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Abstract: A novel technique is proposed for the incremental construction of sparse radial basis function (RBF) networks.

The correlation between a RBF regressor and the training data is used as the criterion to position and shape the RBF

node, and it is shown that this is equivalent to incrementally minimise the modelling mean square error. A guided random

search optimisation method, called the repeated weighted boosting search, is adopted to append RBF nodes one by one in

an incremental regression modelling procedure. The experimental results obtained using the proposed method demonstrate

that it provides a viable alternative to the existing state-of-the-art modelling techniques for constructing parsimonious RBF

models that generalise well.
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1 Introduction

A basic principle in nonlinear data modelling is
that of ensuring the smallest possible model which ex-
plains the training data. This parsimonious princi-
ple is particularly relevant in the construction of ra-
dial basis function (RBF) networks. The key ques-
tions in constructing a RBF network model are how
many RBF units to use, the positions (centres) of the
RBF nodes, and the shapes (variances or covariance
matrices) of the RBF nodes. An efficient algorithm
for constructing sparse RBF models is the forward se-
lection based on the orthogonal least squares (OLS)
algorithm[1−7]. Typically, a fixed common variance is
used for every RBF regressor and the RBF centres are
chosen from the training input data points. Alter-
natively, the sparse kernel modelling techniques[8−14]

have widely be adopted in practical applications. These
state-of-the-art sparse kernel modelling techniques also
typically use a common variance for all the kernel func-
tions and consider all the training input data as candi-
date kernel centres.

In the above-mentioned methods, the value of
the RBF variance used has an important influence
on the model sparsity level and its generalisation
capability[15]. Since the construction algorithms them-
selves do not provide this RBF variance, it has to be
learnt using some other means, such as via cross valida-
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tion[16,17]. A RBF network will have better mod-
elling capability if each node has its own covariance
matrix[18]. A recent work[19] presents a method of es-
timating the RBF covariance matrices based only on a
single training data set. As usual, all the training in-
put data points are considered as candidate RBF cen-
tres and the covariance matrix of each candidate RBF
node is determined by maximising the correlation func-
tion between the RBF regressor and the training data.
The OLS algorithm of [7] is then used to select a sparse
RBF model by optimising the model generalisation per-
formance directly.

A RBF network can also be constructed sequen-
tially as each training data sample is collected, and a
class of algorithms for growing and pruning RBF net-
works has been developed, see [20] and the references
within. As a new data sample is acquired, a decision
is made to determine whether a new RBF node is to
be added. Note that this class of sequential learning
algorithms also places the RBF centres at the training
input data points. Rather than restricting the RBF
positions at the training input samples, the clustering-
based learning methods (e.g. [21−23]) can be used to
construct sparse RBF networks. In these clustering
based learning methods, the number of clusters or the
model size must be learnt by other means, for exam-
ple, via cross-validation[23], and the RBF variances also
need to be decided using some other appropriate tech-
niques. Alternatively, all the parameters of the RBF
network, the RBF centres, variances or covariance ma-
trices, and weights, can be learnt together via a non-
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linear optimisation[24]. The optimisation process asso-
ciated with this nonlinear learning approach, however,
is highly complex and non-convex, and the genetic al-
gorithm (GA) has been suggested to solve this type of
nonlinear learning problems[25], at the cost of an in-
creased computational complexity.

We present a construction method for producing
sparse RBF networks by appending RBF units one by
one in an incremental modelling process. At each stage
of the construction process, a RBF node is constructed
by determining its RBF centre and diagonal covariance
matrix through optimising the correlation between the
RBF regressor and the training data. It is shown that
this approach is equivalent to incrementally minimis-
ing the training mean square error (MSE). Since this
optimisation task is non-convex, a guided global search
algorithm, referred to as the repeated weighted boost-
ing search (RWBS)[26], is adopted to perform this mod-
elling optimisation. Because RBF centres are not re-
stricted to be the training input data and each RBF
node has an individually tuned diagonal covariance ma-
trix, our proposed method can produce very sparse
RBF networks that generalise well and it offers a vi-
able alternative to the existing state-of-the-art sparse
modelling methods.

