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Abstract: A constructive learning algorithm for 
multioutput radial basis function networks is pre- 
sented. Unlike most network learning algorithms, 
which require a fixed network structure, this algo- 
rithm automatically determines an adequate 
radial basis function network structure during 
learning. By formulating the learning problem as a 
subset model selection, an orthogonal least- 
squares procedure is used to identify appropriate 
radial basis function centres from the network 
training data, and to estimate the network weights 
simultaneously in a very efficient manner. This 
algorithm has a desired property, that the selec- 
tion of radial basis function centres or network 
hidden nodes is directly linked to the reduction in 
the trace of the error covariance matrix. Nonlin- 
ear system modelling and the reconstruction of 
pulse amplitude modulation signals are used as 
two examples to demonstrate the effectiveness of 
this learning algorithm. 

1 Introduction 

The radial basis function (RBF) network has been 
applied to many diverse fields in signal processing in the 
past few years. The RBF method was originally 
employed as a numerical interpolation technique in 
multidimensional space [l], and was later adopted as a 
one-hidden-layer feedforward network [2]. An excellent 
review on this topic is given in Reference 3. Considerable 
attention has been focused on how to derive linear learn- 
ing methods by exploiting the structural characteristics of 
the RBF network. Each hidden node in an RBF network 
has a radially symmetric response around a node param- 
eter vector called a centre, and the network output layer 
is a set of linear combiners with weights. A common 
learning strategy is to randomly select some network 
input vectors as the RBF centres, thus effectively fixing 
the network hidden layer. The weights in the output layer 
can then be learnt using the least-squares (LS) method 
P I .  
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Arbitrarily choosing some data points as centres, 
however, may not always satisfy the requirement that 
centres should suitably sample the network input 
domain. Furthermore, such an approach may require an 
unnecessarily large RBF network to achieve a given level 
of performance and, as a result, causes numerical ill- 
conditioning. These shortcomings can be overcome by 
formulating the learning problem as one of selecting 
subset models while preserving the advantages of linear 
learning. For RBF networks with a scalar output, an 
intelligent learning algorithm has been derived based on 
the orthogonal LS (OLS) method, which constructs RBF 
networks in a rational way [4, 51. The algorithm chooses 
appropriate RBF centres one by one from training data 
points until a satisfactory network is obtained. Each 
selected centre maximises the increment to the explained 
variance of the desired output, and so learning does not 
suffer numerical ill-conditioning problems. An alternative 
linear learning procedure is the hybrid clustering and LS 
algorithm [6 ,  71. The main attraction of this algorithm is 
that it can naturally be implemented in a recursive form. 
However, the hybrid learning algorithm requires that the 
number of hidden nodes must first be given. 

In contrast to most learning algorithms, which can 
only work if a fixed network structure has first been 
specified, the OLS algorithm is a structural identification 
algorithm, and it constructs an adequate network struc- 
ture in an intelligent way during learning. The present 
study continues this theme and extends this OLS learn- 
ing algorithm to multioutput RBF networks. The basic 
idea is to use the trace of the desired output covariance 
matrix as the selection criterion for choosing RBF 
centres, instead of the variance in the single-output case. 
A brief summary of the RBF network architecture and a 
discussion on the approximation capability of RBF net- 
works are first given. The derivation of the OLS algo- 
rithm is then presented. Two applications are used to 
illustrate the OLS algorithm: the first case considers 
modelling multiinput-multioutput (MIMO) nonlinear 
systems based on an RBF network. In the second, the 
reconstruction of pulse amplitude modulation (PAM) 
signals is viewed as a multiclass classification problem, 
and an RBF network is constructed to approximate the 
optimal Bayesian solution. 
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Engineering Research Council under award GR/ 
G/53095. The authors gratefully acknowledge con- 
tributions from Prof. S.A. Billings on the topics 
reported in this study. 
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2 Network architecture and approximation ability 

The RBF network has a topology of the one-hidden-layer 
neural network. Denote the network input and output 
dimensions as n, and no, respectively, and let nh be the 
number of hdden nodes. The outputs of hidden nodes 
are specified by 

