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ABSTRACT For a selective ensemble regression (SER) scheme to be effective in online modeling of fast-
arriving nonlinear and nonstationary data, it must not only be capable of maintaining a most up to date and
diverse base model set but also be able to forget old knowledge no longer relevant. Based on these two
important principles, in this paper, we propose a novel growing and pruning SER (GAP-SER) for time-
varying nonlinear data. Specifically, during online operation, newly emerging process state is automatically
identified and a local linear model is fitted to it. This adaptive growing strategy therefore maintains a most up
to date and diverse local model set. The online prediction model is then constructed as a selective ensemble
from the local linear model set based on a probability metric. Moreover, a pruning strategy is derived to
remove ‘unwanted’ out of date local linear models in order to achieve low online computational complexity
without sacrificing online modeling accuracy. A chaotic time series prediction and two real-world data sets
are used to demonstrate the superior online modeling performance of the proposed GAP-SER over a range
of benchmark schemes for nonlinear and nonstationary systems, in terms of online prediction accuracy and
computational complexity.

INDEX TERMS Nonlinear and nonstationary data, local linear model, growing model, pruning model,
selective ensemble.

I. INTRODUCTION
With the growing real-world applications based on fast-
arriving data streams [1]–[8], online learning has been a
paramount issue for regression models. The data captured by
sensor networks, industrial machinery and others alike usu-
ally exhibit both nonlinear and nonstationary characteristics.
The root cause of time-varying nature may be sensor drift
and/or underlying process drift. Sensor drift is a temporal
shift of sensors due to ageing or environment changes [9].
Process drift is resulted from changes of operating conditions,
catalyst deactivation, mechanical abrasions or external cli-
matic variations, etc. [10]. The adverse consequence of such
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drifts, which can be either gradual or abrupt, degrades the
performance of real-time or online predictive models.

To cope with drifting effects of data, the development
of predictive models with adaptive capability is necessary.
A commonly used simple method is using adaptive recursive
estimators, such as the recursive least square (RLS) [11]–[13]
or the online sequential extreme learning machine (OS-ELM)
[14]–[16], to update the predictive model’s weights in real
time. Another way of online adaptation is to selectively record
the important data pattern to update the predictive model’s
structure. One popular representative is the resource allocat-
ing network (RAN). Starting from an empty set of radial basis
function (RBF) nodes, the RAN adds RBF nodes with arriv-
ing input data based on their significance [17], [18]. Hence,
the RAN can only grow the model size, which usually makes
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it ends upwith a very largemodel and having high complexity
in online prediction, after long online adaptive operation.
By contrast, starting from an initial set of RBF nodes, the fast
tunable RBF [19] adaptively replaces an ‘insignificant’ RBF
node with a new node online. Although its model size is fixed,
the fast tunable RBF can better track ‘local characteristics’ in
a nonstationary environment. The experimental results of [19]
show that this fast tunable RBFmethod typically outperforms
the RAN and the OS-ELM.

Compared with above single global modeling approaches,
ensemble learning that employsmultiplemodels to separately
modeling the data subspaces has proven to be popular
in online learning [6], [20]–[22]. In the area of selec-
tive ensemble learning, most of the researches focus on
adaptive classification [23]–[25] and the regression prob-
lem is rarely discussed. One important issue in ensemble
learning is the diversity between models [26]. Maintaining
highly diverse ensemble enables covering a wide dynam-
ical range of data space. This is utmost important during
online modeling of a nonstationary process, where the pro-
cess dynamics can change significantly and often result in
newly emerging multiple operating regions. The ensemble
of OS-ELM (EOS-ELM) [27], however, does not have this
capability, as all the neural network base models are trained
on the same data set and the base model structures are not
updated in real-time operation. The multiple model learning
framework [28] suffers from the same drawback, as all the
local RBF models are initially trained, and the local RBF
model structures are not updated during online operation.

To ensure diversity, base models must be statistically dif-
ferent. If base models represent different local regions of the
data, then they are statistically different and this guarantees
the diversity of the model set. For soft sensing application,
the concept of local learning is introduced in [29], where the
offline training data is partitioned into multiple local regions,
each covered by a local model. The works [30], [31] further
extend this localization strategy to the online operation, to
grow new local linear models adaptively on the newly emerg-
ing process states and, therefore, for producing the adaptive
online modeling with a selective ensemble from the diverse
set of local linear models. Motivated by the works [30], [31]
which are for a different application of soft sensor design,
our recent work [32] proposes a selective ensemble based
multiple local model learning (SEMLM) for nonlinear and
nonstationary systems. The SEMLM adaptively identifies
newly emerging characteristics of the underlying system and
grows the local linear model set online accordingly. Online
modeling is then carried by a selective ensemble of subset
local linear models from the model candidates. The results
obtained in [32] show that this SEMLM is capable producing
more accurate online predictive modeling than the fast tun-
able RBF of [19]. A potential drawback of the SEMLM, in
comparison with the fast tunable RBF, is that it may impose
higher average computation time per sample (ACTpS). This
is because for a highly nonstationary system and over a long
period of online adaptation, the number of local linear models

can grow to be very large, which may impose high computa-
tional complexity in constructing a selective ensemble model.

The main motivation of our current work is to improve
the online computational complexity of the SEMLM, while
retaining its capability of maintaining highly diverse local
linear model set and producing highly accurate adaptive
selective ensemble modeling. Clearly, for effective online
learning of fast-arriving and time-varying data, learningmod-
els not only must have the ability to capture the newly
occurring knowledge as fast as possible but also are able to
forget the past accumulated old concepts that are no longer
relevant [7], [33]. Therefore, in order to reduce online com-
putational complexity, it is desired to remove some ‘oldest’
local linear models from the model set. However, this is not
as simple as it appears. Any local linear model in the model
set represents some local process state or knowledge that has
actually appeared. The fact that a local model is not used
in the most recent selective ensemble does not imply that
it will not be needed in future. Our main contribution is to
derive a reliable mechanism of removing ‘unwanted’ local
models online, without sacrificing the diversity and accuracy
of selective ensemble regression.

Specifically, in this paper, a growing and pruning selec-
tive ensemble regression (GAP-SER) is proposed for time-
varying nonlinear data. During online operation, newly
emerging process state is automatically identified from the
incoming data and a local linear model is fitted to it. This
growing strategy is identical to our previous SEMLM and
it maintains a most up to date and diverse local model set.
However, unlike our previous work [32], which constructs the
selective ensemble based on the mean square error (MSE)
metric, we build the selective ensemble based on a proba-
bility metric, which is capable of achieving excellent online
modeling performance with very few local models selected
and hence helps to maintaining low online computational
complexity. Most importantly, an ensemble pruning strategy
is performed to reliably remove the ‘unwanted’ local linear
models and, therefore, to achieve lower ACTpSwithout sacri-
ficing the online modeling accuracy. The above two improve-
ments make the proposed ensemble regression particularly
suitable for online modeling of nonlinear and nonstationary
systems. Three case studies, 1) chaotic time series prediction,
2) online identification of a real-world industrial system, and
3) EEG data modeling, are used to demonstrate the effec-
tiveness of the proposed GAP-SER, in comparison with a
range of benchmark schemes for modeling and identification
of nonlinear and nonstationary systems.

II. GROWING AND PRUNING SELECTIVE ENSEMBLE
REGRESSION
To achieve the ultimate goal of our GAP-SER, which is
to produce accurate online prediction or modeling while
imposing low computational complexity, we rely on the
two fundamental principles, ability to maintain most up to
day and diverse local linear model set and capacity of reli-
ably removing unwanted out of date local linear models.
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Three components of our GAP-SER, namely, the growing
strategy, the new pruning strategy and the new selective
ensemble prediction, are now detailed.