Our proposed incremental modelling method is
very different from the cascade-correlation incremen-
tal learning[27]. In the cascade-correlation method, re-
gression units are constructed on a variable space of
increasing dimension, namely, the inputs to a unit be-
ing the original inputs and the outputs of the previ-
ously selected units. This increases the dimension of
the learning problem and hence the associated compu-
tational complexity. Our proposed method is a truly in-
cremental modelling from the input space to the output
space. It has a desired geometric property that a RBF
unit is constructed to fit the peak (in the sense of cor-
relation magnitude) of the current modelling residual
at each stage. Another difference is that our method
adopts an efficient global optimisation algorithm in the
incremental modelling, while the cascade-correlation
method uses the gradient-based optimisation at each
modelling stage to determine the corresponding regres-
sion unit. To avoid the problem of local minima, sev-
eral candidate units with random initialisations are ac-
tually optimised in the cascade-correlation method at
each stage and the best candidate unit is then selected.

2 The proposed RBF network con-
struction method

Consider the regression modelling problem of ap-
proximating the N pairs of training data, {(xt, yt)}

N
t=1,

with the RBF network

y(x) =

nM
∑

i=1

wigi(x) + e(x) = ŷ(x) + e(x) (1)

where x is the m-dimensional input variable, e(x) is
the modelling error at x, and

ŷ(x) =

nM
∑

i=1

wigi(x) (2)

is the RBF model output with gi(•) for 1 6 i 6 nM

denoting the RBF regressors, wi for 1 6 i 6 nM the
RBF weights and nM the number of RBF nodes. We
will consider the general RBF regressor of the form

gi(x) = K

(

√

(x − µi)
T

Σ−1
i (x − µi)

)

(3)

where µi is the centre vector of the ith RBF unit,
the diagonal covariance matrix has the form Σi =
diag{σ2

i,1, · · · , σ
2
i,m}, and K(•) is the chosen RBF or

kernel function. A widely used K(•) is the Gaussian
function

gi(x) = e−
1

2
(x−µ

i
)TΣ−1

i
(x−µ

i
). (4)

In the standard RBF or kernel modelling[2−13], the
RBF centres µi are placed at the training input points
xk, and all the covariance matrices take the same form
Σi = diag{σ2, · · · , σ2} with σ2 being the chosen RBF
variance. A sparse RBF network is then constructed
using a chosen construction algorithm, for example, the
OLS algorithm[1] or the support vector machine (SVM)
algorithm[9].

In this paper, we introduce an incremental con-
struction algorithm for the RBF network with the gen-
eral RBF node defined in (3). Let us first introduce the
following notation

y
(0)
i = yi

y
(k)
i = y

(k−1)
i − wkgk(xi)

}

1 6 i 6 N. (5)

Obviously, y
(k)
i is the modelling error at xi after the

kth RBF unit has been fitted. At the kth stage of
the incremental modelling, the RBF regressor gk(x) is

fitted to the training data set {y
(k−1)
i ,xi}

N
i=1.

A. Correlation criterion for fitting a RBF unit

The correlation function between the RBF unit
gk(x) and the training data set {y

(k−1)
i ,xi}

N
i=1, given

as

Ck(µk,Σk) =

N
∑

i=1

gk(xi)y
(k−1)
i

√

√

√

√

N
∑

i=1

g2
k(xi)

√

√

√

√

N
∑

i=1

(

y
(k−1)
i

)2

(6)
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defines the “similarity” between the RBF regressor and
the training data set. The larger value of |Ck| is, the
more similar they are.