4, = +(llx - cjll; Uj )  1 < j  < n* (1) 
where x E R"' is a network input vector, cj E R"' are the 
RBF centres, uj are the real positive scalars known as the 
widths, 1 1  ' 1 1  denotes the Euclidean norm, and $(. ; U)  is a 
nonlinear function from R +  to R, and is referred to as the 
nonlinearity of hidden nodes. Each output node is a 
linear combiner defined by 

eh 

f,,(x) = 1 4j6j i  1 < i < no (2) 
j =  I 

where Oj i  are the weights. The nonlinearity +(. ; U )  has a 
radially symmetric shape. Although there is a variety of 
choices for this node nonlinearity, these choices belong to 
either the class one: 4(r;  U )  + 0 as r + CO, or the class 
two: +(r;  U )  + CO as r + 00. Two typical choices of +() 
are the Gaussian function 

4 ( r ;  U )  = exp ( -r2/uz) 

+(r ;  1) = r2 log (r) 

(3) 

(4) 
The overall input-output mapping of the network is 
f, 1 Rn'+ Rna. 

The RBF network has a very general approximation 
ability [S, 91. Under very mild assumptions on the non- 
linearity +( ), any continuous function f : D, c R"' + R"' 
can be uniformly approximated to within an arbitrary 
accuracy by an RBF network f, on D, provided that 
there are a sufficient number of hidden nodes, where D, 
is a compact subset of R"'. A sufficient condition on +() 
to guarantee the universal approximation is 4() being 
continuous and bounded [SI. This is obviously a very 
mild assumption, and the class one nonlinearity such as 
eqn. 3 satisfies this requirement. The class two nonlin- 
earity such as eqn. 4 does not satisfy this condition. 
According to Powell [lo], however, RBF networks based 
on the class two nonlinearity also have excellent approx- 
imation ability. In fact, it is easier to achieve a good 
approximation if 4 ( r ;  U )  + 00 as r + CO than if 4(r;  U )  + 0 
as r + CO. Based on these theoretical results, it can be 
concluded that the choice of 40 is not crucial for 
network performance. Although each hidden node may 
have a different width parameter u j ,  a same width is suffi- 
cient for universal approximation [SI. All the widths in 
the network can therefore be fixed to a value U ,  and this 
can result in a simpler training strategy. Some choices of 
the nonlinearity, such as eqn. 4, do not require to specify 
a width. 

and the thin-plate-spline function 

3 Learning based on orthogonal least-squares 
method 

The task of network learning is to choose appropriate 
centres cj and to determine the corresponding weights 
O i i ,  based on a given set of network training inputs and 
desired outputs {x(t), d(t)}r= where x(t) = [xl(t) . . . 
x,,(t)lT and d(t) = [dl(t) . . . d,o(t)]T. To avoid nonlinear 
learning, the RBF centres are to be selected from training 
data, and this is equivalent to a problem of subset model 
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selection. The full model is defined by considering all the 
training data {x(k)}f= as candidates for centres. 

Assume that a nonlinearity +() is chosen and a fixed 
width U is given. A candidate centre cj  = x(k) gives rise to 
a candidate hidden node d j  in the full RBF network of N 
hidden nodes. The desired outputs can be expressed as 

N 

dit) = C + , N O j i  + e,@) 1 < i < no (5)  
j =  I 

where e i t )  are the errors between the desired outputs and 
the network outputs. The model in eqn. 5 is a linear 
regression model. +,(t) are known as the regressors, 
which are some fixed functions of the input vector x(t). 
By defining 

di = [ddl) ... dJN)lT 1 < i < no (6) 

ei = [ei(I) . . .  1 < i < no (7) 

(8) = [4,(1) .. . diN)]' 1 < j < N 

then for 1 < t < N, eqn. 5 can be collectively written as 

611 . . .  81.. 
[d, . . .  dn0] = [@] . . .  m N ]  1 

~ N I  ' . '  ON% 

(9) 

[ - 1  
+ [ e ,  ' ' _  

or, more concisely, in the matrix form 

D = @ O + E  (10) 

The parameter matrix 0 can readily be solved using the 
LS principle. 

From a geometric viewpoint, the regressors mj form a 
set of basis vectors. These bases, however, are generally 
correlated. An orthogonal transformation can be per- 
formed to transfer from the set of mj into a set of orthog- 
onal basis vectors. This can be achieved by decomposing 
@J into 

@ =  WA (1  1) 

where 

rl ... % N  1 
0 ' . ,  ' .  

