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Practical identification of NARMAX models using radial basis
functions

s. CHENt, s. A. BILLINGSt, C. F. N. COWANt and
P. M. GRANTt

A wide class of discrete-time non-linear systems can be represented by the non­
linear autoregressive moving average (NARMAX) model with exogenous inputs.
This paper develops a practical algorithm for identifying NARMAX models based
on radial basis functions from noise-corrupted data. The algorithm consists of an
iterative orthogonal-forward-regression routine coupled with model validity tests.
The orthogonal-forward-regression routine selects parsimonious radial-basis-func­
tion models, while the model validity tests measure the quality of fit. The modelling
of a liquid levelsystemand an automotive dieselengine are included to demonstrate
the effectiveness of the identification procedure.

1. Introduction
Most systems encountered in the real world are non-linear to some extent and in

many practical applications non-linear models may be required to achieve an accept­
able prediction accuracy. The NARMAX model (Leontaritis and Billings 1985,Chen
and Billings 1989 a) provides a unified representation for a wide class of discrete-time
non-linear systems. In a NARMAX description the system is modelled in terms of a
non-linear functional expansion of lagged inputs, outputs and prediction errors. Two
considerations are of practical importance for the application of the NARMAX
approach. The functional describing a real-world system can be very complex and
the explicit form of this functional is usually unknown, so that any practical modelling
of a real-world process must be based upon a chosen model set of known functions.
Obviously this model set should be capable of approximating the underlying process
within an acceptable accuracy. Secondly, an efficient identification procedure must
be developed for the selection of a parsimonious model structure, because the dimen­
sion of a non-linear model can easily become extremely large. Without efficient subset
selection, the identification would entail excessive computation and the resulting
model would have little practical value.

Previous research (Billings et al. 1989 b, Chen et al. 1989) has investigated the
polynomial NARMAX model. The set of polynomial functions is known to be dense
in the space of continuous functions. This means that a system can be approximated
within an arbitrary accuracy by a polynomial model. By augmenting and modifying
well-known orthogonal least-squares methods, an iterative orthogonal-forward­
regression (OFR) routine (Chen et al. 1989) has been derived to select parsimonious
polynomial models. This identification algorithm, when coupled with some model
validity tests (Billings and Voon 1986, Bohlin 1978, Leontaritis and Billings 1987),
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1328 S. Chen et al.

provides a practical means for fitting parsimonious polynomial models to structure­
unknown real systems.

The present study considers an alternative approach for fitting NARMAX models
based on the radial basis function (RBF). The RBF method has traditionally been
used for strict interpolation in multidimensional space and has been shown to be
superior to many existing methods (Powell 1985, Micchelli 1986). The generalization
due to Broomhead and Lowe (1988)provides a more suitable basis for system model­
ling. The major problem remains of how to select an appropriate set of RBF centres.
In order to utilize the advantages of the linear-in-the-parameters formulation, the
centres are often chosen to be a subset of the data. Although' researchers are well
aware that the fixed centres should suitably sample the input domain, most published
results simply assume that some mechanism exists to select centres from data points
and do not offer any real means for choosing them. However, by interpreting the
RBF as an extended model set (Billings and Chen 1989 b), Chen et al. (1991) have
shown that a suitable set of centres can be readily identified in a relatively straight­
forward manner by employing the OFR algorithm. Because these results were only
valid for the unrealistic case of additive white noise, the present study extends the
previous results by the authors, and develops an identification procedure for fitting
parsimonious NARMAX models using the RBF expansion in the presence of corre­
lated noise. The techniques employed in the current study are very similar to those
used for the polynomial NARMAX models using the RBF expansion in the presence
of correlated noise. The techniques employed in the current study are very similar to
those used for the polynomial NARMAX model. The OFR routine is utilized for the
selection of subset RBF models and the adequacy of the fitted model is determined
using the model validity tests developed previously for other non-linear models. A
brief comparison with the polynomial approach is also given. Finally the identifi­
cation results for two real processes are presented to illustrate the approach of RBF
modelling.

The single-input single-output case is studied throughout for notational simplicity.
However the NARMAX representation and the RBF model are both valid for multi­
input multi-output systems (Leontaritis and Billings 1985, Broomhead and Lowe
1988).

2. NARMAX representation
The successful development of identification and many other application pro­

cedures for discrete-time linear systems is largely based upon the linear difference
equation model

"y 'Ill "iii
y(t) = I by,y(t - i) + I bu,u(t - i) + I be,e(t - i) + e(t)

i= 1 i=l i= 1
(I)

where y(t), u(t) and e(t) are the system output, input and noise, respectively; ny, nu
and ne are the maximum lags in the output, input and noise, respectively, and {e(t)}
is assumed to be a white sequence. The model (1) is commonly known as the ARMAX
model.

