhead can be 
effectively reduced. However, its performance may 
degrade due to the low signal-to-noise ratio (SNR) 
when the true AoA and AoD of the dominant path 
does not fall exactly in the middle of the main lobe 
of any candidate beam.

To fully cover the 360° angular space, Echigo 
et al. [3] proposed a wide-beam-based optimal 
narrow-beam prediction scheme. As seen in Fig. 
1c, the wide and narrow beams can be natural-
ly regarded as low-resolution and high-resolution 
beams. Consequently, Echigo et al. [3] compared 
super-resolution beam-prediction to a super-resolu-
tion image recovery problem, and adopted a CNN 
for the associated prediction.

TABLE 2. DL for mmWave beam-management: state-of-the-art.

Learning nonlinearities for beam-prediction and beam-tracking

Research routes Refs. Learning methods DL models Key features

Super-resolution 
beam-prediction

[2] Supervised learning CNN
Measure fixed angular-spacing beams for 
beam-prediction

[3] Supervised learning CNN
Measure wide beams for narrow-beam 
prediction

[4] Supervised learning LSTM
Measure partial high-SNR wide beams for 
narrow-beam prediction

Beam-tracking 
and predictive 
beam-switching

[5] Supervised learning LSTM
Integrate DL with conventional Bayesian 
estimation-based beam-tracking

[6] Reinforcement learning DQN
Adjust beam-tracking range according to 
effective throughput rewards

[3] Supervised learning LSTM
Predict the optimal beam in the middle of 
current and next beam-training instants 
without beam-search

Learning environments for beam-prediction and adaptive beam-management

Research routes Refs. Learning methods DL models Key features

Side information-
assisted beam-
prediction

[7] Supervised learning FC-DNN
Use low-frequency CSI in co-located 
scenarios for mmWave beam-prediction

[8] Supervised learning ResNet
Use vision images acquired at BS for beam-
prediction

[9] Supervised learning CNN
Use 3D panoramic scenes generated by 
environmental 3D point cloud and UE’s 
location for beam-prediction

DRL-assisted 
adaptive beam-
management

[10] Reinforcement learning
Wolpertinger 
architecture

Design environment-specific beamforming 
codebooks based on beamforming gain 
feedback

[11] Reinforcement learning DQN
Solve joint beam-management, power-control 
and interference-coordination, and use 
differential manners to reduce action space
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Furthermore, as shown in Fig. 1a, the leaked 
power of the beams which are angularly far from 
the AoA and AoD of the dominant path is low. 
Hence it is difficult to extract useful information from 
the corresponding received signals due to their low 
SNRs. Therefore, Ma et al. [4] proposed to consider 
only the subset of wide beams having high SNRs 
and use their received signals to predict the optimal 
narrow beam. This way the wide-beam-training over-
head was further reduced. Specifically, a long-short 
term memory (LSTM) network was constructed for 
modelling the temporal AoA and AoD variations, as 
seen in Fig. 1d. At the t-th time slot, the proposed 
network predicts not only the t-th optimal narrow 
beam, but also the (t + 1)-st optimal wide beam for 
selecting the neighboring high-SNR wide beams in 
the (t + 1)-st wide-beam-training.

Figure 2 compares the above DL-based 
schemes and the conventional noise-free beam 
estimation scheme based on wide beams in terms 
of their effective bandwidth efficiency, which takes 
the beam-training overhead into consideration. 
The dedicated frame structure is illustrated as fol-
lows. Beam-training is performed periodically, and 
the specific durations of the total communication 
session and of a single beam measurement are 
1,000 ms and 0.1 ms [4]. The numbers of nar-
row candidate beams, fixed angular-spacing nar-
row beams [2], wide candidate beams [3] and 
high-SNR wide beams [4] are 64, 16, 16 and 5, 
respectively. The conventional scheme estimates 
the optimal narrow-beam direction based on the 
ratio of the beamforming gains between the opti-
mal wide beam and the neighboring wide beams 
without considering the noise.