A. GROWING STRATEGY
Given the data sample set {x(t), y(t)}Nt=1, where x(t)∈R

m and
y(t)∈R are the system’s input vector and output, respectively,
our task is to construct the local linear models {fl}Ll=1 that
are valid in their corresponding process states represented by
their respective sub-datasets {X l, yl}

L
l=1. Without loss of gen-

erality, let a local windowWini=
{
X ini∈RWG×m, yini∈RWG

}
with WG consecutive samples {x(t), y(t)}tini+WG

t=tini be initially
set, and a local linear model fini is built on it as

ŷini = fini
(
X ini

)
= 8β, (1)

where 8 =
[
1WG X ini

]
∈ RWG×(1+m), 1WG is the WG-

dimensional vector whose elements are all one, and the model
parameter vector β∈R(1+m) is given by the least square (LS)
estimate as

β =
(
8T8

)−1
8T yini. (2)

The predicted error or residual vector of this local model is

eini = yini − fini
(
X ini

)
∈ RWG . (3)

By shifting the data window one sample ahead, a new
window Wsft =

{
X sft , ysft

}
is obtained, which contains the

samples {x(t), y(t)}tini+1+WG
t=tini+1

. If the two local data regions
Wini and Wsft are not significantly different, it can be con-
sidered that the data withinWsft follow the same distribution
as in Wini and the window continues to be shifted forward.
Otherwise,Wsft is considered to represent a new process state
different from the one forWini, and a new local linear model
fnew should be developed based on Wsft . Let the estimation
error vector produced by fini onWsft be denoted as

esft = ysft − fini
(
X sft

)
. (4)

Whether the two local data regionsWini andWsft are similar
or not can then be turned into the equivalent testing that
tests whether eini and esft are significantly different or not.
Since fini is a linear model, eini and esft are considered not
significantly different when both their means, µini and µsft ,
and variances, σ 2

ini and σ
2
sft , are the same. Therefore, the two

null hypotheses can be set to

Hµ
0 : µini = µsft , (5)

Hσ 2

0 : σ
2
sft = σ

2
ini. (6)

The mean µini and variance σ 2
ini are estimated based on eini,

while µsft and σ 2
sft are estimated based on esft . Since fini is

an unbiased estimator, µini = 0 and σ 2
ini =

1
WG−1

eTinieini.
Assuming that eini and esft follow normal distribution, the T
and χ2 statistics can be constructed as

T0 =
√
WG

(
µsft − µini

)/
σsft , (7)

χ2
0 = (WG − 1)σ 2

sft
/
σ 2
ini. (8)

According to the statistical theory, if the hypotheses Hµ
0

andHσ 2

0 are both valid, the T0 statistic (7) and χ2
0 statistic (8)

follow the t distribution and χ2 distribution with the degree
of freedom WG−1, respectively. Thus, the t-test and χ2-test
can be utilized to test the above two hypotheses. Specifically,
the conditions of accepting Hµ

0 and Hσ 2

0 are

|T0| < λt and χ2
0 < λχ , (9)

where λt is the threshold of the T statistic for the given
significance level αt which satisfies Pr{|T | < λt } = 1−αt ,
while λχ is the threshold of the χ2 statistic for the given
significance level αχ , which satisfies Pr{χ2<λχ }=1−αχ .
Let the local model set contain L>1 independent local lin-

ear models {fl}Ll=1, and fini= fL . When one or both conditions
of (9) are violated, Wini and Wsft are significantly different,
and the new local linear model fnew= fsft is different from fL .
We still need to test whether fnew differs from {fl}

L−1
l=1 . This

task can also be fulfilled based on the hypothesis testing. Let
the predicted errors of Wnew=

{
X sft , ysft

}
based on fnew and

fl be defined respectively by

enew = ysft − fnew
(
X sft

)
, (10)

el = ysft − fl
(
X sft

)
, 1 ≤ l ≤ L − 1. (11)

With the assumption that enew and el follow normal distribu-
tion, the T and χ2 statistics are constructed according to

Tl =
√
WG

(
µl − µnew

)/
σl, (12)

χ2
l = (WG − 1)σ 2

l
/
σ 2
new, (13)

where µnew and σ 2
new are the estimated mean and variance

of enew, while µl and σ 2
l are the estimated mean and variance

of el . If the null hypotheses

Hµ
l : µl = µnew, (14)

Hσ 2

l : σ
2
l = σ

2
new, (15)

are both valid, the Tl statistic (12) and χ2
l statistic (13)

follow the t distribution and χ2 distribution with the degree
of freedom WG−1, respectively. Therefore, if there exist an
l∈{1, 2, · · · ,L−1} such that

|Tl | < λt and χ2
l < λχ , (16)

the hypotheses (14) and (15) are both valid, and enew and el
are regarded to be identical. Hence, fnew and fl are the same
model. Since fl is ‘older’ than fnew, we keep fnew and delete fl .
On the other hand, if one or both conditions are violated ∀l∈
{1, 2, · · · ,L−1}, fnew is different from fl for 1≤ l≤L. Thus,
we have identified a new process state, and we add fnew to the
local model set by setting L=L+1 and fL= fnew.

The significance levels in the statistical testings are typi-
cally set to αt = 0.05 and αχ = 0.05. This growing strategy
is summarized in Algorithm 1. Clearly, the growing model
window sizeWG is the only algorithmic parameter to be set.
Remark 1: This local learning strategy is identical to the

one given in our previous work [32], and it can operate both
offline and online. During online operation, when the newest
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data sample {x(tnext ), y(tnext )} is available, the data widow
shift one sample ahead, and the corresponding learning pro-
cedure can then be carried out. It can be seen that this grow-
ing strategy is capable of identifying every newly occurring
process state and, moreover, all the local linear models in the
base model set are statistically different. Therefore, our local
learning strategy is capable of maintaining the maximum
diversity of the base model set.

B. NEW PRUNING STRATEGY
The essence of selective ensemble regression (SER) is to
accurately capture the current local characteristics, rather
than to model the overall system dynamics. The base model
set {fl}Ll=1 identified by the growing strategy of Algorithm 1
represents all the local process states occurred so far. Some
of these local linear models are likely to be far away from
the current data range and they are not needed in modeling
the current process dynamics. Indeed, a SER constructs a
online prediction model by selecting a subset of relevant local
models. For fast-arriving highly nonstationary data, over a
long period of online operation, the base model set is likely
to become very large, and this imposes high online computa-
tional complexity in constructing SER prediction. This issue
is related to the so-called stability-plasticity dilemma [34].

Algorithm 1 Growing Strategy
1: Initialization
2: Collect Wini with WG consecutive samples from histori-

cal data, and construct LS linear model fini onWini.
3: Calculate eini, and estimate µini and σ 2

ini.
4: Set L = 1, {WL , fL} = {Wini, fini} andWsft =WL .
5: Step 1: New local model detection
6: When a new data sample is available, shift Wsft one

sample ahead.
7: Calculate esft , and estimate µsft and σ 2

sft .
8: Construct T and χ2 statistics using (7) and (8).
9: If both conditions of (9) are satisfied

10: Go to Step 1.
11: End if
12: Construct LS linear model fsft onWsft .
13: SetWnew =Wsft and fnew = fsft .
14: Calculate enew, and estimate µnew and σ 2

new.
15: Step 2: Redundant local model deletion
16: For l = 1, 2, . . . ,L − 1
17: Compute el , and estimate µl and σ 2

l .
18: Construct Tl and χ2

l statistics using (12) and (13).
19: If both conditions of (16) are satisfied
20: Delete fl , set fi = fi+1 for i = l, l + 1, · · · ,L − 1,

set L = L − 1, then go to Step 3.
21: End if
22: End for
23: Step 3: Add new local model
24: Set L = L + 1,WL =Wnew and fL = fnew.
25: Return to Step 1.

An ensemble learner should not only have the ability to retain
acquired knowledge (stability) but also adapt to new con-
cept with a fast recovery (plasticity). On one hand, stability
implies that a learner retains the acquired knowledge for
maintaining diversity. On the other hand, plasticity requires
a learner to forget part or all previous knowledge in order to
capture the new knowledge from upcoming data as fast as
possible.