It is natural to extend the highly successful approach of the difference equation
model to the non-linear case. Under some mild assumptions it has been rigorously
proved that a wide class of discrete-time non-linear systems can be represented by
the following non-linear difference equation model (Leontaritis and Billings 1985):

y(t) =f(y(t -I), ... , y(t - ny), u(t -I), ... , u(t-nu), e(t -I), ... , e(t - nell+ e(t) (2)
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Identification of N ARMAX models 1329

where f( .) is some non-linear function. The model (2) is often referred to as the
NARMAX model because of its resemblance to (I). Note that even in the case that
a noise source enters the system purely as measurement white noise, the system model
cannot be simplified as

y(t) = f(y(t - I), ... , y(t - ny ), u(t - 1), ... , u(t - nul)+ e(t) (3)

This can be readily shown as follows. Assume that the noise-free underlying system
is governed by

ys(t) =fs( ys(t - 1), ... , ys(t - ny ), u(t - 1), ... , u(t - nu))

and the measured system output is a noise corruption of ys(t)

y(t) = ys(t) + e(t)

(4)

(5)

Substituting (5) into (4) yields the model (2), rather than (3).
The input-output relationship (2) is obviously very general. The functional form

f( •) for a real-world system can be very complicated and is rarely known a priori. A
model must therefore be constructed based on some known simpler functions, and
some examples are the output-affine model (Sontag 1979, Chen and Billings 1988),
the polynomial model (Chen et al. 1989)and the rational model (Sontag 1979,Billings
and Chen 1989a). The present study employs an alternative RBF expansion to model
the input-output relationship (2).

The parsimonious principle is particularly critical in non-linear systems identifi­
cation because a non-linear model can easily involve an excessive number of par­
ameters. Without an efficient subset selection, the identification problem is almost
certainly ill-conditioned and the parameter estimation will require excessive compu­
tation. Furthermore, the resulting model has little practical value owing to its high
dimensionality. It is shown below that the linear-in-the-parameter structure of the
RBF expansion can be exploited for subset model selection, and the OFR algorithm
(Chen et al. 1989) can readily be applied to the RBF model.

3. Radial basis functions
The RBF approximation is a traditional technique for interpolating in multi­

dimensional space (Powell 1985, Micchelli 1986)and the theoretical properties of the
method have been carefully investigated. By relaxing the original restriction on strict
interpolating, Broomhead and Lowe (1988)introduced a generalized form of the RBF
expansion. For many practical applications, such as image processing, signal pro­
cessing and control problems, this generalization provides a more convenient basis
to work on.

An RBF expansion with n inputs and a scalar output implements a mapping
j; : IRn --+ IR according to

n.

j;(x) = Ao + L )·;.p(lIx - c, II)
i=l

(6)

where x E IRn
, .p(.) is a function from IR+ to IR, 11'11 denotes the euclidean norm,

A;, 0 ~ i ~ nO' are the weights or parameters, c, E IRn
, I ~ i ~ n,. are the RBF centres

and n, is the number of centres. The functional form .p(.) is assumed to have been
given and the centres c, are some fixed points in n-dimensional space. The centres c.
must appropriately sample the input domain, and they are usually chosen either to
be a subset of the data or distributed uniformly in the input domain. Typical choices
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1330 S. Chen et al.

for 4>( •) are the thin-plate-spline function

4>(v) = v2 log (v)

the gaussian function

the multiquadric function

4>(v) = (v2+ f32)1/2

and the inverse multiquadric function

(7)

(8)

(9)

(10)
I

4>(v) = (v2 + f32)1 /2

where f3 is a real constant. Why such choices of non-linearity form good RBF approxi­
mations is shown, for example, by Powell (1987).

3.1. Connections with neural networks

Current interest in RBF within the engineering community is largely motivated
by the realization that there are strong connections between RBF and neural net­
works. Indeed eqn. (6) can be implemented in the two-layered network structure
depicted in Fig. I. Given fixed centres, the first layer performs a fixed non-linear
transformation which maps the input space onto a new space, and the output layer
implements a linear combiner on this new space. This is basically how an RBF
network operates. If the centres are not predetermined and are regarded as adjustable
parameters, the structure represented in Fig. I then becomes a two-layered feed­
forward neural network (Lippmann 1987, Cybenko 1989). Each term 4>(11 x - coil)
forms a basic component of the network called a hidden neuron. The relationship
between RBF and two-layered neural networks was discussed in detail by Broomhead
and Lowe (1988).