As expected, the bandwidth efficiency initially 
increases with the beam-training period owing to 
the reduced beam-training overhead. By contrast, 
long beam-training periods degrade the band-
width efficiency, because the loss of beam-align-
ment is more likely to occur during longer data 
transmissions in mobile scenarios. It is clear that 
the DL-based schemes outperform their con-
ventional counterparts, because DL models the 
nonlinear power leakage phenomenon more accu-
rately. Furthermore, the partial-search-based high-
SNR wide-beam-assisted scheme achieves higher 
bandwidth efficiency due to its lower training over-
head, especially for short beam-training periods.

beAm-trAckIng And PredIctIve beAm-sWItchIng
Another nonlinearity in beam-management arises 
from the UE’s mobility. As the UE moves closer 
to the BS, the angular variation of the dominant 
path would become faster as a function of their 
distance and vice versa. Moreover, the velocity 
and direction of UEs is time-variant. However, the 
conventional Kalman filter-based beam-tracking 
usually assumes a fixed AoA/AoD variation model, 
making it hard to handle the nonlinear relationship 
between the UE’s movement and angular variation, 
especially for high-speed scenarios. Therefore, DL 
is exploited to model these nonlinear variations for 
enhancing the beam-tracking accuracy attained.

Lim et al. [5] combined the conventional 
beam-tracking scheme with DL. At each beam-track-
ing action, firstly the LSTM network is exploited for 
fusing the previous channel state information (CSI) 
estimates and sensor measurements to extract the 
UE’s movement features for predicting the a-prio-
ri AoA distribution. Based on this predicted distri-
bution, the future beams are predicted and then 
measured for creating the more accurate a-posteri-
ori estimate from the a-priori CSI estimate by using 
sequential Bayesian estimation. This scheme intrin-
sically integrates the expert knowledge of classical 
mathematical models with the adaptive fitting capa-
bility of DL, and thus achieves lower tracking errors 
than the conventional DL-based scheme that only 
relies on training data.

FIGURE 1. a) An example of the channel’s power leakage; b)-d) illustration of various super-resolution 
beam-prediction schemes: b) CNN-based prediction using fixed angular-spacing beams; c) CNN-based 
prediction using wide beams; d) LSTM-based prediction using partial high-SNR wide beams.
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The UE’s ever-changing mobility is another key 
issue influencing beam-tracking. Explicitly, when 
the velocity is high, the tracking range has to be 
increased and vice versa. Therefore, Zhang et al. 
[6] proposed to use DRL for seamlessly adapting to 
the tracking range. Concretely, the tracking action is 
jointly determined by the initial beam index and the 
size of the tracking beam subset. The proposed deep 
Q-network (DQN) interacts with the environment, 
adjusting the tracking range according to the effec-
tive throughput reward that takes both the beam-
forming gain and the tracking overhead into account.

As a further advance, a predictive beam-switch-
ing scheme based on DL was proposed in [3]. 
After each beam-training action, the LSTM network 
is utilized to predict the optimal beam in the mid-
dle of the current and next beam-training instants 
according to the previous received beam-train-
ing signals, which halves the training overhead. 
Echigo et al. [3] additionally integrated predictive 
beam-switching with super-resolution prediction for 
further reducing the training overhead.

LeArnIng envIronments for beAm-PredIctIon 
And AdAPtIve beAm-mAnAgement

In wireless environments, numerous scatterers 
having diverse locations, sizes and shapes appear, 
which form high-dimensional feature spaces. DL is 
capable of accurately extracting these complex scat-
tering features captured at the intermediate layers of 
neural networks for facilitating beam-management.

sIde InformAtIon-AssIsted beAm-PredIctIon
When considering the big data scenarios of 
next-generation wireless networks, sophisticat-
ed inferences may be gleaned concerning the 
environmental features, which may be harnessed 
for mmWave beam-management. However, they 
are hardly ever leveraged by the conventional 
methods due to the lack of tractable mathemati-
cal models. By contrast, DL provides a promising 
tool for adaptively extracting these hidden envi-
ronmental features for beam-prediction.

Usually, mmWave antennas are used also by 
the low-frequency BSs to reduce hardware cost. 
In this co-located scenario, the low-frequency and 
mmWave links perceive having similar propaga-
tion environments, and thus the mmWave chan-
nel enjoys analogous AoA and AoD features to the 
low-frequency counterpart. Therefore, DL may be 
exploited for revealing the complex relationships 
between the low-frequency and the mmWave 
channels by exploiting their shared environmen-
tal features. Alrabeiah et al. [7] conceived a fully 
connected-deep neural network (FC-DNN) for 
predicting the optimal mmWave beam based on 
low-frequency CSI, where the softmax function con-
verts the output into probabilities. Based on these 
probabilities, Alrabeiah et al. [7] proposed to mea-
sure a limited subset of candidate beams having the 
highest probabilities, and to select the specific beam 
having the maximum received power as the optimal 
one, which achieved more accurate beam-align-
ment in exchange for a modest extra overhead.

