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Abstract: We propose an approach for dependence tree structure learning via copula. A nonparametric algorithm for copula
estimation is presented. Then a Chow-Liu like method based on dependence measure via copula is proposed to estimate maximum
spanning bivariate copula associated with bivariate dependence relations. The main advantage of the approach is that learning with
empirical copula focuses on dependence relations among random variables, without the need to know the properties of individual
variables as well as without the requirement to specify parametric family of entire underlying distribution for individual variables.
Experiments on two real-application data sets show the effectiveness of the proposed method.
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1 Introduction

Dependence between random variables is of fundamental
importance because it may imply essential statistical rela-
tions within real-world social, physical, or biological sys-
tems. A large amount of data sets have been collected
from different fields, such as engineering, biology, social
networks, finance and world-wide web. However, anal-
ysis of these data remains a challenge. Hence, depen-
dence structure learning is one of the fundamental prob-
lems that is frequently encountered in all fields of science
and engineering. The best established statistical method-
ology for dependence representation is graphical models or
Bayesian networks[1−4]. A generic graphical model is dif-
ficult and expensive to obtain in many practical cases. A
tree-structured graphical model, which approximates the
true underlying dependence structure, considers only pair-
wise dependence. However, its representational simplicity,
through bivariate dependence decomposition, reduces com-
putational complexity and makes large-scale problem mod-
elling and inferring tractable. Traditional methods on in-
ferring graphical models involve maximum likelihood (ML),
where parametric family of entire underlying distribution
is specified, including marginal distributions of individual
variables. Hypothesis selection on marginal distributions is
central to the performance of structure learning to a large
extent. But there is often a shortage of prior knowledge
needed for such selection. Thus, it is of practical interest to
find a method which can separate structure learning from
parametric marginal specification.

Copula theory unifies the representation of multivari-
ate dependence[5, 6], and it has found wide-ranging appli-
cations in finance, statistics, and machine learning[7−12].
The term “copula”, coming from Latin, refers to the way
that random variables relate to each other. According to
Sklar theorem[13, 14], a multivariate distribution can be rep-
resented by its marginal distributions and a copula func-
tion, which represents dependence structure among random
variables. Using copula, one can separate the marginal dis-
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tributions from their joint density distribution and, there-
fore, study only statistical interrelations without knowing
the properties of each variable. Based on empirical cop-
ula estimation, many dependence models can be further
adopted and approximately inferred. An advantage of em-
pirical copula is that it is a model-free non-parametric es-
timation of the underlying true copula. In particular, de-
pendence tree structures can be identified as a special case
of copula, concerning only pairwise dependence, known as
bivariate copula. In this contribution, we propose inferring
a dependence tree structure by Chow-Liu like algorithm[15]

based on empirical copula estimation. The advantage of the
proposed approach is that structure learning is free from the
requirement to specify parametric family of entire underly-
ing distribution for individual variables, and there is no
need to know the properties of individual variables. Copula
estimation is also believed to be robust to outliers.

2 Copula and copula space

A copula function is a distribution function on the
cumulative distribution function (CDF) transforms of
marginal distributions[5, 6]. The relation between joint
CDF, marginal CDFs, and copula is stated in the following
theorem.

Sklar′s Theorem[13, 14]. Given a random vector X =
[X1 X2 · · ·XN ]T, where T denotes the transpose operator,
its CDF F (x) can be represented as

F (x) = C(u1, u2, · · · , uN ) (1)

where x = [x1 x2 · · ·xN ]T ∈ RRRN , {ui = Fi(xi), 1 6 i 6 N}
with ui ∈ I , [0, 1] are marginal CDFs of X, and C is a
copula function. If {Fi} are continuous, then C is unique.