To achieve plasticity, it is desired to remove models that
do not contribute to the selective ensemble’s performance
based on some ensemble pruning strategy. Two major issues
in ensemble pruning are: 1) decide which model should
be removed, and 2) when and how frequently to remove
models. In the existing literature, various ensemble pruning
strategies have been proposed. For example, the removal of
models can occur when the number of models exceeds a
threshold [35]–[37] or when the memory usage exceeds a
threshold [38]. The excluded model can be the oldest model
[35], [36] or the model with worst performance [37], [39].
None of these schemes is sufficiently reliable. In highly
nonstationary environments, how to reliably perform ensem-
ble pruning is very challenging, particularly for data with
seasonality and periodicity features. Removing the oldest
or the worst-performance model for example may run the
risk that the removed model may actually become important
in future [20].

In order to improve the reliability of ensemble pruning,
we propose to remove a local linear model only if it does
not contribute to the SER prediction over a pruning model
window with the window sizeWP>1, that is, a model can be
removed only it is not selected by the SER for the consecutive
WP samples. If a model is not needed consistently for the
current WP prediction samples, the probability of it being
selected in the near future prediction samples is extremely
small. Therefore, removal of such a model will not affect
the prediction performance in the near future. It should be
emphasized again that any pruning strategy will run the risk
that the removedmodel may become important in future. This
is because the local process state represented by the removed
local linear model may re-appear in future. Fortunately, our
growing strategy is capable of re-discovering it when the
corresponding process state re-appears in the data stream.

Since our pruning strategy is linked to the SER construc-
tion, it is necessary to start the discussion from how the
SER prediction is constructed. Assume that after the online
operation at sample t , Algorithm 1 produces the local model
set {fl}Ll=1. A prediction window or horizon with the p > 1
latest labeled samples {x(t − i), y(t − i)}p−1i=0 are used in
constructing the SER prediction, i.e., deciding which subset
of local linear models are selected. Let el(t)= [el(t) el(t − 1)
· · · el(t−p+1)]T be the modeling error vector of the lth local
linear model fl over the prediction window, which is given by

el(t − i) = y(t − i)− fl(x(t − i)), 0 ≤ i ≤ p− 1. (17)

The performance metric of the lth local model is defined as

Jl(t) = ‖el(t)‖2 . (18)
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The MSE Jl(t) can be conveniently transformed into a prob-
ability metric. Specifically, Jl(t) is first converted to a simi-
larity measure [40] ranging from 0 to 1 as follows

Sml(t) =
1

1+ Jl(t)
. (19)

The probability metric Prl(t) of the lth model is computed as
the normalized similarity measure as

Prl(t) =
Sml(t)∑L
i=1 Smi(t)

. (20)

Prl(t) can be used to quantify the contribution of the lth local
linear model to the SER, since a large value of Prl(t) indicates
that the lth local model is a good regressor for SER and
vice versu. Arrange all the L local models according to their
probability values in descending order as

Prl1 ≥ Prl2 ≥ · · · ≥ PrlM ≥ PrlM+1 ≥ · · · ≥ PrlL . (21)

We select the first M best local models for constructing the
SER when the criterion

1−
M∑
m=1

Prlm (t) < ε, (22)

is met, where 0 < ε < 1 is a desired tolerance. These
selected M local linear models are then used to construct the
SER prediction for the next sample tnext = t + 1, which is
detailed in the next subsection. Note that this SER prediction
construction is based on the probability metric (20), which
is different from the normalized MSE metric used in our
previous SEMLM [32].

The above discussion also suggests a pruning strategy.
Specifically, the local models to be removed should be the
lL th to lM+1thmodels that are not selected to form the SER for
the prediction at tnext . However, pruning a model based on its
‘one-sample’ prediction performance may not be sufficiently
reliable. Note that it is always desired to introduce a ‘mem-
ory depth’ for an ensemble learner. In our growing strategy,
a local linear model is constructed upon a data window with
window size WG. Within this data window, the process is
considered to be stationary. Similarly, we introduce a data
window for pruningwith thewindow sizeWP. If a localmodel
is never selected over the consecutiveWP prediction samples,
then it can be removed with high confidence.

Our pruning strategy is listed in Algorithm 2. Since p and ε
are the algorithmic parameters of the selective ensemble
prediction, the only algorithmic parameter of our pruning
strategy isWP. We can conveniently setWP=WG.
Remark 2: Since the newest local linear model fL repre-

sents the latest data, it is highly desired to retain it. Therefore,
we slightly modify the selection procedure by always retain-
ing fL . Consequently, countL in Algorithm 2 is always set to
zero. To ensure the diversity and hence prediction accuracy
of the ensemble, a minimal number of local models Lmin
should be guaranteed. Accordingly, pruning in Algorithm 2
can be modified so that maximally only the (L−Lmin) old-
est models in 0 can be removed. More specifically, if the

Algorithm 2 Pruning Strategy
1: Initialization
2: Give WP, set counters of all local models countl = 0 for

1 ≤ l ≤ L, set t = tini and index = 0.
3: Step 1: Pruning in pruning model window
4: Perform relevant operations of SER construction.
5: If (t − tini ≤ WP)
6: For l = 1, 2, . . . ,L
7: If fl is not selected at current sample t
8: countl = countl + 1.
9: End if
10: End for
11: Set t = t + 1 and go to Step 1.
12: Else
13: For l = 1, 2, . . . ,L
14: If countl = WG
15: Add l to pruning model index set 0, and set

index = index+ 1.
16: End if
17: End for
18: Delete fl for all l ∈ 0, and set L = L − index.
19: End if
20: Step 2: Pruning model window update
21: Clear counters for all local models, set tini = t and

index = 0, and go to Step 1.

number of removal model candidates (given by index counter
in Algorithm 2) in 0 is larger than L−Lmin, only (L−Lmin)
of them can be removed. Appropriate value of Lmin is closely
linked to the growing window size WG. If the value of WG
is small, each data window only represents a small region
of local characteristics and, therefore, the size of the model
library, i.e., Lmin, should be sufficiently large to cover the
entire data range. By contrast, if WG is large, a small size of
the model library is sufficient to cover all the process states.
In most cases, there exists a training data set for discovering
the local process characteristics and identifying the local
models to represent these local process states. In this case,
we can set the minimum size of the model library Lmin to the
size of the local model set identified during training.

C. NEW ADAPTIVE SELECTIVE ENSEMBLE PREDICTION
After the online operations at sample t , the set of the local
linear models {fl}Ll=1 have been produced. At the next sample
of tnext = t+1, the task of online modeling is to produce the
model prediction ŷ(tnext ) for the process’s true output y(tnext ),
given the process input x(tnext ) and the available local model
set {fl}Ll=1. We adopt an ensemble of the selected M local
linear models from the model library {fl}Ll=1 based on the p
latest labeled data {x(t − i), y(t − i)}p−1i=0 .
Recalling (17) to (22), the M selected local linear models

yield theM model outputs

ŷlm (t − i) = flm (x(t − i)), 1 ≤ m ≤ M , (23)
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for 0 ≤ i ≤ p− 1. The estimate ŷ(t − i) of the process output
y(t− i) is given as the weighted summation of theM selected
subset models, which is computed by

ŷ(t − i) =
∑M

m=1
θm(t )̂ylm (t − i), 0 ≤ i ≤ p− 1, (24)

where nonnegative θm(t) is the combining coefficient for the
mth selected local model, and the combining coefficients
must satisfy the constraint∑M

m=1
θm(t) = 1. (25)

The estimation errors

e(t − i) = y(t − i)− ŷ(t − i), 0 ≤ i ≤ p− 1, (26)

are utilized to determine the combining coefficients. Specifi-
cally, the optimal combining coefficients can be obtained by
minimizing the LS cost function

V (t) =
1
2

p−1∑
i=0

e2(t − i), (27)

subject to the constraint (25). Because of
∑M

m=1 θm(t) = 1,

V (t)=
1
2

p−1∑
i=0

(
y(t − i)−

M∑
m=1

θm(t )̂ylm (t − i)
)2

=
1
2

p−1∑
i=0

( M∑
m=1

θm(t)y(t − i)−
M∑
m=1

θm(t )̂ylm (t − i)
)2

=
1
2

p−1∑
i=0

( M∑
m=1

θm(t)elm (t−i)
)2
=

1
2
θT (t)Ē(t)θ (t), (28)

where θ (t)=
[
θ1(t) · · · θM (t)

]T and Ē(t) is the estimated error
covariance matrix given by

Ē(t) =
p−1∑
i=0

 e2l1 (t − i) · · ·el1 (t − i)elM (t − i)
...