RBF positioning and shaping. The correlation Ck

is a function of the RBF centre vector µk and covari-
ance matrix Σk. Thus the correlation function (6) can
be used for positioning and shaping the RBF unit gk(•)
by maximising |Ck| with respect to µk and Σk. An il-
lustration is given in the one-dimensional space where
the underlying data generation mechanism is given by

y(x) = 3.0
sin(0.4x)

x
. (7)

Fig. 1 (a) depicts the training data and the curves of
the various Gaussian RBF units with different centres
and a variance of 1.0, and Fig. 1 (b) shows the corre-
sponding absolute correlation values between the train-
ing data and Gaussian RBF regressors; while Fig. 1 (c)
depicts the training data and the Gaussian RBF units
with zero centre and various values of variance, and
Fig. 1 (d) plots the corresponding values of the correla-
tion between the training data and RBF regressors. For
this example, |Ck(µk, σ2

k)| is maximised with µk = 0
and σ2

k = 12.

(a)

(b)

(c)

(d)

Fig. 1 Illustration of RBF positioning and shaping using

the correlation criterion: (a) the solid curve is the training

data set, and dashed curves are the Gaussian RBF units

with different centres and a variance of 1.0, and (b) the

corresponding values of the correlation between the

training data and RBF units; while (c) the solid curve is

the training data set, and dashed curves are the Gaussian

RBF units with zero centre and various values of variance,

and (d) the corresponding values of the correlation

between the training data and RBF units

RBF weight calculation. After the determination of
the kth regressor gk(x), the corresponding RBF weight
wk can be calculated by minimising the MSE for the
k-unit RBF model with respect to wk

MSEk =
1

N

N
∑

i=1

(

y
(k)
i

)2

=

1

N

N
∑

i=1

(

y
(k−1)
i − wkgk(xi)

)2

. (8)

This leads to the usual least squares solution

wk =

∑N

i=1 y
(k−1)
i gk(xi)

∑N

i=1 g2
k(xi)

. (9)
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It can be shown that selecting RBF units by incre-
mentally maximising |Ck(µk,Σk)| is identical to incre-
mentally minimising the modelling MSE (8). In fact,
substituting (5) into (8) with wk given by (9) yields

MSEk =

(

1

N

N
∑

i=1

(

y
(k−1)
i

)2
)

(

1 − C2
k(µk,Σk)

)

.

(10)
Clearly maximising |Ck(µk,Σk)| is equivalent to min-
imising MSEk with respect to µk and Σk.

B. Incremental modelling to construct a RBF net-

work

The proposed procedure for constructing a RBF
network can now be summarised. Refer to the defi-
nition of the MSE (8) for the k-term RBF model. Give
a preset modelling accuracy ξMSE, and set k = 0.

Do: k = k + 1

1) Determine the mean vector µk and covariance
matrix Σk of the k-th RBF unit by maximising the
correlation criterion |Ck(µk,Σk)|

2) Calculate the model weight wk for the k-th RBF
unit according to (9) and compute the modelling errors

y
(k)
i = y

(k−1)
i − wkgk(xi), 1 6 i 6 N

While MSEk < ξMSE

The termination of the model construction
process can alternatively be decided using cross
validation[16,17]. A simple method is to have a separate
validation data set. The model construction is based
on the training data set, while the performance of the
selected model, the MSE (8), is monitored over the vali-
dation data set. The construction process is terminated
when the MSE over the validation set stops improving.
Alternatively, the Akaike information criteria[28,29] and
the optimal experimental design criteria[6,30] can be
employed to terminate the model construction proce-
dure without the need to specify a modelling accuracy
ξMSE.

C. Repeated weighted boosting search optimisation

It can be seen that at the k-th stage of construction,
the task is to minimise the cost function

J(u) = 1 − |Ck(u)| (11)

where the parameter vector u contains the centre vec-
tor µk and covariance matrix Σk of the k-th RBF unit.
This task may be carried out with a gradient based
optimisation method[27]. A gradient method however
depends on the initial condition and may be trapped
at some bad local minima. Alternatively, the global
optimisation methods, such as the GA[31,32] and adap-
tive simulated annealing (ASA)[33,34], can be used. In
this study, we employ a guided random search algo-
rithm called the RWBS[26] to perform this optimisation
task. The RWBS algorithm is a simple yet efficient

global search algorithm. In several global optimisation
applications investigated in [26], the RWBS algorithm
achieved a similar convergence speed as the GA and
ASA. The RWBS algorithm has additional advantages
of requiring minimum programming effort and having
very few algorithmic parameters that require to tune,
compared with the GA or ASA. The detailed RWBS
algorithm for fitting the k-th RBF unit is now sum-
marised.