On the other hand, vision images can provide 
surrounding environmental information for assisting 
beam-management. Therefore, Alrabeiah et al. [8] 
proposed to use images acquired from the camer-
as deployed at the BS to predict the optimal beam 

without channel measurements or beam-training. 
The well-known residual neural network (ResNet) 
in computer vision is utilized to extract the image 
features. Besides, in order to model the propaga-
tion environments more comprehensively, a 3D 
scene-based beam-prediction framework was fur-
ther investigated in [9]. At first, a 3D scene point 
cloud within the cellular coverage is constructed at 
the BS by massive images. Then, the BS combines 
the UE’s location and the point cloud to generate 
the corresponding panoramic scene information, 
and a 3D-CNN is adopted to predict the optimal 
beam according to this information. At the expense 
of considerable overhead of constructing the point 
cloud offline, the 3D scene-based beam-prediction 
achieved higher accuracy than the conventional 
side information-assisted scheme.

drL-AssIsted AdAPtIve beAm-mAnAgement
In contrast to exploiting out-of-band side informa-
tion, DRL constitutes an intelligent technique of 
sensing and adapting to the dynamic environments 
while only imposing negligible in-band overhead. 
The conventional learning-based methods usual-
ly use explicit channel knowledge for discovering 
environment-specific insights. By contrast, DRL 
integrates the interactive learning strategy of rein-
forcement learning with the strong fitting capability 
of DL, which could accurately model the high-di-
mensional environmental features and promptly 
adjust the beam-management policy, despite hav-
ing limited environmental feedback.

The classical beamforming codebooks typical-
ly consist of numerous pre-defined beams without 
adaptation to the surrounding blockages and spe-
cific UE distributions, hence they impose excessive 
training overhead. To address this issue, Zhang et 
al. [10] proposed to apply DRL for designing the 
environment-specific beamforming codebooks. At 
first, all UEs are clustered into several groups based 
on the similarity of their channels. Then, each UE 
group is assigned with one DRL model to learn the 
corresponding best beam pattern, where the action 
is defined as the beam phase vector. However, the 
large number of antennas makes the action space 
very high-dimensional. Therefore, Zhang et al. [10] 
proposed a DRL framework based on the Wolper-
tinger architecture to narrow the size of the action 
space and avoid missing the optimal policy simultane-
ously, as shown in Fig. 3. Specifically, this architecture 
consists of an actor network and a critic network. The 
actor network interacts with the environment and 
generates the action, while the critic network eval-
uates the benefits of the action for optimizing both 
networks. At each learning step, the actor network 
firstly generates a continuous proto-action, which is 
quantized to discrete phases as the action. Then, the 
resultant phase vector is applied, and the reward is 
calculated according to the corresponding beam-
forming gain. Next, the mean-squared error (MSE) 
loss between the reward and the critic target learned 
from previous experience is calculated for optimiz-
ing the critic network. Finally, the action network is 
updated based on the policy loss assessed by the crit-
ic network. By iteratively optimizing the actor and the 
critic networks, the proposed model could accurately 
sense the environments according to low-overhead 
beamforming gain feedback, and ultimately achieved 
lower training overhead together with higher beam-
forming gain than the conventional codebooks.

Usually, mmWave 
antennas are used also 
by the low-frequency 
BSs to reduce hardware 
cost. In this co-located 
scenario, the low-fre-
quency and mmWave 
links perceive having 
similar propagation 
environments, and thus 
the mmWave channel 
enjoys analogous AoA 
and AoD features to the 
low-frequency coun-
terpart.
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For multiple BS scenarios, joint beam-manage-
ment, power-control and interference-coordination 
is another crucial challenge due to its huge solu-
tion space. Therefore, Mismar et al. [11] utilized 
the DQN to adaptively sense the environment for 
tackling this high-dimensional problem. To ease 
the heavy burden of jointly optimizing the transmit 
powers and beams of numerous BSs, Mismar et al. 
[11] simplified each action as the difference from 
the previous value. Simulation results demonstrated 
that the proposed DQN model could approach the 
upper-bound performance.

reseArch chALLenges And oPPortunItIes
Although DL has achieved benefi cial performance 
gains in beam-management, there are still numer-
ous open challenges for further study, as summa-
rized in Fig. 4 at a glance.