. . .
...

el1 (t − i)eLM (t − i)· · · e2lM (t − i)

. (29)

The problem of determining the optimal θ (t) can then be
formulated as the following optimization

min
θ

1
2
θT (t)Ē(t)θ (t),

s.t.
∑M

m=1
θm(t) = 1. (30)

The Lagrangian function for the optimization (30) is given by

L
(
θ (t); γ

)
=

1
2
θT (t)Ē(t)θ (t)+ γ

(
1TMθ (t)− 1

)
, (31)

where γ > 0 is a Lagrange multiplier, and 1M = [1 · · · 1]T

∈ RM . Letting ∂
∂θ(t)L=0M yields

Ē(t)θ (t)+ γ1M = 0M , (32)

where 0M = [0 · · · 0]T ∈ RM . This suggests that the opti-
mal combining vector θ̂ can be obtained as follows. First,
calculate

θ̃ (t) = Ē
−1

(t)1M , (33)

which is followed by the normalization

θ̂m(t) =
1∑M

j=1 θ̃j(t)
θ̃m(t), 1 ≤ m ≤ M . (34)

The prediction ŷ(tnext ) for the process’s true output y(tnext )
is produced as the selected ensemble

ŷ(tnext ) =
∑M

m=1
θ̂m(t)flm

(
x(tnext )

)
. (35)

Algorithm 3 summarizes the adaptive selective ensemble
based prediction using our GAP-SER, where the prediction
horizon p and the desired threshold ε are the two algorithmic
parameters of selective ensemble prediction construction.

Algorithm 3 Adaptive Prediction Using GAP-SER
1: Initialization
2: At beginning of online operation, local model set {fl}

Lmin
l=1

has been constructed, otherwise give value of Lmin.
3: Give WG, p and ε, setWP = WG.
4: Step 1: Online prediction
5: Give input x(tnext ) at new sample time tnext = t + 1.
6: Calculate probability Prl(t) of each local model using

(20) for 1 ≤ l ≤ L.
7: Select M subset models until termination criterion (22)

is satisfied.
8: Calculate error covariance matrix Ē(t) using (29).
9: Calculate optimal combining coefficients θ̂ (t) using (33)

and (34).
10: Predict true system output y(tnext ) with selective ensem-

ble prediction (35).
11: Step 2: Online pruning
12: Perform relevant pruning operations.
13: Step 3: Online growing
14: When y(tnext ) is available, add {x(tnext ), y(tnext )} to

dataset with t = t + 1.
15: Carry out relevant growing operations to adapt local

model set.
16: Set tnext = tnext + 1, and go to Step 1.

Remark 3: The adaptive selective ensemble prediction of
Algorithm 3 is very different from the one given in our
previous work [32]. First, the probability metric is used in
our present work which is different from the selection metric
of [32]. More importantly, unlike the scheme of [32], which
only performs adaptive local modeling by growing the local
linear model set, we not only perform adaptive model set
growing but also carry out reliable adaptive local model set
pruning. This significantly reduces the online computational
complexity of the adaptive selective ensemble prediction,
without sacrificing the prediction accuracy.

III. EXPERIMENTAL RESULTS
Experiments involving a chaotic time series prediction and
two real-world data sets are performed to evaluate the pro-
posed GAP-SER, and the results are compared with existing
online modeling approaches, which include single global
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nonlinear modeling schemes of the RAN [17], the OS-ELM
with RBF nodes [14], [15] and the fast tunable RBF [19] as
well as the ensemble modeling schemes of the EOS-ELM
with RBF nodes [27] and our recent SEMLM [32]. The MSE
metric

MSE(t) =
1
t

∑t

i=1

(
y(i)− ŷ(i)

)2
, (36)

is utilized to evaluate the online prediction performance,
where ŷ(i) denotes the model prediction for y(i). The online
computational complexity of an adaptive modeling method is
quantified by its online ACTpS. The experiments are carried
out onMatlab 2017a, running on a PCwith i7-3770 3.40GHz
processor of 4 cores and 16GB of RAM.

A. ONLINE CHAOTIC TIME SERIES PREDICTION
1) DATA DESCRIPTION
Lorzen chaotic time series [41] is governed by the three
differential equations as

d x(t)
d t
= a(y(t)− x(t)),

d y(t)
d t
= cx(t)− x(t)z(t)− y(t),

d z(t)
d t
= x(t)y(t)− bz(t),

(37)

where a, b and c are the parameters that control the behaviour
of Lorzen system. In our experiments, three cases are con-
sidered, and they are 1) Lorenz series with fixed parame-
ters (LSF) a = 10, b = 8/3 and c = 28; 2) Lorenz series
with time-varying parameters (LSTV): a = 10 andb =

4+ 3(1+ sin(0.1t))
3

,

c = 25+ 3
(
1+ cos

(
20.001t

))
;

(38)

and 3) Lorenz series with time-based drift (LSTD): a = 10,
b = 8/3 and c = 28 but {y(t)} are weighted by an exponential
time-based drift to obtain the new series

{̃
y(t)

}
according to

ỹ(t) = 1.10.01ty(t), (39)

which is used in prediction, rather than the original y(t). The
time series

{̃
y(t)

}
is even more nonstationary than {y(t)} of

1) and 2). In particular, the dynamic range of ỹ(t) changes
from [−20, 20] initially to [−2000, 2000] in the end.
The fourth-order Runge-Kutta method with a step size of

0.01 is used to generate the samples, and only Y -dimension
samples {y(t)} are used for time-series prediction. The
60-steps ahead prediction is considered, which predicts y(t)
with the past samples

x(t) =
[
y(t − 60) y(t − 66) y(t − 72) y(t − 78)

]T
. (40)

In the LSTD case, y(t) is replaced by ỹ(t). In all the simula-
tions, after a long initial period, 4000 samples are generated.
The first 1000 samples are used for initial training and the
last 3000 samples are employed for online prediction. Noted
that the RAN, the fast tunable RBF, our previous SEMLM
and our proposed GAP-SER do not really need such a large

number of training samples but the OS-ELM and EOS-ELM
need, as the ELM modeling must contain a large number
of hidden nodes to cover the entire input space. For each
time series, 100 independent realizations are generated. The
performance of each method are presented by its mean and
standard deviation (STD) of the test MSE and ACTpS over
100 realizations.

2) INITIAL TRAINING
The RAN does not really need training and may be applied
directly to prediction. Since we have training data, we can
apply the RAN to the training data and obtain an initial RAN
model. In the following, ‘RAN’ represents the RAN without
initial training and ‘RANini’ denotes the RAN with initial
training. Similarly, our GAP-SER may be applied directly to
online prediction from scratch. Algorithm 1 will gradually
build up a base model set. However, the online prediction
accuracy may be poor during this built-up period, as there
may exist insufficient number of base local models. In real
life, a prediction model can only be applied to online pre-
diction, if the model is known to at least match well the
underlying process’s past dynamics. Therefore, in practice,
initial training is somewhat necessary and always desired.
The same discussion also applies to the SEMLM. For the
OS-ELM, we randomly select a large number of training
input data points as its centers to cover the input space and
determine its weights by the LS estimate. For the EOS-ELM,
we use 5-model ensemble and train each base model similarly
to the OS-ELM. For the fast tunable RBF, the training is done
by the orthogonal least squares algorithm [42] to construct
a small RBF model. For the SEMLM and GAP-SER, the
initial local linear model set is obtained byAlgorithm 1. Fig. 1
shows the influence of the window sizeWG on the number of
local linear models obtained during training.