0 " '  0 
"I= 1; '._ 1. "lIN]  

and 

w = [wl . ' .  W N ]  (13) 

w T w j = O  i f i # j  (14) 

with orthogonal columns that satisfy 

The space spanned by the set of w j  is the same space 
spanned by the set of m j ,  and eqn. 10 can be rewritten as 

D =  W G + E  (15) 

The OLS solution 

911 ... 91., 
G = [  1 ; ]  (16) 

g N 1  " '  g N n ,  

and the ordinary LS solution 0 satisfy the triangular 
system 

A O = G  (17) 
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The classic and modified Gram-Schmidt methods [ l l ]  
can be used to derive A and G, and thus to solve for 0 
from eqn. 17. Alternatively, the Householder transform- 
ation method [l2] can be used to obtain a similar 
orthogonal decomposition. 

The number N of all the candidate regressors is gener- 
ally very large, but an adequate network may only 
require nh( < N) significant regressors. These significant 
regressors or hidden nodes can be selected using the OLS 
algorithm, similar to the case of selecting subset models 
for the general linear regression model [13, 141. A cri- 
terion for determining the significance of candidates, 
however, must first be chosen. In the single-output case, 
the contribution of a candidate to the variance of the 
desired output is used to define how significant this can- 
didate is [13]. For the multioutput case, the trace of the 
desired output covariance matrix is a natural choice. 
Because the error matrix E is orthogonal to W, after 
some simple calculation it can be shown that the trace of 
the covariance of d( t )  is 

+ trace (ETE/N) (18) 

The error reduction ratio due to wk can be defined as 

[errIk = ( 2 gii)w:w*:trace (DTD) 1 < k < N (19) 
i =  1 

Based on this ratio, significant regressors can be selected 
in a forward regression procedure. At the kth step of the 
selection procedure, a candidate regressor is selected as 
the kth regressor of the subset network if it produces the 
largest value of [errlk from among the rest of the 
N - k + I candidates. The selection is terminated when 

where 0 < p < 1 is a chosen tolerance. This gives rise to a 
subset network containing nh significant hidden nodes. 
The selection procedure is very similar to that for single- 
output models [5, 131. 

If the desired output vector has a zero-mean vector, 
the first term in the right-hand side of eqn. 18 is the part 
of the trace of the desired output covariance matrix that 
can be explained by the regressors, and the second term 
is the unexplained trace of the desired output covariance. 
Thus 

( i =  z 1 g:.)w:H.dN (21) 

is the increment to the explained trace due to wk, and 
each selected centre maximises the increment to the 
explained trace of the desired output covariance. The 
selection of centres is therefore directly linked to the 
reduction in the error covariance trace. Another advant- 
age of this algorithm is that numerical ill-conditioning 
can easily be avoided. It can be shown that w:wk = 0 
implies that Dk is a linear combination of Dl to Dk-  If 
w:w, is less than a small positive threshold, the candidate 
regressor Dk will not be selected, and this ensures a well 
conditioned LS solution. It is worth pointing out that the 
algorithm does not attempt to find an 'optimal' solution 
for subset network selection. In theory, the optimal 
subset network could be constructed by testing all the 
possible subset networks, which, however, is impossible 
to do even for a modest N.  
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The tolerance p is important in balancing the accuracy 
and the complexity of the final network. The ideal value 
for p can be learnt by interacting with the selection pro- 
cedure [13, 141. The terminating criterion in eqn. 20 
emphasises the network performance. Because a more 
accurate performance is often achieved at the expense of 
using a larger network, a trade-off between performance 
and complexity is often desired. This can be achieved 
using an alternative terminating criterion based on the 
Akaike information criterion [l5]: 

AZC(,y) = N log (det (N-'ETE)) + n,,y (22) 
where det ( ' )  is the determinant operator, and ,y is the 
critical value of the chi-squared distribution with one 
degree of freedom and for a given level of significance. 
The criterion of eqn. 22 can be combined with the 
orthogonal selection procedure. The significant regressors 
are selected by the OLS selection procedure, based on 
their significances as indicated by their error reduction 
ratios, and the selection is terminated when AIC(x) 
reaches its minimum. 