Intuitively, an N -dimensional copula C : IN → I can be
viewed as a new CDF stretched onto u = [u1 u2 · · ·uN ]T ∈
IN from the CDF of X. By applying derivative on (1), we
can also represent probability density function (PDF) via
copula, leading to the following definition of copula density.
An N -dimensional copula density c corresponding to an N -
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copula C is defined as

c(u) =
∂N

∂u1 ∂u2 · · · ∂uN
C(u) (2)

where u ∈ IN . With this definition of copula density, we
have the following corollary of Sklar′s Theorem.

Corollary 1. The PDF p(x) of X can be represented
as

p(x) = c(u)

N∏
i=1

pi(xi) (3)

where {pi(xi), 1 6 i 6 N} are the marginal PDFs of X and
c is a copula density.

The significance of Sklar′s Theorem is as follows. Learn-
ing a multivariate distribution is a highly complicated task
but modelling univariate marginals is often straightforward.
Once the univariate marginals are learnt, the required mul-
tivariate distribution is readily modelled using copulas.
How to construct a multivariate copula is of importance
in applications. In many cases we cannot write down an
analytic copula. However, the set of all copula functions is
a convex set enclosed by some minimal copula and maxi-
mum copula[6]. Thus, the convex combination of copulas
(copula densities) is also a copula (copula density). For ex-
ample, let {ck(u)}K

k=1 be a set of K copula densities. Then
the mixture of {ck(u)}K

k=1

c(u) =

K∑

k=1

wkck(u) (4)

where wi > 0, 1 6 i 6 K, and
∑K

i=1 wi = 1, is also a
copula density. Thus, mixture of copulas provides a flexible
way of constructing multivariate copula representations. In
this contribution, we are concerned with dependence tree
structures. Under the tree-structured dependence, a cop-
ula density can be decomposed as the product of bivariate
copulas[11], i.e.,

c(u) =
∏

i,j∈{1,2,··· ,N}
c(ui, uj) (5)

where c(ui, uj) denotes a bivariate copula density related
to (Xi, Xj).

3 Empirical copula estimation

Many parametric inference methods for copula can be
summarised as follows: starting with a parametric family
of copula, either implicitly implied by PDF or explicitly
specified, optimise the parameters under the ML frame-
work. Using a nonparametric method will help to avoid
the difficulty of choosing parametric model family when no
a priori knowledge is available. Some works on estimation
of copulas can be found in [16–18]. Empirical copula (cop-
ula density) was introduced in [19, 20], which approximates
the copula (copula density) from samples based on order
statistics[21].

Consider an independently identically distributed (i.i.d.)
sample set {xt = [xt

1 xt
2 · · ·xt

N ]T ∈ RN , t ∈ {1, 2, · · · , T}}.
Let {x(t)

n } be the order statistics of {xt
n} with the corre-

sponding ranks1 1 6 rt
n 6 T so that x

(
rt

n

)
n = xt

n. An em-
pirical copula Ĉ of the samples {xt, 1 6 t 6 T} is defined
on a (T + 1) lattice

L =

{(
t1
T

, · · · ,
tN

T

)
: tn ∈ {0, 1, · · · , T}, 1 6 n 6 N

}
(6)

as follows

Ĉ

(
t1
T

, · · · ,
tN

T

)
=

1

T

T∑
t=1

N∏
n=1

I[rt
n6tn] (7)

where the indicator function

I[rt
n6tn] =

{
1, if rt

n 6 tn,

0, otherwise.

Using forward difference on lattice, an empirical copula
density is derived in a same way as

ĉ

(
t1
T

, · · · ,
tN

T

)
=

2∑
i1=1

· · ·
2∑

iN =1

(−1)

N∑
n=1

in ×

Ĉ

(
t1 − i1 + 1

T
, · · · ,

tN − iN + 1

T

)
. (8)

Based on (7), we have the estimation algorithm.
Algorithm 1, for empirical copula given a set of samples

{xxxt = [xt
1 xt

1 · · ·xt
N ]T, t ∈ {1, 2, · · · , T}}. According to (8),

we have the estimation algorithm, Algorithm 2, for empir-
ical copula density, which is just an accumulative process
based on Algorithm 1. Algorithm 1 has a linear complex-
ity O(TN) while Algorithm 2 has an exponential complex-
ity O(TN × 2N ). Using empirical copula when estimating
dependence structure has many advantages. Firstly, with
nonparametric empirical copula algorithm, we can estimate
different dependence relations from data in a model-free
way. Secondly, copulas are invariant under monotonically
increasing transformation and, therefore, we do not have to
normalise data during analysis. Thirdly, copulas are insen-
sitive to outliers.