FIGURE 1. Influence of window size WG on number of local models
obtained by Algorithm 1 for three training datasets of Lorenz time series.

3) ONLINE PREDICTION PERFORMANCE COMPARISON
Three algorithmic parameters of the GAP-SER, namely, the
growing window size WG, the prediction horizon p and the
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FIGURE 2. Influence of threshold ε on: (a) test MSE, (b) size of selective ensemble, (c) number of local models, and (b) ACTpS, for online
prediction of Lorenz time series.

threshold ε for constructing selective ensemble, need to be
set. Note that the pruning widow size is set to WP = WG.
The impacts of WG and p on adaptive modeling and online
prediction are similar to the SEMLM, which is detailed in our
previous work [32]. Generally, model built on a large window
size is more stable or accurate but may not respond quickly
to data changes [43]. Therefore, selecting an appropriate
WG is a trade off between stability and adaptive capability.
WG = 38, 53 and 36 are selected empirically for the LSF,
LSTV and LSTD, respectively. The choice of p typically
trades off the computational complexity and the robustness
against noise [32]. Also since a smaller p can better track local
characteristics, which is beneficial in fast time-varying envi-
ronments, we choose a small p = 5 empirically. Note that ε
is particularly important, as it not only influences the number
of subset models for selective ensemble but also determines
howmanymodels to be removed. GivenWG and p, the impact
of ε is investigated. It can be seen from Fig. 2 (a) that the test
MSE increases with ε. The reason is twofold. 1) The number
of subset models selected decreases as ε increases, which can
be seen from Fig. 2 (b). When ε = 1, only one local model

is used for online prediction. 2) As ε increases, more models
are removed from themodel set and hence the number of local
models L decreases, until L reaches theminimum Lmin, as can
be seen from Fig. 2 (c). Basically, increasing ε enhances the
prediction accuracy at the cost of higher online computational
complexity, as clearly illustrated by Fig. 2 (a) and Fig. 2 (d).
Taking into account both prediction accuracy and computa-
tional complexity, ε=0.5, 0.5 and 0.6 are chosen for the LSF,
LSTV and LSTD, respectively.

We set the algorithmic parameters of the SEMLM in a
similar way. For the fast tunable RBF [19], the node replace-
ment threshold and the number of latest data points for weight
adaptation are empirically chosen as 10−6 and 5, respectively,
while the step size and the maximum number of iterations for
its iterative search procedure are empirically set as 0.01 and 5,
respectively. For the RAN [18], its algorithmic parameters
for online modeling, namely, the maximum and minimum
center distance thresholds, the error threshold and the decay
constant, are carefully tuned for each time series.

Figs. 3 to 5 show the learning curves of various schemes
for the LSF, LSTV and LSTD test datasets, respectively,
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FIGURE 3. Online prediction of Lorenz time series with fixed parameters: (a) average model size learning curves, and (b) average MSE
learning curves.

FIGURE 4. Online prediction of Lorenz time series with time-varying parameters: (a) average model size learning curves, and (b) average
MSE learning curves.

FIGURE 5. Online prediction of Lorenz time series with time-based drift: (a) average model size learning curves, and (b) average MSE
learning curves.

in terms of average test MSE and model set size/number
of RBF nodes. Since the numbers of RBF nodes are fixed
for the OS-ELM, EOS-ELM and fast tunable RBF, only

the learning curves of model set size/number of RBF nodes
are shown for the SEMLM, GAP-SER and RAN. Table 1
further compares the performance of prediction accuracy and
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TABLE 1. Lorenz time series prediction: comparison of online prediction and adaptive modeling performance (average±STD) for the OS-ELM, EOS-ELM,
RAN, fast tunable RBF, SEMLM and proposed GAP-SER.

online computational complexity achieved by the OS-ELM,
EOS-ELM, RAN, fast tunable RBF, SEMLM and GAP-SER.

Not surprisingly, the OS-ELM and EOS-ELM perform
poorly, in terms of both test MSE and ACTpS. As expected,
the EOS-ELM imposes significantly higher ACTpS than
the OS-ELM and yet it does not necessarily have better
online prediction accuracy than the latter. This is because the
EOS-ELM of [27] does not have necessary diversity capabil-
ity, as all the base RBF models are trained on the same data.
The results show that the RAN outperforms the OS-ELM
and EOS-ELM considerably, in terms of both test MSE and
ACTpS. Interestingly, the RANini does not always achieve
better prediction accuracy than the RAN. For the LSF and
LSTV prediction, for instance, the test MSE of the RANini is
poorer than that of the RAN. This may due to that for learning
in a nonstationary environment, a model with small memory
depth is better to capture the current signal dynamics. Also the
RANini does not always impose higher online computational
complexity than the RAN. In the LSF and LSTD predictions,
the RANini actually has lower ACTpS than the RAN.

The fast tunable RBF, the SEMLM and the proposed
GAP-SER are in a complete different league, and they dra-
matically outperform the OS-ELM, EOS-ELM and RAN, in
terms of both prediction accuracy and online computational
complexity. Specifically, the fast tunable RBF of [19] with
its fast adaptive capability and small model size is capable
of achieving excellent prediction accuracy while imposing

the lowest ACTpS. Owing to its fast adaptation capability
and maximum diversity property, the SEMLM of [32] out-
performs the fast tunable RBF, in terms of test MSE. The
SEMLM however imposes higher ACTpS than the fast tun-
able RBF. The reason is that the SEMLMonly grows the local
linear model set online. During long online operation, the
size of the local linear model set may become large and this
causes high computational complexity in constructing selec-
tive ensemble prediction. By contrast, our GAP-SER with its
reliable pruning strategy is capable of removing ‘out-of-date’
models from the local linear model set, and consequently it
imposes considerably smaller computational complexity in
constructing selective ensemble prediction, without sacrific-
ing prediction accuracy, in comparison with the SEMLM.
In fact, the GAP-SER may even outperform the SEMLM,
in terms of test MSE, particularly for highly nonstationary
data, such as the LSTV and LSTD predictions. Observe that
the GAP-SER can achieve comparable ACTpS with the very
efficient fast tunable RBF.

B. ONLINE IDENTIFICATION OF MICROWAVE HEATING
SYSTEM
1) SYSTEM DESCRIPTION
Microwave heating process (MHP) is a typical nonlinear and
time-varying thermal process [44]–[47]. Since MHP involves
multiple physical fields coupling and its inner electromag-
netic field distribution is normally unknown [44], data-driven
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modeling technique offers a practical means of MHP iden-
tification [48]–[50]. Temperature is a crucial measurement
during the operation of MHP, as thermal runaway often
occurs due to the time-varying physicochemical properties of
material [46]. With the increase of the medium temperature,
its dielectric loss increases dramatically, which conversely
poses a positive feedback to temperature increase. Therefore,
accurate online temperature prediction is vital to detect ther-
mal runaway in advance.

FIGURE 6. An industrial microwave heating system.