muLtI-modAL IntegrAtIon AIded beAm-mAnAgement 
Although a wide variety of side information has been 
leveraged to facilitate beam-management [7–9], the 
conception of a robust DL-based multi-modal inte-
gration framework is in urgent demand for adaptive-
ly aggregating the features extracted from each input 
for accurate beam-alignment. As an initial attempt, 
Yang et al. [15] established a deep multi-modal learn-
ing framework for channel prediction, which relies 
on testing the performance of numerous models 
for guiding the design. To enhance the robustness, 
designing a generic model for handling any poten-
tially missing modality constitutes one of the pivotal 
issues to be addressed. A feasible solution is to map 
the inputs into a joint latent feature space and then 
to reconstruct the missing modality via deep genera-
tive models. Next, tracking the temporal sequences 
of various inputs can facilitate robust beam-predic-
tion, but their asynchronous nature imposes another 
crucial challenge. Neural ordinary diff erential equa-
tions provide an attractive continuous-time learning 
technique for accurately modelling these asynchro-
nous sequences.

effIcIent trAInIng WIth LImIted dAtAset
Although the DL model trained by massive 
labeled data achieves satisfactory performance in 
beam-management, the huge overhead of collecting 
statistically relevant data is a challenge in practice. 
Therefore, few-shot learning, dedicated to utilizing 
a small number of samples for efficiently training 
the DL model, has great potential in beam-manage-

ment. The conceptually simplest method of fi nding 
the optimal beam label is conventional beam-search, 
but again, this imposes an excessive overhead. To 
alleviate this burden, semi-supervised learning ori-
ented data collection may be considered, where 
the optimal beam labels of only a few samples are 
gleaned, and then semi-supervised learning inte-
grates the labeled data with a large amount of unla-
beled data for improving the training performance.

energy consumPtIon concern
In practical scenarios, the beam-management of 
many UEs is performed simultaneously. Howev-
er, given their high complexity, the DL-assisted 
beam-management methods may impose high 
energy dissipation. To tackle this problem, tai-
lor-made light-weight DL models may be designed 
for beam-management relying on the adaptive 
trade-off between performance and complexity. 
Moreover, the application of high-effi  ciency par-
allel DL hardware and algorithms is also benefi cial 
for reducing the energy consumption.

robustness to comPLeX envIronments
To provide seamless high-quality services, design-
ing robust beam-management adaptive to com-
plex propagation environments is crucial in 
practice. The existing DRL-based methods [10, 
11] rely on limited environmental feedback for 
updating their model, hence their convergence 
may be relatively slow. Therefore, more prompt 
environment adaptation based on online DL is 
necessary for beam-management. On the other 
hand, the scattering environment has signifi-
cant impact on the performance of DL-assisted 
beam-management. For example, compared to 
line-of-sight (LOS) scenarios, it is more challenging 

FIGURE 3. DRL-based adaptive beam pattern design [10].
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to accurately predict the optimal beam in non-
line-of-sight (NLOS) scenarios. Consequently, a 
robust beam-management policy, which adopts 
DL for adjusting the beam measurement based 
on the specific environment for maintaining accu-
rate beam-alignment, is worth investigating.

nImbLe beAm-mAnAgement under hIgh mobILIty
The UE’s high mobility typically leads to frequent 
BS-handover and beam-switching, hence requiring 
nimbler beam-management. In single-user scenari-
os, DL can be adopted for establishing an inter-BS 
beam-management framework, where BS selection 
and beam selection are performed jointly for attain-
ing ultra-low handover latency. As for multi-user 
scenarios, the erratic nature of beam-interference 
constitutes a crucial challenge. Specifically, the 
mmWave beam impinging from a neighboring 
cell pointing toward the local UE imposes severe 
inter-cell interference. Considering frequent BS and 
beam variations due to high mobility, agile inter-
ference management is important for ensuring 
reliable services in dynamic mmWave networks. 
As a potential solution, the graph neural network 
(GNN) intrinsically matches the topology of wire-
less networks, which may be harnessed for han-
dling dynamic inter-cell interference management.

concLusIons
We commenced by elaborating on the motiva-
tion of applying DL in beam-management. Firstly, 
DL is eminently suitable for extracting the complex 
nonlinear features encountered. Secondly, the 
adaptive fitting capability of DL enables near-re-
al-time fine-tuning required by the environmental 
fluctuations. Based on these motivations, DL was 
proposed for extracting both the intrinsic nonlinear 
angular- and time-domain features, hence inspiring 
super-resolution beam-prediction and beam-tracking 
along with predictive beam-switching. Furthermore, 
DL was utilized to sense and adapt to the propaga-
tion environments from side information and from 
the environmental feedback for designing environ-
ment-specific beam-management. Finally, we have 
provided DL design insights for the practical imple-
mentation of novel beam-management mechanisms.
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