Specify the population size PS , the number of gen-
erations in the repeated search NG, and the accuracy
for terminating the weighted boosting search ξB .

Outer loop: generations For l = 1 : NG

Generation initialisation: Initialise the population

by setting u
(l)
1 = u

(l−1)
best and randomly generating rest

of the population members u
(l)
i , 2 6 i 6 PS , where

u
(l−1)
best denotes the solution found in the previous gen-

eration. If l = 1, u
(l)
1 is also randomly chosen

Weighted boosting search initialisation: Assign the
initial distribution weightings δi(0) = 1

PS
, 1 6 i 6 PS ,

for the population, and calculate the cost function value

of each point Ji = J(u
(l)
i ), 1 6 i 6 PS

Inner loop: weighted boosting search Set
t = 0; For t = t + 1

Step 1: Boosting

1) Find

ibest = arg min
16i6PS

Ji and iworst = arg max
16i6PS

Ji

Denote u
(l)
best = u

(l)
ibest

and u
(l)
worst = u

(l)
iworst

2) Normalise the cost function values

J̄i =
Ji

PS
∑

m=1

Jm

, 1 6 i 6 PS

3) Compute a weighting factor βt according to

ηt =

PS
∑

i=1

δi(t − 1)J̄i, βt =
ηt

1 − ηt

4) Update the distribution weightings for 1 6 i 6

PS

δi(t) =

{

δi(t − 1)βJ̄i

t , for βt 6 1

δi(t − 1)β1−J̄i

t , for βt > 1

and normalise them

δi(t) =
δi(t)

PS
∑

m=1

δm(t)

, 1 6 i 6 PS

Step 2: Parameter updating

1) Construct the (PS +1)th point using the formula

uPS+1 =

PS
∑

i=1

δi(t)u
(l)
i
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2) Construct the (PS +2)th point using the formula

uPS+2 = u
(l)
best +

(

u
(l)
best − uPS+1

)

3) Compute the cost function values Ji = J(ui),
i = PS + 1, PS + 2, for these two points and find

i∗ = arg min
i=PS+1,PS+2

Ji

4) The pair (ui∗ , Ji∗) then replaces (u
(l)
worst, Jiworst

)
in the population

If ‖uPS+1 − uPS+2‖ < ξB, exit inner loop

End of inner loop

The solution found in the l-th generation is u =

u
(l)
best

End of outer loop

This yields the solution u = u
(NG)
best , i.e. µk and Σk

of the k-th RBF unit.
The motivations and analysis of the RWBS algo-

rithm as a global optimiser is detailed in [26]. To guar-
antee a global optimal solution as well as to achieve
a fast convergence, PS , NG and ξB need to be set
carefully. The appropriate values for these algorith-
mic parameters depend on the dimension of u and how
hard the objective function to be optimised, and gen-
erally they have to be found empirically. The elitist
initialisation is very useful, as it keeps the information
obtained by the previous search generation, which oth-
erwise would be lost due to the randomly sampling ini-
tialisation. In the inner loop optimisation, there is no
need for every members of the population to converge
to a (local) minimum, and it is sufficient to locate where
the minimum lies. Thus ξB can be set to a relatively
large value. This makes the search efficient, achieving
convergence with a small number of the cost function
evaluations. A sufficiently large NG should be used to
ensure that the parameter space is sampled sufficiently.

3 Experimental results

Two simulated systems and two real-data sets were
used to investigate the proposed RBF network con-
struction method. Gaussian RBF units were used in
all the examples. The RWBS algorithmic parameters,
PS , NG and ξB, were set empirically. We also as-
sumed that the desired modelling accuracy ξMSE could
be chosen. We point out that other automatic termina-
tion criteria[6] can be adopted as alternatives without
the need of specifying ξMSE. The standard SVM algo-
rithm with the ε-insensitive loss function[9] was used
as the benchmarker in the modelling experiments. The
three learning parameters of the ε-insensitive SVM al-
gorithm, the ε value and the value of the regularisation

parameter C as well as the RBF variance σ2, were de-
termined empirically via cross validation.