Fig. 6 illustrates a real-world industrial microwave heating
system [48], [51], which consists of five microwave gen-
erators and waveguides, temperature measurement sensors
and the control system hosted in a programmable logic con-
troller (PLC). Microwave generated by each microwave gen-
erator is transmitted through the corresponding waveguide,
which is fed into the cavity and absorbed by the heated
material. Each microwave generator has a maximum power
supply of 3 kW at 2.45GHz. The material is continuously
transported through cavity by the conveyor belt, whose speed
can be adjusted by a motor driver. Three fiber optical sen-
sors (FOSs), denoted as FOS1 to FOS3, are placed at three
different key locations using microwave transparent taps to
online record multiple-points of temperature. During the real-
time operation of this MHP, the control center receives the
measured temperature values from the FOSs, and sends con-
trol commends, which include the five microwave powers
upi (t), 1 ≤ i ≤ 5, for the five microwave generators as well as
the conveyor speed v(t) to the cavity. Thus, the control inputs
to this MHP are given by

u(t) =
[
up1 (t) up2 (t) up3 (t) up4 (t) up5 (t) v(t)

]T
. (41)

Each FOS measures the temperature ysj (t) at the FOS’s loca-
tion, where 1 ≤ j ≤ 3. Because of near instantaneous
response of MHP, the temperature ysj (t) at the jth FOS’s
location can be adequately represented by [48], [51]

ysj (t) = fnl−ns,j(xj(t); t), (42)

where fnl−ns,j(·; t) represents the corresponding unknown
nonlinear and time-varying system mapping with the input

xj(t) =
[
ysj (t − 1) uT (t − 1)

]T
∈ R7. (43)

From large amount of data collected from this industrial
microwave heating system, we use three datasets from the
three FOSs, and each data set contains 3000 data samples.
We first normalize the five microwave power inputs and the
temperature measurements according to

ūpi (t) =
upi (t)
1000

, 1 ≤ i ≤ 5, (44)

ȳsj (t) =
ysj (t)− ymin,sj

ymax,sj − ymin,sj
, 1 ≤ j ≤ 3, (45)

where ymin,sj and ymax,sj are the minimum and maximum
temperature measurements of the jth FOS, respectively. For
each FOS’s dataset, we use the first 1000 samples for training
and and the last 2000 samples for online prediction.

2) ONLINE IDENTIFICATION PERFORMANCE COMPARISON
Similar to Lorenz time series prediction, we first carry out
initial training for all the schemes compared and empirically
choose appropriate values for the algorithmic parameters of
the SEMLM and GAP-SER. Since the system dynamics do
not change as quickly as Lorenz chaotic time series, the
prediction horizon p can be larger to enhance model stability,
and we choose p = 25 empirically. For the FOSi, 1 ≤ i ≤ 3,
the window size and threshold are empirically set toWG = 22
and ε = 0.5, WG = 22 and ε = 0.5, and WG = 21 and
ε = 0.8, respectively. For the tunable RBF, the node replace-
ment threshold and the weight update innovation length are
chosen as 10−4 and 5, respectively, while the step size and
iteration number are set to 0.01 and 5, respectively. The
algorithmic parameters of the RAN are also careful chosen.

Figs. 7 to 9 depict the test MSE and model size learning
curves for the three FOSs’ data, while Table 2 compares the
online identification performance of all the modeling meth-
ods, in terms of prediction accuracy and online computational
complexity. From these results, the same observations as
those for Lorenz chaotic time series can be drawn. In par-
ticular, our GAP-SER imposes the lowest ACTpS, while
achieving the test MSE as good as the SEMLM.

C. EEG DATA MODELING
1) DATA DESCRIPTION
Analysis of electroencephalographic (EEG) time series is
a practical example of nonlinear and nonstationary system
identification [52], [53]. We use a real EEG time series {y(t)}
available from the University of Bonn [54]. The sampling rate
is 173.61Hz, and we construct a dataset DN ={x(t), y(t)}Nt=1
with 10 seconds of the signal, a total of 1730 samples, where
x(t)= [y(t−1) y(t−2) y(t−3) y(t−4)]T . The first 5 seconds
of observations with 865 data pairs are used for training, and
the rest 5 seconds of observations, also having 865 data pairs,
are used for testing.

2) ONLINE MODELING PERFORMANCE COMPARISON
Only the RAN, fast tunable RBF, SEMLM and GAP-SER
are compared, as the online performance of the OS-ELM
and EOS-ELM are poor. The algorithmic parameters of

73288 VOLUME 8, 2020



T. Liu et al.: Growing and Pruning SER for Nonlinear and Nonstationary Systems

FIGURE 7. Online prediction of FOS1 temperature: (a) model size learning curves, and (b) MSE learning curves.

FIGURE 8. Online prediction of FOS2 temperature: (a) model size learning curves, and (b) MSE learning curves.

FIGURE 9. Online prediction of FOS3 temperature: (a) model size learning curves, and (b) MSE learning curves.

the GAP-SER are empirically chosen to be WG = 30,
p = 30 and ε = 0.1. The threshold of the SEMLM
is ε = 1. For the tunable RBF, we have the node
replacement threshold 10−5, the weight update innovation

length 3, the step size 0.01, and the iteration number 5.
For the RAN, the maximum and minimum center distances,
the error threshold and the decayed constant are also set
empirically.
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TABLE 2. Online identification of MHP: comparison of online prediction and adaptive modeling performance for the OS-ELM, EOS-ELM, RAN, fast tunable
RBF, SEMLM and GAP-SER.

TABLE 3. EEG data modeling: comparison of online prediction and adaptive modeling performance for the RAN, fast tunable RBF, SEMLM and GAP-SER.

FIGURE 10. Online MSE learning curves for EEG data modeling.

The online MSE learning curves for the four methods
are shown in Fig. 10. Additionally, the online prediction
and adaptive model performance are compared in Table 3.

FIGURE 11. Comparison of the recovered signal by the GAP-SER and the
original EEG observations for the EEG testing dataset.

Clearly, the results obtained demonstrate that our proposed
GAP-SER is capable of capturing the nonstationary dynamics
of the EEG signal accurately, while imposing very low online
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computational complexity. The recovered signal calculated
by the GAP-SER and the original EEG signal are shown
in Fig. 11.

IV. CONCLUSION
This work has proposed a new growing and pruning selective
ensemble regression learner for online adaptive modeling of
nonlinear and nonstationary data. Our growing strategy can
automatically identify every newly emerging process state
from fast-arriving data and fit a local linear model to it. This
ensures the maximum diversity of the base model set. On the
other hand, our new pruning strategy is capable of removing
out-of-date local linear models reliably and, therefore, sig-
nificantly enhancing the plasticity of our selective ensemble
learner. A direct consequence of this reliable pruning is that
online computational complexity is significantly reduced,
which is vital for adaptive modeling of fast arriving data.
Based on a probability metric, our new selective ensemble
learner selects a small number of best subset linear models
from the local linear model set and optimally combines them
to produce the accurate online prediction. Extensive experi-
ments, including a chaotic time series prediction, online iden-
tification of a real-world industrial microwave heating system
and EEG data modeling, have been conducted. The results
obtained have demonstrated that our GAP-SER compares
very favourably with the existing state-of-the-arts adaptive
modeling schemes for nonlinear and nonstationary systems.
Specifically, it has been shown that our GAP-SER is capable
of producing the most accurate prediction while imposing the
lowest online computational complexity for highly nonlinear
and nonstationary cases. Our further efforts will be devoted to
apply this modeling technique in real-world industrial control
systems.

REFERENCES
[1] Z.-H. Zhou, N. V. Chawla, Y. Jin, and G. J. Williams, ‘‘Big data opportu-

nities and challenges: Discussions from data analytics perspectives [dis-
cussion forum],’’ IEEE Comput. Intell. Mag., vol. 9, no. 4, pp. 62–74,
Nov. 2014.

[2] G.Ditzler,M. Roveri, C. Alippi, andR. Polikar, ‘‘Learning in nonstationary
environments: A survey,’’ IEEE Comput. Intell. Mag., vol. 10, no. 4,
pp. 12–25, Nov. 2015.

[3] L. Rutkowski, ‘‘Generalized regression neural networks in time-varying
environment,’’ IEEE Trans. Neural Netw., vol. 15, no. 3, pp. 576–596,
May 2004.

[4] J. Liu and D.-S. Chen, ‘‘Nonstationary fault detection and diagnosis for
multimode processes,’’ AIChE J., vol. 56, no. 1, pp. 207–219, Jan. 2010.