4 Nonlinear system modelling 

Consider dynamic systems which are governed by the 
nonlinear difference equation. 

y ( t )  = f M  - I), . . . , ~ ( t  - ny). 

u(t - I),  . . . , u(t - nu)] + E ( t )  (23) 
where y( t )  and ~ ( t )  are the my-dimensional system output 
and noise vectors, respectively; u(t) is the m,-dimensional 
system input vector; ny and nu are the lags in the output 
and input, respectively; and the nonlinear function 
f :  R"' + R"Y, with the dimension of the input space being 

n, = my x ny + mu x nu (24) 
Given a set of system outputs y( t )  and inputs u(t)  (in the 
case of a time series process) only a set of y ( t )  is 
provided, we can introduce 

x ( t ) =  [yT(t-l) . . .  y T ( t - n y ) u T ( t -  1 )  ... uT(t-nn,)lT 

(25) 
as the RBF network input vector at sample t, and use y( t )  
as the corresponding desired output to train an RBF 
network so that the network f,() realises or approximates 
the underlying system dynamicsf( ). The system represen- 
tation in eqn. 23 is a simplified case of the general nonlin- 
ear system known as the NARMAX model [16], and the 
approach given here is therefore a special version of the 
general identification scheme reported in Reference 4. 

The first example used to test the OLS algorithm was 
a simulated two-output time series process. One thous- 
and noisy observations were generated using the model 

yl(t) = (0.8 - 0.5 exp (- y:(t - l)))yl(t - 1 )  

- (0.3 + 0.9 exp (-y:(t  - l)))y,(t - 2) 

+ 0.1 sin ( y2 ( t  - 1)) + el(t) 

yZ(t) = 0.6yz(t - 1) + 0.2yz(t - l)yz(t - 2) 
+ 1.2 tanh (yl(t - 2)) + ~ ~ ( t )  

as training data, where the Gaussian noise e(t) = 
[ ~ ~ ( t ) e ~ ( t ) ] ~  had statistics E[cl(t)] = E[ez(t)] = 
E[el(t)e2(t)] = 0.0 and E[E:(~)] = E[eg(t)] = 0.01. A two- 
output RBF network was employed to model this nonlin- 
ear process, with the network input defined by x( t )  = 
[ y l ( t  - l)yl(t - 2)yz(t - l )y& - 2)]'. The nonlinearity 
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4() was chosen for eqn. 4. The number of candidates for 
centres was about 1O00, and the OLS algorithm was used 
to construct an RBF network. During the learning it was 
found that a suitable value for p was 0.0183, and the OLS 
algorithm identified a subset network of 50 centres. 
Another 1O00 samples of noisy time series were then gen- 
erated to validate the obtained network. The covariances 
of the network prediction error between the noisy obser- 
vation y( t )  and the one-step-ahead network prediction 
2t) = f,(x(t)) for both the training and testing data sets 
are listed in Table 1. The training data and the selected 

Table 1 : Covariance of network prediction error for time 
series example 

Training set 9.66032e - 3 1.47958s - 5 

Testing set 1.1 3836e - 2 3.9055Oe - 5 

1.47958e - 5 9.7382% - 3 

3.9055Oe - 5 1.1 31 88e - 2 

RBF centres are plotted in Fig. 1, where it can be seen 
that the noisy observations have a symmetrical distribu- 
tion and the selected centres clearly reflect this pattern. In 
Fig. 2, the one-step-ahead network predictions over the 
first 100 testing data are superimposed on these testing 

-2- -2- 
-2 -1 0 1 2 -2 -1 0 1 2 

Y,(t) Y 2 ( t )  
Fig. 1 
and the RBF centres (0) selected by the OLS algorithm 

Two-dimensional representations of the noisy observations ( . )  

I 
20 40 60 80 100 

t 
, E .  ’ I 

I 
20 LO 60 80 100 

t 

Fig. 2 One-stepahead network predictions superimposed on time 
series testing data 
~ noisy time series observations 

network predictions ...... 
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time series observations. The underlying dynamics of the 
simulated time series are determined by the autonomous 
system output yAt) =f(yAt - I), yAt - 2)), which gener- 
ates a stable limit cycle as shown in Fig. 3. The identified 
RBF network was used to iteratively produce the 

Y d , ( t )  Yd,(t) 

Fig. 3 Two-dimensional response of the autonomous time series 
process based on IO00 data samples 

network output jd ( t )  =f , (xd( t ) ) ,  where xAt) ,= [ j d > ( t  
- l)jdl(t - 2)jd2(t - 1)jd2(t 2)IT. The iterative 
network output produces a similar limit cycle, as can be 
seen in Fig. 4. The output waveform from the iterative 
network is superimposed on that of the autonomous time 

Ed, ( t )  Ed,(t) 

Fig. 4 
1000 data samples 

Two-dimensional response of the iterative network based on 

series outputs in Fig. 5, and it is seen that the amplitudes 
of the two responses agree with each other well. Phase 
deviations of the two waveforms accumulate only slowly 
as time elapses. The above testing results confirm that the 
selected RBF network does capture the underlying 
dynamics of the system, even though it was identified 
using noisy observations. 