Example 1. The 500 points of training data were
generated from

y(x) = 0.1x +
sinx

x
+ sin 0.5x + e (12)

with equally spaced x ∈ [−10, 10], where e was a
Gaussian white noise with zero mean and variance 0.01.
With the modelling accuracy set to ξMSE = 0.012, the
proposed incremental RBF model construction proce-
dure produced 6 Gaussian RBF units, as summarised
in Table 1, and the construction process is also illus-
trated graphically in Fig. 2. The model output of the
constructed 6-unit RBF model is superimposed on the
noisy training data in Fig. 3 (a), and the modelling er-
rors are shown in Fig. 3 (b). The MSE of this RBF
model was 0.011 9.

Table 1 Incremental construction of the RBF network

for Example 1

step centre variance weight MSE

k µk σ2
k

wk MSEk

0 − − − 0.843 1

1 2.690 5 4.248 8 1.608 8 0.370 3
2 -4.083 7 2.185 3 -1.601 9 0.034 1

3 0.298 2 0.600 0 0.378 1 0.024 3

4 6.606 2 0.661 0 0.311 6 0.017 3
5 3.416 2 0.609 1 -0.224 2 0.013 8

6 -8.478 0 0.429 5 0.178 7 0.011 9

For the ε-SVM algorithm, it was found that σ2 = 4,
ε = 0.245 and C = 10 was appropriate, and the algo-
rithm selected 15 support vectors (SVs) with the MSE
value of 0.012 6. The modelling performance of the
resulting SVM model is shown in Fig. 4. The SVM
algorithm achieves a similar modelling accuracy as the
proposed incremental modelling method but it requires
a much larger RBF network.

Example 2. This was a two-dimensional mod-
elling problem involving data generated by the peaks
function in Matlab. The peaks function is a function
of two variables, obtained by translating and scaling
Gaussian distributions. In the experiment, 625 train-
ing data points were produced with peaks (25,25) and
a Gaussian white noise with variance 0.01 was added to
the data generated. Fig. 5 (a) depicts the noisy training
data. The modelling accuracy was set to ξMSE = 0.05.
The proposed construction procedure, summarised in
Table 2, constructed 9 Gaussian RBF units. The fi-
nal modelling errors are shown in Fig. 5 (b), and the
constructed 9-unit RBF model is depicted in Fig. 5 (c).
The MSE value of the the resulting 9-unit RBF network
was 0.048 1.
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Fig. 2 Incremental construction of the RBF network for Example 1: in (a)–(f), the light curves are the modelling errors of

the previous stage, y
(k−1)
i

, and the dark curves are the fitted current RBF units, wkgk(xi), for 1 6 k 6 6, respectively

(a) (b)

Fig. 3 Incremental construction of the RBF network for Example 1: (a) the solid curve is the noisy training data yi and the dashed

curve is the constructed 6-unit RBF model ŷ, and (b) the modelling error e(xi) = yi − ŷ(xi)

(a) (b)

Fig. 4 SVM construction of the RBF network for Example 1: (a) the solid curve is the noisy training data yi, the dashed curve is the

constructed 15-unit RBF model ŷ and the points indicate the SVs, and (b) the modelling error e(xi) = yi − ŷ(xi)
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Table 2 Incremental construction of the RBF network for Example 2

step k centre vector µk covariance matrix Σk weight wk MSE MSEk

0 – – – 3.632 3

1 10.450 5 15.477 5 5.280 4 2.685 1 8.111 4 1.686 5

2 11.073 8 4.541 7 3.030 4 1.738 4 -7.044 8 0.791 9
3 14.666 8 10.262 4 2.012 7 3.834 6 3.853 6 0.467 9