[5] H. Ning, G. Qing, T. Tian, and X. Jing, ‘‘Online identification of nonlin-
ear stochastic spatiotemporal system with multiplicative noise by robust
optimal control-based kernel learning method,’’ IEEE Trans. Neural Netw.
Learn. Syst., vol. 30, no. 2, pp. 389–404, Feb. 2019.

[6] J. Shan, H. Zhang, W. Liu, and Q. Liu, ‘‘Online active learning ensemble
framework for drifted data streams,’’ IEEE Trans. Neural Netw. Learn.
Syst., vol. 30, no. 2, pp. 486–498, Feb. 2019.

[7] J. L. Lobo, I. Laña, J. Del Ser, M. N. Bilbao, and N. Kasabov, ‘‘Evolving
spiking neural networks for online learning over drifting data streams,’’
Neural Netw., vol. 108, pp. 1–19, Dec. 2018.

[8] J. Gama, R. Sebastião, and P. P. Rodrigues, ‘‘On evaluating stream learning
algorithms,’’Mach. Learn., vol. 90, no. 3, pp. 317–346, Mar. 2013.

[9] A. Vergara, S. Vembu, T. Ayhan, M. A. Ryan, M. L. Homer, and R. Huerta,
‘‘Chemical gas sensor drift compensation using classifier ensembles,’’
Sens. Actuators B, Chem., vols. 166–167, pp. 320–329, May 2012.

[10] M. Kano and M. Ogawa, ‘‘The state of the art in chemical process control
in Japan: Good practice and questionnaire survey,’’ J. Process Control,
vol. 20, no. 9, pp. 969–982, Oct. 2010.

[11] S. Chen and S. A. Billings, ‘‘Recursive prediction error parameter esti-
mator for non-linear models,’’ Int. J. Control, vol. 49, no. 2, pp. 569–594,
Feb. 1989.

[12] S. Chen, ‘‘Nonlinear time series modelling and prediction using Gaussian
RBF networks with enhanced clustering and RLS learning,’’ Electron.
Lett., vol. 31, no. 2, pp. 117–118, Jan. 1995.

[13] F. Ding, P. X. Liu, and G. Liu, ‘‘Multiinnovation least-squares identifica-
tion for system modeling,’’ IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 40, no. 3, pp. 767–778, Jun. 2010.

[14] G.-B. Huang, Q.-Y. Zhu, andC.-K. Siew, ‘‘Extreme learningmachine: The-
ory and applications,’’ Neurocomputing, vol. 70, nos. 1–3, pp. 489–501,
Dec. 2006.

[15] N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan, ‘‘A
fast and accurate online sequential learning algorithm for feedforward
networks,’’ IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1411–1423,
Nov. 2006.

[16] G.-B. Huang and L. Chen, ‘‘Enhanced random search based incremen-
tal extreme learning machine,’’ Neurocomputing, vol. 71, nos. 16–18,
pp. 3460–3468, Oct. 2008.

[17] J. Platt, ‘‘A resource-allocating network for function interpolation,’’Neural
Comput., vol. 3, no. 2, pp. 213–225, Jun. 1991.

[18] V. Kadirkamanathan and M. Niranjan, ‘‘A function estimation approach to
sequential learning with neural networks,’’ Neural Comput., vol. 5, no. 6,
pp. 954–975, Nov. 1993.

[19] H. Chen, Y. Gong, X. Hong, and S. Chen, ‘‘A fast adaptive tunable RBF
network for nonstationary systems,’’ IEEE Trans. Cybern., vol. 46, no. 12,
pp. 2683–2692, Dec. 2016.

[20] S. G. Soares and R. Araújo, ‘‘A dynamic and on-line ensemble regres-
sion for changing environments,’’ Expert Syst. Appl., vol. 42, no. 6,
pp. 2935–2948, Apr. 2015.

[21] B. Krawczyk, L. L. Minku, J. Gama, J. Stefanowski, and M. Woźniak,
‘‘Ensemble learning for data stream analysis: A survey,’’ Inf. Fusion,
vol. 37, pp. 132–156, Sep. 2017.

[22] A. Fern and R. Givan, ‘‘Online ensemble learning: An empirical study,’’
Mach. Learn., vol. 53, nos. 1–2, pp. 71–109, Oct. 2003.

[23] J. Z. Kolter andM. A.Maloof, ‘‘Dynamic weighted majority: An ensemble
method for drifting concepts,’’ J. Mach. Learn. Res., vol. 8, pp. 2755–2790,
Dec. 2007.

[24] M. Pratama,W. Pedrycz, and E. Lughofer, ‘‘Evolving ensemble fuzzy clas-
sifier,’’ IEEE Trans. Fuzzy Syst., vol. 26, no. 5, pp. 2552–2567, Oct. 2018.

[25] Y. Sun, K. Tang, L. L. Minku, S. Wang, and X. Yao, ‘‘Online ensemble
learning of data streams with gradually evolved classes,’’ IEEE Trans.
Knowl. Data Eng., vol. 28, no. 6, pp. 1532–1545, Jun. 2016.

[26] L. L. Minku, A. P. White, and X. Yao, ‘‘The impact of diversity on online
ensemble learning in the presence of concept drift,’’ IEEE Trans. Knowl.
Data Eng., vol. 22, no. 5, pp. 730–742, May 2010.

[27] Y. Lan, Y. C. Soh, and G.-B. Huang, ‘‘Ensemble of online sequen-
tial extreme learning machine,’’ Neurocomputing, vol. 72, nos. 13–15,
pp. 3391–3395, Aug. 2009.

[28] H. Chen, Y. Gong, and X. Hong, ‘‘A new adaptive multiple modelling
approach for non-linear and non-stationary systems,’’ Int. J. Syst. Sci.,
vol. 47, no. 9, pp. 2100–2110, Jul. 2016.

[29] P. Kadlec and B. Gabrys, ‘‘Local learning-based adaptive soft sensor for
catalyst activation prediction,’’ AIChE J., vol. 57, no. 5, pp. 1288–1301,
May 2011.

[30] W. Shao, X. Tian, P. Wang, X. Deng, and S. Chen, ‘‘Online soft sensor
design using local partial least squares models with adaptive process
state partition,’’ Chemometric Intell. Lab. Syst., vol. 144, pp. 108–121,
May 2015.

[31] W. Shao, S. Chen, and C. J. Harris, ‘‘Adaptive soft sensor development for
multi-output industrial processes based on selective ensemble learning,’’
IEEE Access, vol. 6, pp. 55628–55642, Oct. 2018.

[32] T. Liu, S. Chen, S. Liang, and C. J. Harris, ‘‘Selective ensemble of multiple
local model learning for nonlinear and nonstationary systems,’’Neurocom-
puting, vol. 378, pp. 98–111, Feb. 2020.

[33] P. Domingos andG.Hulten, ‘‘A general framework forminingmassive data
streams,’’ J. Comput. Graph. Statist., vol. 12, no. 4, pp. 945–949, Jan. 2003.

[34] S. Grossberg, ‘‘Nonlinear neural networks: Principles, mechanisms, and
architectures,’’ Neural Netw., vol. 1, no. 1, pp. 17–61, Jan. 1988.

VOLUME 8, 2020 73291



T. Liu et al.: Growing and Pruning SER for Nonlinear and Nonstationary Systems

[35] F. Chu and C. Zaniolo, ‘‘Fast and light boosting for adaptive mining of
data streams,’’ in Proc. Pacific–Asia Conf. Knowl. Discovery Data Mining,
Sydney, NSW, Australia, May 2004, pp. 282–292.

[36] J. Z. Kolter and M. A. Maloof, ‘‘Using additive expert ensembles to
cope with concept drift,’’ in Proc. 22nd Int. Conf. Mach. Learn. (ICML),
Aug. 2005, pp. 449–456.