Algorithm 1. Empirical copula function Ĉ.

Input: data {xt
n} of dimension N and size T ; u ∈ IN

for n = 1 to N do

rt
n = rank(xt

n)

end for

m = 0, un = un × T

for t = 1 to T do

Initialise n = 1

while rt
n 6 un do

n = n + 1

end while

if n = N + 1 then

m = m + 1

end if

end for

Output: Ĉ(u) = m/T .

1Order statistics and rank statistics are basic and standard tools
in nonparametric statistics and inference[21]. For example, consider
T = 4 and {x1

n = 6.1, x2
n = 9.3, x3

n = 3.4, x4
n = 8.6}. The order

statistics are {x(1)
n = 3.4, x(2)

n = 6.1, x(3)
n = 8.6, x(4)

n = 9.3}, and the

rank statistics or rankings are {r1
n = 2, r2

n = 4, r3
n = 1, r4

n = 3}.
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Algorithm 2. Empirical copula density function ĉ.

Input: data {xt
n} of dimension N and size T ; u ∈ IN

use Algorithm 1 to produce Ĉ(u)

ĉ(u) = 0

for all t = [t1 t2 · · · tN ]T ∈ {1, 2}N do

ĉ(u) = ĉ(u) + (−1)

N∑
i=1

ti
Ĉ(u− t− 1

T
)

end for

Output: ĉ(u).

4 Learning dependence tree structures

In a dependence tree structure, the dependence relation
represented by edges in the graph is equivalent to a product
of a group of bivariate copulas. We propose inferring such
a product of bivariate copulas from data by Chow-Liu type
algorithm[15] based on empirical copula estimation.

4.1 Maximum spanning bivariate copula
problem

Suppose that we want to approximate dependence rela-
tions with a structure T (a), where a is the parameter vector
that specifies T . Given a set of i.i.d. samples X generated
from an N -dimensional random vector XXX having the PDF
p(x), a cost function F can be defined on X, which can be
minimised with respect to a to infer T

min
a
F(a; X). (9)

In many works, the objective function F is defined
through the ML principle, which requires parametric as-
sumptions on the multivariate density function p(x). Now
consider an N -dimensional copula density c of XXX. We can
obtain its empirical estimation ĉ based on X, which con-
tains all the dependence information in the data. Notice
that in doing so we do not need to specify a parametric
form for p(x) or c(u).

In particular, when T has a tree structure, the depen-
dence relations of T can be covered by a product of bivariate
copulas. An N -copula c decomposed in the product form
of bivariate copulas consists of a product of the N(N − 1)
bivariate copulas. We can further approximate this product
of the N(N−1) bivariate copulas with a maximum spanning
tree (MST) consisting of a product of only N − 1 bivariate
copulas. We refer to such a representation as the maximum
spanning bivariate copula (MSBC), which approximates the
dependence tree structure among the N random variables.
In such an MSBC problem, the objective function F can
be defined as the sum of dependence measurements on the
N − 1 bivariate copulas. Thus we transform the structure
learning into a fitting problem.