4 5.448 1 11.248 8 1.558 2 2.232 8 -3.496 6 0.288 8

5 8.613 5 8.199 6 1.321 4 1.622 9 4.194 9 0.086 4
6 11.777 2 6.299 6 2.155 6 0.447 1 -1.510 6 0.068 8

7 6.762 3 6.553 4 0.834 7 0.466 6 1.270 4 0.060 9

8 4.650 4 9.159 0 4.387 9 0.733 5 -0.718 3 0.053 6
9 10.167 9 1.930 7 6.241 6 0.552 4 -0.614 0 0.048 1

Fig. 5 Incremental construction of the RBF network for Example 2: (a) the noisy training data, (b) the modelling errors

for the constructed 9-unit RBF model, and (c) the model outputs of the constructed 9-unit RBF model

For the SVM modelling, σ2 = 4, ε = 0.45 and
C = 10 were found to be appropriate, and the algo-
rithm constructed a RBF model with a MSE value of
0.047 1, which is similar to the MSE of the 9-unit RBF
model constructed by the proposed algorithm. How-
ever, the constructed SVM model contained 42 SVs.
The size of this SVM model is therefore more than
four times of that produced by the proposed sparse
construction algorithm. The modelling performance of
this 42-unit RBF model is depicted in Fig. 6.

Example 3. This example modelled the relation-
ship between the fuel rack position (input u(t)) and the
engine speed (output y(t)) for a turbocharged, direct
injection diesel engine operated at low engine speed.
Detailed system description and experimental setup
can be found in [35]. The data set, depicted in Fig. 7,
contained 410 samples. The first 210 data points were
used in training and the last 200 points in model vali-
dation. The previous study[6] has shown that this data
set can be modelled adequately as yi = F (xi)+ei with
yi = y(i), xi = [y(i− 1) u(i− 1) u(i− 2)]T, where F (•)
describes the underlying system to be identified and ei

denotes the system noise. With the modelling accuracy
of ξMSE = 0.000 55, the proposed construction proce-
dure produced 9 Gaussian RBF units, and the resulting
model is listed in Table 3. The MSE values of this 9-
unit RBF model over the training and testing sets were

0.000 532 and 0.000 558, respectively. Fig. 8 depicts the
modelling performance for this 9-unit RBF model.

Using a cross validation, it was found that σ2 =
1.69, ε = 0.02 and C = 4 were appropriate for the
SVM algorithm, and the algorithm produced a RBF
network with 89 SVs. The MSE values for this 89-
unit RBF model were 0.000 495 and 0.000 524 over the
training and test sets, respectively. Fig. 9 shows the
modelling performance of this 89-unit RBF model. It
can be seen that the proposed sparse construction al-
gorithm is capable of producing a much sparser RBF
network with the same excellent generalisation perfor-
mance, in comparison with the SVM algorithm.

Example 4. This example constructed a model
for the gas furnace data set (Series J in [36]). The data
set contained 296 pairs of input-output points, where
the input u(t) was the coded input gas feed rate and
the output y(t) represented CO2 concentration from
the gas furnace. The input-output data are depicted
in Fig. 10. The training data set was constructed with
yi = y(i) and xi = [y(i−1) y(i−2) y(i−3) u(i−1) u(i−
2) u(i − 3)]T for i = 4, 5, · · · , 296. With the modelling
accuracy set to ξMSE = 0.054, the proposed RBF con-
struction procedure selected 18 Gaussian RBF regres-
sors, as listed in Table 4. The modelling performance
of this constructed 18-unit RBF model are shown in
Fig. 11. The modelling MSE value was 0.053 8.
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(a) (b)

Fig. 6 SVM construction of the RBF network for Example 2: (a) the modelling errors for the constructed 42-unit RBF model, and (c)

the model outputs of the constructed 42-unit RBF model

(a) (b)

Fig. 7 The engine data set: (a) input u(t) and (b) output y(t)

(a) (b)