[37] K. Nishida and K. Yamauchi, ‘‘Adaptive classifiers-ensemble system for
tracking concept drift,’’ in Proc. Int. Conf. Mach. Learn. Cybern., Hong
Kong, Aug. 2007, pp. 3607–3612.

[38] D. Brzezinski and J. Stefanowski, ‘‘Combining block-based and online
methods in learning ensembles from concept drifting data streams,’’ Inf.
Sci., vol. 265, pp. 50–67, May 2014.

[39] M. Grbovic and S. Vucetic, ‘‘Tracking concept change with incremental
boosting by minimization of the evolving exponential loss,’’ in Proc. Joint
Eur. Conf. Mach. Learn. Knowl. Discovery Databases, Athens, Greece,
Sep. 2011, pp. 516–532.

[40] S.-H. Jung, B.-C. Moon, and D. Han, ‘‘Unsupervised learning for crowd-
sourced indoor localization in wireless networks,’’ IEEE Trans. Mobile
Comput., vol. 15, no. 11, pp. 2892–2906, Nov. 2016.

[41] E. N. Lorenz, ‘‘Deterministic nonperiodic flow,’’ J. Atmos. Sci., vol. 20,
pp. 130–141, Mar. 1963.

[42] S. Chen, C. F. N. Cowan, and P. M. Grant, ‘‘Orthogonal least squares
learning algorithm for radial basis function networks,’’ IEEE Trans. Neural
Netw., vol. 2, no. 2, pp. 302–309, Mar. 1991.

[43] A. Bifet and R. Gavaldà, ‘‘Learning from time-changing data with adaptive
windowing,’’ in Proc. SIAM Int. Conf. Data Mining, Minneapolis, USA,
Apr. 2007, pp. 443–448.

[44] J. Zhong, S. Liang, Y. Yuan, and Q. Xiong, ‘‘Coupled electromagnetic
and heat transfer ODE model for microwave heating with temperature-
dependent permittivity,’’ IEEE Trans. Microw. Theory Techn., vol. 64,
no. 8, pp. 2467–2477, Aug. 2016.

[45] J. Zhong, S. Liang, and Q. Xiong, ‘‘Improved receding horizon H∞ tem-
perature spectrum tracking control for Debye media in microwave heating
process,’’ J. Process Control, vol. 71, pp. 14–24, Nov. 2018.

[46] C. A. Vriezinga, S. Sánchez-Pedreño, and J. Grasman, ‘‘Thermal runaway
in microwave heating: A mathematical analysis,’’ Appl. Math. Model.,
vol. 26, no. 11, pp. 1029–1038, Nov. 2002.

[47] E. Akkari, S. Chevallier, and L. Boillereaux, ‘‘Global linearizing control of
MIMO microwave-assisted thawing,’’ Control Eng. Pract., vol. 17, no. 1,
pp. 39–47, Jan. 2009.

[48] T. Liu, S. Liang, Q. Xiong, and K. Wang, ‘‘Adaptive critic based optimal
neurocontrol of a distributed microwave heating system using diagonal
recurrent network,’’ IEEE Access, vol. 6, pp. 68839–68849, Dec. 2018.

[49] X. Shi, J. Li, Q. Xiong, Y. Wu, and Y. Yuan, ‘‘Research of uniformity
evaluation model based on entropy clustering in the microwave heating
processes,’’ Neurocomputing, vol. 173, pp. 562–572, Jan. 2016.

[50] K. Wang, L. Ma, Q. Xiong, S. Liang, G. Sun, X. Yu, Z. Yao, and T. Liu,
‘‘Learning to detect local overheating of the high-power microwave heat-
ing process with deep learning,’’ IEEE Access, vol. 6, pp. 10288–10296,
Feb. 2018.

[51] T. Liu, S. Liang, Q. Xiong, and K. Wang, ‘‘Two-stage method for diag-
onal recurrent neural network identification of a high-power continu-
ous microwave heating system,’’ Neural Process. Lett., vol. 50, no. 3,
pp. 2161–2182, Dec. 2019.

[52] Y. Li, W.-G. Cui, Y.-Z. Guo, T. Huang, X.-F. Yang, and H.-L. Wei, ‘‘Time-
varying system identification using an ultra-orthogonal forward regression
and multiwavelet basis functions with applications to EEG,’’ IEEE Trans.
Neural Netw. Learn. Syst., vol. 29, no. 7, pp. 2960–2972, Jul. 2018.

[53] Y. Li, H.-L. Wei, S. A. Billings, and P. G. Sarrigiannis, ‘‘Identifica-
tion of nonlinear time-varying systems using an online sliding-window
and common model structure selection (CMSS) approach with appli-
cations to EEG,’’ Int. J. Syst. Sci., vol. 47, no. 11, pp. 2671–2681,
Aug. 2016.

[54] R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and
C. E. Elger, ‘‘Indications of nonlinear deterministic and finite-dimensional
structures in time series of brain electrical activity: Dependence on
recording region and brain state,’’ Phys. Rev. E, Stat. Phys. Plasmas
Fluids Relat. Interdiscip. Top., vol. 64, no. 6, pp. 061907-1–061907-8,
Nov. 2001.

TONG LIU received the B.Sc. degree in automa-
tion from the College of Automation, Chongqing
University, Chongqing, China, in 2016, where he
is currently pursuing the Ph.D. degree in con-
trol theory and control engineering. From Septem-
ber 2018 to September 2019, he was a Visiting
Ph.D. Student with the School of Electronics and
Computer Science, University of Southampton,
Southampton, U.K. His current research interests
include online learning, system identification, neu-

ral networks, machine learning, and intelligent control system design.

SHENG CHEN (Fellow, IEEE) received the
B.Eng. degree in control engineering from the
East China Petroleum Institute, Dongying, China,
in 1982, and the Ph.D. degree in control engi-
neering from City University, London, in 1986.
In 2005, he was awarded the higher doctoral
degree, Doctor of Science (D.Sc. degree), from the
University of Southampton, U.K.

From 1986 to 1999, he held research and
academic appointments at the Universities of

Sheffield, Edinburgh and Portsmouth, all in U.K. Since 1999, he has
been with the School of Electronics and Computer Science, University of
Southampton, where he holds the post of Professor of intelligent systems
and signal processing. He has published over 650 research articles. He has
more than 14,100 Web of Science citations with H-index 53 and more than
29,500 Google Scholar citations with H-index 75. His research interests
include neural networks and machine learning, wireless communications,
and adaptive signal processing.

Dr. Chen is a Fellow of the United Kingdom Royal Academy of Engineer-
ing and IET, the Distinguished Adjunct Professor at King Abdulaziz Univer-
sity, Jeddah, Saudi Arabia, and an Original ISI Highly Cited Researcher of
engineering, in March 2004.

SHAN LIANG (Member, IEEE) received the
M.Sc. degree in control science and engineer-
ing from the College of Automation, Chongqing
University, Chongqing, China, in 1995, and the
Ph.D. degree from the Department of Mechani-
cal Systems Engineering, Kumamoto University,
Kumamoto, Japan, in 2004. His current research
interests include numerical modeling, electromag-
netic theory, nonlinear systems, adaptive control,
and sensor networks.

CHRIS J. HARRIS received the B.Sc. degree from
the University of Leicester and the M.A. degree
from the University of Oxford, U.K., the
Ph.D. degree from the University of Southampton,
U.K., in 1972, and the D.Sc. degree from the
University of Southampton, in 2001.

He is the Emeritus Research Professor with
the University of Southampton, having previously
held senior academic appointments at the Impe-
rial College, Oxford and Manchester Universities,

as well as Deputy Chief Scientist for the U.K. Government. He is the
coauthor of over 500 scientific research articles during a 50 year research
career. He was awarded the IEE Senior Achievement Medal for Data
Fusion Research and the IEE Faraday Medal for Distinguished International
Research in Machine Learning. He was elected to the U.K. Royal Academy
of Engineering, in 1996.

73292 VOLUME 8, 2020