4.2 Dependence measures

Copula summarises all the dependence relations. Hence
it naturally links with the existing dependence measures in
statistics. It has been shown that the statistical measures
of dependence, such as Kendall′s tau, Spearman′s rho or
Gini′s gamma, can be calculated from copula function[6].
Using empirical copula (copula density) to approximate
copula (copula density), we can calculate these measures
approximately. For example, an estimation of Spearman′s

rho or the correlation between two random variables based
on empirical bivariate copula is given by

ρ(X1, X2) =
12

T 2 − 1

T∑
t1=1

T∑
t2=1

(
Ĉ

(
t1
T

,
t2
T

)
− t1t2

T 2

)
(10)

where T is the order of the lattice (6).
Alternatively, mutual information (MI) is a natural de-

pendence measure based on information theory[22]. The MI
of the two random variables, X1 and X2, is given as

I(X1, X2) =

∫

x1,x2

p(x1, x2) log
p(x1, x2)

p1(x1)p2(x2)
dx1dx2 (11)

where p(x1, x2) is the joint PDF of X1 and X2, while p1(x1)
and p2(x2) are the two marginal PDFs of X1 and X2, re-
spectively. Note that copula density is actually a density
on IN . Let c(u1, u2) be a copula density of X1 and X2,
with u1 = F1(x1) and u2 = F2(x2) denoting the marginal
CDFs of X1 and X2, respectively. According to Corollary 1
of (3), the MI (11) can be transformed into a copula density
representation

I(X1, X2) =

∫

x1,x2

p1(x1)p2(x2)c(u1, u1) log c(u1, u2)dx1dx2.

(12)
Given a set of data samples {xt

1, x
t
2}T

t=1, we can estimate
the MI (12) according to

Î(X1, X2) =

T∑
t=1

p̂1(x
t
1)p̂2(x

t
2)ĉ(û

t
1, û

t
2) log ĉ(ût

1, û
t
2) (13)

where ĉ(ût
1, û

t
2) is an empirical copula density estimate of

c(ût
1, û

t
2), p̂i(x

t
i) for 1 6 i 6 2 are the estimates of pi(x

t
i) for

1 6 i 6 2, and ût
i = F̂i(x

t
i) for 1 6 i 6 2 are the estimates

of ut
i = Fi(x

t
i) for 1 6 i 6 2.

In (13), besides empirically estimated copula density, uni-
variate marginal densities and CDFs are also estimated, for
which there are many well-established methods. Univari-
ate density estimation can be obtained, for example, using
the naive Bayesian estimator, k-nearest neighbour estima-
tor and kernel density estimator[23−25]. We adopt the uni-
variate Gaussian kernel density estimator due to its sim-
plicity in density estimation. The well-known univariate
empirical distribution function

F̂i(xi) =
1

T

T∑
t=1

I[xt
i6xi]

(14)

can be used to estimate the marginal CDF Fi(xi). Accord-
ing to Glivenko-Cantelli theorem[26], the empirical distribu-
tion function (14) converges to the true CDF almost surely
as the number of observations T → ∞, under the assump-
tion of i.i.d. observations.

The correlation dependence measure (10) is based on
second-order statistics and imposes a very low computa-
tional complexity, while the MI dependence measure (13) is
based on higher-order statistics and imposes a much higher
complexity than the measure (10). If the underlying prob-
ability distribution of the problem is Gaussian, then the
correlation based dependence measure (10) is sufficient. In
general, however, we believe that the MI based dependence
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measure (13) may be better, simply because it can cope
naturally with non-Gaussian distributions.

4.3 Construction algorithm for MSBC
tree

Firstly, we approximate copula (copula density) based
on samples in the form of product of bivariate copulas
(copula densities). From the resulting dependence mea-
sure matrix MX = {ρi,j = ρ(Xi, Xj), 1 6 i < j 6 N}
or MX = {Îi,j = Î(Xi, Xj), 1 6 i < j 6 N}, a com-
plete graph G of N(N − 1) edges on the N random vari-
ables XXX = [X1 X2 · · ·XN ]T is built where the weight of
each edge indicates the degree of dependence between two
variables. Constructing an MSBC tree is equal to find-
ing an MST T of G. According to graph theory, an MST
can be constructed by some well-established algorithms in
polynomial time, such as Kruskal′s algorithm[27] and Prim′s
algorithm[28]. We adopt Prim′s algorithm in our approach.