The second example was a two-input-two-output data 
set collected from a 50 MW turboalternator, operating in 
parallel with an interconnected system having a capacity 
of approximately 5000 MW [17]. The data set contains 
100 samples. The input ul(t) was the in-phase current 
deviation and u2(t) was the out-of-phase current devi- 
ation. The output yl(t) was the voltage deviation and 
y 2 ( t )  was the frequency deviation. The system inputs are 
plotted in Fig. 6, and the system outputs are shown in 
Fig. 7. A two-output RBF network with the nonlinearity 
of eqn. 4 was used to identify this system. The network 
input was defined as 

x(t)  = Cyl(t - 1)y1(t - 2)y,(t - 3)y2(t - 1)y2(t - 2) 
yz(t - 3)u,(t - 1)u1(t - 2)u2(t - l)u& - 2 ) 3 T  

For the given desired tolerance p = O.OO0018, the OLS 
algorithm selected a subset network of 45 centres, and the 
covariance of the network prediction error was 

- 1.01 140e - 5 
2.56552e - 4 
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-1 

-' '- and the iterative network outputs j&) =f,(x&)), where 

xd(t) = [jdl(' - l)jdl(' - 2)jdl(t - 3)3d~(t - 1)jd2(t - 2) - 
1 -2- 

- 2 2 -  

- 2 3 -  

- 2 4 .  

.25. 

. h d t  - 3)u1(t - h ( t  - .%(t - l)uz(t - 2)IT 2 .z 
are superimposed on the alternator outputs y(t) in Figs. 7 
and 8, respectively. The results in Fig. 8 clearly show that 
the identified RBF network is an excellent model for the 
turboalternator, and can be used to investigate the 
properties of the latter. 

8-  P\J- 

1 c  
l 

? / -  

, 

60 80 100 20 40 
-1 5 '  

t 

Fig. 5 
series observations 
__ time series observations 

network outputs 

Iterative network outputs superimposed on autonomous time 

... . .  

I I 

20 40 
, I 

60 80 100 
I 

1 
0 I I I 80 I loo J 

20 40 60 

System input data set for turbo alternator 

I 

Fig. 6 
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5 3  

LO 60 80 100 20 
t 

I 

5 2  k 

80 100 20 40 60 
4 71 

t 

Fig. 7 
alternator outputs 
__ System outputs 

One-step-ahead network predictions superimposed on turbo- 

network predictions ~~-~ 

I 
5 3 ,  I 

4 71 
80 1w 20 40 60 

t 

Fig. 8 
outputs 
~ System outputs 

Iterative network outputs superimposed on turboalternator 

network outDuts -~~~ 

5 Reconstruction of P A M  signals 

An important application of neural networks is pattern 
classification. Here, the equalisation of communications 
channels with a multi-ary PAM signalling scheme is 
viewed as a multiclass classification problem, and an 
RBF network is constructed to solve it. A general digital 
communications system is shown in Fig. 9, where the 
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channel is modelled as a finite impulse response filter 
with transfer function 

H(z)  = C h , z - i  
i = 0  

The channel output is corrupted by an additive white 
Gaussian noise e(t). The task of the equaliser at sample t 

I $('-'I + 
Fig. 9 Schematic of data transmission system 

is to reconstruct input symbol s(t - T). based on the 
channel observation vector 

(27) 
where the integers m and T are known as the equaliser 
order and delay, respectively. In the present study s(t) is 
assumed to be an M-ary PAM signal 

At) = [ A t )  ... A t  - m + I)]' 

s( t )  = di) 1 < i < M (28) 
where M = 2L and L is an integer. Fig. 9 is often referred 
to as the symbol decision structure and the most com- 
monly used equaliser is the linear transversal equaliser 
[18]. The optimal equaliser solution for the structure of 
Fig. 9, however, is nonlinear and can be derived based on 
Bayes decision theory [19]. 