Fig. 8 Incremental construction of the RBF network for Example 3, the engine data set: (a) model prediction ŷ(t) (dashed)

superimposed on system output y(t) (solid), and (b) model prediction error e(t) = y(t) − ŷ(t). The proposed sparse construction

procedure constructed a 9-unit RBF model

Table 3 Incremental construction of the RBF network for Example 3, the engine data set

step k centre vector µk covariance matrix Σk weight wk MSE MSEk × 100

0 – – – 1 558.9

1 5.000 2 5.535 1 5.540 9 6.651 4 18.615 3 15.654 7 4.637 6 0.480 5

2 3.732 3 4.907 9 5.120 9 0.160 0 0.396 6 0.309 4 -0.282 7 0.351 5
3 5.232 9 6.012 9 6.320 0 0.160 0 0.799 7 1.747 3 0.471 3 0.180 7

4 2.247 2 4.193 5 4.473 9 0.160 0 0.160 0 0.216 2 0.942 4 0.107 6

5 3.834 6 5.231 3 5.363 1 0.160 0 0.210 3 64.000 0 -0.093 9 0.076 9
6 5.232 9 3.224 5 6.320 0 0.160 0 4.294 5 64.000 0 0.084 7 0.069 8

7 2.247 2 6.320 0 6.320 0 0.160 0 0.842 7 1.272 6 1.445 0 0.063 6

8 4.298 9 3.224 5 3.224 5 0.160 0 0.160 0 0.160 0 0.800 1 0.058 5
9 3.548 0 3.837 2 6.302 3 0.160 0 0.160 0 0.250 6 -14.492 2 0.053 2
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(a) (b)

Fig. 9 SVM construction of the RBF network for Example 3, the engine data set: (a) model prediction ŷ(t) (dashed) superimposed on

system output y(t) (solid), and (b) model prediction error e(t) = y(t) − ŷ(t). The SVM algorithm constructed a 89-unit RBF model

Table 4 Incremental construction of the RBF network for Example 4, the gas furnace data set

k centre vector µk weight wk MSEk

diagonal covariance matrix Σk

0 – – 2.844 3 × 103

–

1 61.000 0 61.000 0 50.952 5 3.334 0 -3.216 0 -3.216 0 59.276 0.826 8
6.078 3 25.000 0 25.000 0 16.654 9 2.434 0 9.117 8

2 60.227 9 45.100 0 45.100 0 3.334 0 3.334 0 3.334 0 4.045 1 0.547 0

0.021 7 5.983 7 2.896 3 23.320 8 19.485 0 9.138 8
3 46.898 7 58.986 0 57.132 0 -1.206 7 -2.425 1 0.332 1 -71.404 0.294 1

0.093 6 0.076 2 6.263 0 0.032 2 6.702 0 0.026 2

4 45.100 0 45.100 0 45.100 0 3.334 0 -3.216 0 3.334 0 2.493 1 0.138 9
5.757 2 0.047 6 7.901 3 19.091 7 12.338 1 10.169 3

5 57.940 4 51.569 9 47.597 3 -3.216 0 3.334 0 3.334 0 29.190 0.113 8

0.029 3 22.158 3 0.047 6 11.108 5 8.951 0 18.3801
6 58.093 5 45.100 0 45.100 0 3.334 0 3.334 0 1.981 0 58.659 0.106 5

0.010 1 0.275 3 3.814 5 24.691 1 0.051 2 0.016 4

7 56.375 7 49.520 4 60.122 2 2.245 0 2.586 4 -1.246 9 21.472 0.097 2
25.000 0 0.010 0 25.000 0 0.010 0 0.012 3 0.010 0

8 45.100 0 45.100 0 51.692 2 -0.014 4 -3.216 0 3.334 0 -5.266 9 0.080 4

0.105 2 1.513 6 0.050 1 0.010 0 0.055 0 11.995 4
9 46.030 3 58.753 7 54.948 1 -2.699 6 1.548 8 -0.290 3 -1.455 7 0.076 0