Prim′s algorithm starts with a vertex set V containing
the two vertices with the maximum weight edge. At each
stage, a vertex u /∈ V is chosen to add into V , which con-
nects with a vertex v ∈ V , does not contribute to looping in
the resulting new V , and leads to the pair (u, v) having the
maximum possible weight edge. The procedure is repeated
until all the N vertices are included in V with the result-
ing MST T of N − 1 edges. A similar problem has been
studied by Chow and Liu[15], where Chow-Liu algorithm
approximates the density with tree structure by construct-
ing an MST with the MI as edge weight. We summarise
our approach for constructing MSBC tree in Algorithm 3.

Algorithm 3. Estimating dependence tree structure
via copula

Input: data {xt
n} of dimension N and size T ; u ∈ IN

Construct empirical copula Ĉ by Algorithm 1 or

empirical copula density ĉ by Algorithm 2.

Calculate the dependence measure matrix MX according

to (10) or (13).

Build the dependence tree T by Prim′s algorithm based

on MX .

Output: maximum spanning bivariate copula tree T .

5 Experimental results

We applied the proposed method to a simulated data set
and the two real data sets, Abalone and Boston Housing[29],
to study their inner dependency structures.

5.1 Simulated data

We generated a data set of 1000 samples from
a 5-dimensional distribution of a random vector
[G1 G2 G3 Gn Ge]T, of which the first three elements,
G1, G2 and G3, were zero-mean Gaussian distributed and
the other two, Gn and Ge, were governed by a Gaussian
copula with the marginal Gaussian and exponential distri-
butions, respectively. The data set was so designed such
that G1 to G3 are related (correlated), while Gn and Ge
are related. In other words, there exists a dependence re-
lationship between G1, G2 and G3, while there exists a
relationship between Gn and Ge.

Because the underlying distribution was governed by the
Gaussian random variables and Gaussian copula, it was suf-
ficient to use the correlation (10) as the dependence mea-
sure. The Algorithm 1 was first applied to the data set to
estimate the empirical copula, and the scatter plot of the
estimated empirical copula samples is given in Fig. 1. The
scatter plot is obviously symmetric, as the scatter plot of
G1 and Ge, for example, is the same as the scatter plot
of Ge and G1. Of particular interest are the scatter plots
in the last row of Fig. 1, which are the scatter plots of the
marginal Gaussian distributed variables with the marginal
exponential distributed variable. The “non-Gaussian” na-
ture of the joint distributions is evident in the last row
of Fig. 1. The Algorithm 3 was then run on the data set
to derive an approximate dependence tree as illustrated in
Fig. 2. As expected, a sub-graph exists between the three
Gaussian variables, G1, G2 and G3, while the two copula
variables, Gn and Ge, are grouped in another sub-graph.
The link or dependence between the two sub-graphs is very
week indeed.

5.2 Abalone

Abalone data set[29] was built to predict the age (rings) of
abalone based on physical measurements of abalone body,
such as weight and height. It consists of 4177 samples with
9 attributes, as listed in Table 1. The data is complete and
has both continuous and discrete attributes. The problem
is a regression task where some measurements are possi-
bly intrinsically interrelated. Instead of predicting the age
based on the other 8 attributes, we focus on the depen-
dence relations among the 9 attributes, which may benefit
the prediction task. There are a few outliers in the data set.
In other moment-based dependence analysis, these outliers