The number of all the possible combinations of the 
channel input sequence 

S(t) = [s(t) . . . s(t - m + 1 - n)] ' (29) 
is n, = M"'", and this gives rise to n, states of the noise- 
free channel outcome 

A t )  = [ f i t )  . . . j ( t  - m + I)]' (30) 

Ym,t = U Y!2c (31) 

Y:! ~ = {9( t )  I s(t - T) = 

The set of these states, denoted as Y,,,, can be parti- 
tioned into M subsets according to the value of S(t - T): 

1 B i B M  

where 

1 < i < M (32) 
The task of the equaliser is equivalent to an M-class clas- 
sification problem. Compute M Bayesian decision vari- 
ables 

t f ) ( t )  = 2 #'p,(y(t) - yy)) 1 < i < M (33) 
where yy) E Y p  ~, By) is the a priori probability of A), the 
sum is over the set Y!&, and p e ( . )  is the probability 
density function of 

e(t) = [e(t) . . . e(t - m + I)] ' (34) 
1EE PROCEEDZNGS-F, Vol. 139, No. 6, DECEMBER 1992 

Then the minimum error probability decision is 

i ( t  - z) = SI'*) if q(i*)(t) = max { t f ) ( t ) ,  1 < i < M} (35) 
The Bayesian decision procedure effectively partitions 
the m-dimensional channel observation space into M 
decision regions. When A t )  is within the ith region, the 
decision qt - T) = di) is made. 

As the above Bayesian equaliser solution is an M-class 
classification problem, an L-output RBF network can be 
trained to approximate this optimal equaliser. Because 
the noise distribution is generally white Gaussian, the 
nonlinearity d() is obviously chosen as the Gaussian 
function (eqn. 3) with an ideal width defined by U' = 2u:, 
where U: is the noise variance. In practice, an estimated 
uf is sufficient for setting the width parameter. The 
centres of the network should ideally be the channel 
states yy). These states are, however, unknown, and the 
OLS algorithm is used to select appropriate centres from 
the noise data At) and to determine the network weights. 
This approach is best illustrated using a simple example. 

Let s(t) be a quarternary PAM signal taking values 
from the set { k 1, k 3}, and let the channel transfer func- 
tion be H(z)  = 1.0 + 0.5~- ' .  Assume that the equaliser 
has a structure of m = 2 and T = 0. In the absence of 
noise, channel output vectors are 64 discrete points. Each 
of these points is shown in Fig. 10, using one of the four 

y ( t )  

Fig. 10 
noise variance 0.0625 
~ optimal Bayesian 

Comparison of decision boundaries 

RBF network .... . 

symbols { +, 0, x, 0) which correspond to the input 
set { - 3, - 1, 1, 3). The Bayesian decision boundaries for 
a noise variance 0.0625 are plotted in Fig. 10. A two- 
output RBF network is sufficient for this four-class classi- 
fication problem. The network inputs are 
x(t)  = [y(t)y(t - I)]', and the desired outputs are set to 
d(t)  = [l l]', [l -l]', [ - 1  11' and [-1 -l]', corres- 
ponding to s(t) = 3, 1, - 1 and - 3. 740 points of training 
data were generated. An RBF network of 74 centres was 
selected using the OLS learning algorithm, and the 
decision boundaries of this RBF network are also shown 
in Fig. 10. This selecting procedure was repeated for a 
variety of noise variances and the performance of the 
selected RBF network is compared with that of the 
optimal Bayesian equaliser in Fig. 11. 
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Using an RBF network to realise the Bayesian equal- 
iser provides a significant performance improvement over 
the linear equaliser, at the cost of a considerable increase 
in computational complexity. An important technique for 
improving equaliser performance is to use decision feed- 

0 ,  I I I I 

signal-to-noise ratio, dB 

Fig. 11 
equaliser with the RBF design 
-0 - REF 
t-+ optimal 

Comparison oferror rate performance ofthe optimal Bayesian 

back. The conventional decision feedback equaliser 
(DFE) expands the equaliser inputs of the linear trans- 
versal equaliser to include past detected symbols [18]. A 
novel Bayesian DFE has been developed that realises a 
significant performance gain over the conventional DFE 
at the cost of only a very small increase in computational 
load [20, 211. It is beyond the scope of this paper to 
study the Bayesian DFE for an M-ary PAM signalling 
scheme. Readers interested in this can find a detailed dis- 
cussion on the Bayesian DFE and its realisation using 
RBF networks in References 20 and 21. 

6 Conclusions 

An orthogonal least-squares algorithm has been extended 
for the construction of multioutput radial basis function 
networks. This learning strategy provides a systematic 
approach linking the selection of radial basis function 
centres from the training data set to the reduction of the 
error covariance trace. Unlike most network learning 
algorithms, which can only work when a network struc- 
ture has been specified, this algorithm automatically 

identifies an adequate network structure during learning. 
Applications in two different areas of signal processing 
have been demonstrated. 
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