25.000 0 0.038 5 25.000 0 0.010 0 25.000 0 0.010 0

10 58.762 4 55.155 5 54.874 5 2.523 3 2.226 7 -1.663 8 46.918 0.070 0
0.010 0 0.010 0 0.117 8 0.011 3 25.000 0 24.547 6

11 53.995 2 54.802 5 52.823 6 -1.717 3 3.120 7 2.137 0 -1.737 9 0.067 5

25.000 0 0.010 0 0.010 0 25.000 0 25.000 0 0.010 0
12 45.100 0 47.159 4 61.000 0 3.334 0 3.334 0 3.334 0 2.167 9 0.063 1

25.000 0 0.062 0 25.000 0 0.010 0 0.010 0 25.000 0

13 54.748 1 48.756 1 50.014 0 -0.963 0 0.899 1 1.169 3 48.259 0.058 9
0.010 0 0.010 0 0.010 0 15.714 5 0.010 0 25.000 0

14 46.285 7 46.403 9 54.904 1 -2.755 5 -2.721 8 2.633 8 1.593 0 0.057 8

25.000 0 0.099 2 0.010 0 25.000 0 25.000 0 25.000 0
15 53.526 5 49.571 8 48.338 1 1.915 8 0.129 2 1.782 2 7.452 9 0.057 0

0.010 0 0.010 0 25.000 0 0.010 0 0.010 0 0.010 0

16 55.436 2 54.927 4 57.242 3 0.160 5 0.105 7 1.832 6 -0.991 8 0.055 0
0.010 0 0.010 0 25.000 0 0.010 0 0.010 0 0.010 0

17 53.775 6 51.364 8 51.610 4 0.716 5 -0.101 0 0.664 2 -0.084 5 0.054 2

25.000 0 0.010 0 0.010 0 25.00 00 25.000 0 25.000 0
18 45.100 0 45.100 0 45.100 0 -3.216 0 -3.216 0 -3.216 0 0.251 1 0.053 8

1.008 7 17.340 2 25.000 0 10.654 2 25.000 0 0.010 0
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(a) (b)

Fig. 10 The gas furnace data set: (a) input u(t) and (b) output y(t)

(a) (b)

Fig. 11 Incremental construction of the RBF network for Example 4, the gas furnace data set: (a) model prediction ŷ(t) (dashed)

superimposed on system output y(t) (solid), and (b) model prediction error e(t) = y(t) − ŷ(t). The proposed sparse construction

procedure constructed a 18-unit RBF model

(a) (b)

Fig. 12 SVM construction of the RBF network for Example 4, the gas furnace data set: (a) model prediction ŷ(t) (dashed)

superimposed on system output y(t) (solid), and (b) model prediction error e(t) = y(t) − ŷ(t). The SVM algorithm constructed a

61-unit RBF model

Next, the SVM algorithm was applied to this ex-
ample. The appropriate values for the SVM’s learning
parameters were found to be σ2 = 20, ε = 0.35 and
C = 300. The RBF model constructed by the SVM
algorithm contained 61 SVs with the modelling MSE
value of 0.052 0. Fig. 12 depicts the modelling perfor-

mance for the constructed 61-unit RBF model. Again,
it is seen that both the proposed RBF construction
method and SVM algorithm have similar modelling ac-
curacy but the former can produce a much sparser RBF
network.
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4 Conclusions

A novel technique has been presented to construct
sparse RBF network models for regression. Unlike most
of the sparse kernel regression methods, which restrict
RBF centres to the training input data and use a fixed
common variance for all the RBF units, the proposed
technique can tune the centre vector and diagonal co-
variance matrix of individual RBF unit to best fit the
training data based on the correlation between the
RBF regressor and the training data. This technique
thus provides enhanced modelling capability. An effi-
cient repeated weighted boosting search optimisation
method has been employed based on the correlation
criterion to append RBF units one by one in an in-
cremental construction procedure. Using the standard
SVM method as the benchmarker, experiments have
been conducted using several regression modelling ex-
amples, and it has been shown that the proposed RBF
network construction method is capable of producing
much sparser model representations with the same ex-
cellent generalisation performance in comparison with
the SVM algorithm.
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