Table 1 Attributes of Abalone data set

Abbreviation Detailed description Numerical type Unit

S Sex: M, F, and I (infant) Nominal –

L Length: longest shell measurement Continuous mm

D Diameter: perpendicular to length Continuous mm

H Height: with meat in shell Continuous mm

ww Whole weight: whole abalone Continuous g

sw Shucked weight: weight of meat Continuous g

vw Viscera weight: gut weight (after bleeding) Continuous g

shw Shell weight: after being dried Continuous g

r Rings: +1.5 gives the age in years Integer –
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are usually eliminated by pre-processing step. Otherwise
they may cause large deviation in dependence measure cal-
culation. But this is unnecessary for our approach because
copula estimation is less susceptible to outliers. When es-
timating empirical copula in the experiment, we set the
order of lattice with different sizes empirically considering
a trade-off between approximation accuracy and computa-
tional cost. We chose the correlation (10) as well as the MI
(13) as dependency measures. During the MI estimation,
the univariate Gaussian kernel density estimator with well-
tuned width parameter and the univariate empirical CDF
estimator were applied on different moderate sized subsets
randomly sampled from the whole data set. The estimation
values varied a little. With either the correlation or the MI
as weights, many MSBC trees were built using Algorithm 3
in our experiments, and they varied a little depending on
the experimental setups.

Fig. 1 Scatter plot of the estimated empirical copula samples

for the simulated data set

Fig. 2 A maximum spanning bivariate copula tree with correla-

tion as edge weights generated from the simulated data set

For an illustration purpose, four attributes, “L”, “H”,
“sw” and “vw”, of the original data set are plotted in Fig. 3.
As a comparison, the estimated empirical copulas of these
four attributes are shown in Fig. 4. During empirical cop-
ula estimation, the effect of outliers diminishes, as can be
seen clearly by comparing Fig. 3 with Fig. 4. In addition to

robustness to outliers, we emphasise another fact that cop-
ula measures dependence relations and in doing so it does
not need to consider individual properties of the variables.
It can be observed from Fig. 3 that all the attributes pos-
sess very different individual properties as demonstrated
in their very different pairwise non-Gaussian joint distri-
butions. While in fact Fig. 4 shows that all the pairwise
estimated copulas seem to have a very similar dependency
structure.

Fig. 3 Scatter plot of the original data samples of four at-

tributes, “L”, “H”, “sw”, and “vw”, in Abalone data set

Fig. 4 Scatter plot of the estimated empirical copulas of four

attributes, “L”, “H”, “sw”, and “vw”, in Abalone data set

Fig. 5 shows a typical MST constructed for Abalone data
set, where edge weights were the corresponding correlation
measures, while a typical MST constructed using the MI
as edge weights is depicted in Fig. 6. Except for “sex” and
“rings”, the other seven attributes were linked with rela-
tively strong weighted edges, as is seen from Figs. 5 and 6.
It can in fact be learnt from all the MSBC trees constructed
in our experiments that the edges linked these seven phys-
ical measurements form the backbone of all the estimated
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Fig. 5 A maximum spanning bivariate copula tree with correla-

tion as edge weights generated from Abalone data set

Fig. 6 A maximum spanning bivariate copula tree with mutual

information as edge weights generated from Abalone data set

trees whilst the nodes for “sex” and “rings” are leaves ran-
domly attached to the seven-node backbone. This can be in-
terpreted as the reflection of the true abalone′s body growth
process. Thus, “rings” and “sex” are not strongly related
with the other seven physical attributes. Based on this ob-
servation, we argue that the original experimental design of
predicting “rings” with the other attributes in abalone data
set may not be a good one2.

5.3 Housing

The Boston house price data set was from 1970 census,
first published in [30]. It contains 506 samples with 14
mixed-type attributes, including 13 continuous attributes
and 1 binary one, as listed in Table 2. Previous research
mainly treated the problem as a regression task with the
aim to predict “Medv” based on the other 13 attributes.
In our experiment, we studied the dependence structure in-
stead. Using copula to estimate dependence relations and to
generate an MSBC tree, we hoped to find some previously
unnoticed relations between the attributes. Such knowl-
edge is extremely valuable in various social science policy
studies, such as housing development and city planning.

In many previous studies, researchers proposed to trans-
form the data into a suitably scaled one before further
dependence analysis, by applying monotonically increas-
ing functions, such as normalisation, nonlinear exponential
or log functions. In our experiment, this was unnecessary
due to copula′s invariance to such kinds of transformation.
As with the previous abalone experiment, the MSBC algo-
rithm, Algorithm 3, was run on the moderate data sub-sets
randomly sampled from the whole Housing data set. Many
MSBC trees were generated, and two of them are plotted in
Figs. 7 and 8, respectively. Experimental results obtained
indicate that only two links, “crim-rad” and “medv-lstat”,
appeared in all the estimated trees with relatively strong
edge weights, indicating that these are the two strongest

Table 2 Attributes of Boston Housing data set

Abbreviation Detailed description

crim Per capita crime rate in town

zn Proportion of residential land zoned for lots over 25 000 sq.ft.

indus Proportion of non-retail business acres per town

chas Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)

nox Nitric oxides concentration (parts per 10 million)

rm Average number of rooms per dwelling

age Proportion of owner-occupied units built prior to 1940

dis Weighted distances to five Boston employment centres

rad Index of accessibility to radial highways

tax Full-value property-tax rate per USD 10 000

ptratio Pupil-teacher ratio in town

b 1000(B − 0.63)2 where B is the proportion of blacks in town

lstat Percentage lower status of the population

medv Median value of owner-occupied homes in USD 1000′s

2From the viewpoint of experimental design, the dependent variable should be strongly linked or related to the input variables in order to
build a meaningful or accurate prediction relationship or model. From our dependence analysis, we can see that the attribute “rings” has weak
dependence relationships to the other 8 attributions. Therefore, it can be argued that the original design of predicting the age of abalone based
on the 8 chosen physical measurements of abalone body was not well thought through, as it may not reflect accurately the true abalone′s body
growth process.
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interconnections. We also observed that there are two
groups of attributes, one includes “nox, dis, indus, crim”
and the other includes “medv, lstat, age, ptratio”, which
were interconnected and appeared in many constructed
MSBC trees.

Fig. 7 A maximum spanning bivariate copula tree with mutual

information as edge weights generated from Abalone data set

Fig. 8 A maximum spanning bivariate copula tree with mutual

information as edge weights generated from Housing data set

5.4 Discussions

In our approach, the goal of structure learning based on
copula is to construct an MST that spans the structure by
maximising the total edge weights of the constructed tree
based on certain dependence measure. In this dependence
representation, only bivariate dependence relations are con-
sidered. Given the graph containing the N(N − 1) pairs of
bivariate dependence relations for the N random variables,
only N − 1 relations are chosen to form an MST approx-
imation. To examine the accuracy of this approximation,
we can consider the ratio of the total edge weights of the
MST to the sum of all the N(N −1) weights. The values of
this ratio over a number of experiments are plotted in Fig. 9
for both data sets. For Abalone data set, the MST contains

11% of the total edges but it explains on average 20% of the
total edge weights. For Housing data set, the MST contains
only 7 % of the total edges and yet it explains on average
over 40% of the total edge weights. This demonstrates the
effectiveness of MSBC tree approximation.

Fig. 9 Ratio of the total weights of estimated MSBC tree to

the total weights of all the bivariate dependence relations over a

number of experimental runs. Rectangles are for Abalone data

set while triangles for Housing data set. #exp denotes number

of experimental runs

6 Conclusions

We have proposed to estimate dependence tree structures
using the copula method. Copula provides a general frame-
work for representing dependence relations among random
variables and it makes no assumption on the underlying dis-
tribution. A nonparametric estimation algorithm for em-
pirical copula offers great flexibility in structure learning
because the estimated empirical copula contains all the de-
pendence information in the data. In particular, we have
studied the learning process of the dependence structure
that is represented by the bivariate dependence relations of
the N random variables. Such a graph contains a total of
N(N − 1) edges. A Chow-Liu like method based on em-
pirical copula has been proposed to construct a maximum
spanning tree with the strongest N−1 bivariate dependence
relations. The effectiveness of this maximum spanning bi-
variate copula tree approximation has been demonstrated
using one simulated data set as well as two real data sets.
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