Because the centres are adjustable parameters in a two-layered neural network,
there is more freedom for designing the network to suit given application tasks.
Owing to this flexibility, neural networks prove to be highly successful in dealing
with complex data. There is, however, a heavy price to pay for this. The structure of
the neural network is highly non-linear in the parameters. By carefully pre-fixing
centres, it is hoped that RBF networks can closely match the performance of two­
layered neural networks and yet have a linear-in-the-parameter formulation. It is
important to emphasize that the performance of RBF networks depends critically
upon the given centres.

3.2. Capabilities of radial basis functions

This subsection briefly discusses how the RBF expansion (6)can be used to realize
or to approximate some unknown and complicated nonlinear mapping f: JR" -+ JR.
Although the approximation capabilities of RBF have been established by researchers
working in multi-dimensional interpolation techniques (e.g. Powell 1987), the strong
connections between RBF and neural networks offer a heuristic explanation.

Assume for the time being that the centres are adjustable parameters and consider
the two-layered neural network represented in Fig. I. The surface generated by the
gaussian neuron (8) looks like a 'bump' as illustrated in Fig. 2 (a) in the two-dimen-
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linear combiner

non-linear transformation

n, centres

Figure I. RBF expansion.

sional case. If the first layer of the network consists of enough neurons, sufficient
'bumps' can be generated in appropriate positions by adjusting the parameters of the
first layer. A variety of continuous surfaces from IR" -+ IR can thus be well approxi­
mated by adding up a series of such 'bumps'. Lapedes and Farber (1988) used these
ideas to explain how feedforward neural networks are able to approximate a large
class of functions. In an RBF network the centres are all fixed. If, however, a sufficient
number of centres are used and they are suitably distributed in the input domain, it
is possible that the much simpler RBF model will also provide a reasonable represen­
tation for various functions. Obviously a similar conclusion can be reached for the
inverse multiquadric non-linearity (10).

The approximation capabilities of the RBF expansion (6) are highly related to its
localization properties (Powell 1987). The weights Ai are generally computed based
on observed data f(x). Let 0 c IR" be the domain of the approximation and let Do
be any part of D. j,(x) is said to have good localization properties if the contribution
to j,(x) from (f(x): XE Do} is small for xED that are far away from Do. Notice that
for non-linearities (8) and (10), q>(v)-+O as v-+ co. For these two choices of non­
linearity the RBF approximation (6) has good localization properties. The surface
generated by the thin-plate-spline function (7) in the two-dimensional case is illus­
trated in Fig. 2 (b). It is apparent that for this non-linearity and for the multiquadric
non-linearity (9), q>(v)-+ co as v-+ co. The surprising results of Powell (1987) indicate
that these kinds of RBF approximations can have good localization properties and,
in fact, the success of approximation is easier to achieve if q>(v) -+ co as v-+ co. These
results suggest that the choice of the non-linearity q>(') is not crucial to the per­
formance.

Cybenko (1989) has rigorously proved that the two-layered feedforward neural
network can uniformly approximate any continuous function. By choosing centres
appropriately, it is possible that the simpler RBF model can offer similar approxi-
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1332 S. Chen et aJ.

(a)

Figure 2. Surface generated by 4>(11 x - ell) in 2-D case: (a) gaussian 4>('); (b) thin-plate­
spline - 4>( •).

mation capabilities. The crucial problem is then how to select centres appropriately.
In practice the centres are normally chosen from the data points. In a real problem
the number of data are often large, say, a few hundred. To include all the data as
centres would give rise to an extremely complex and possibly useless model. On the
other hand, arbitrarily choosing some data points as centres may not always satisfy
the requirement that centres should suitably sample the input domain. Fortunately
it can readily be shown that the OFR algorithm (Chen et al. 1989) can be employed
to select centres so that adequate and parsimonious RBF models can be obtained.
In order to apply this technique to fit RBF models in the NARMAX expansion, an
iterative procedure is required and this is discussed next.

4. Identification in the presence of correlated noise
The objective of the present study is to use the RBF expansion to model non­

linear systems described by (2). Define the centre dimension as

(I I)

and the data vector at sample t as

u(t - nu) e(t - I)y(t - ny) u(t - I)x(t) = [y(t - I) e(t - n.)]T

(12)

The RBF expansion f,.(x(t)) is then a one-step-ahead prediction for y(t). The identifi­
cation thus involves determining centres c, and values of )., based on the input-
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Identification of N ARMAX models 1333

output observations {u(t), y(t)}~= I' where N is the data length. Because the system
noise e(t) is generally unobserved, it can only be replaced by the prediction error or
residual e(t) and x(t) must be modified accordingly

x(t) = [y(t - 1) .. , y(t - ny ) u(t - I) u(t - nul e(t - 1) ... e(t - neW

(13)

First a general linear regression model which includes the RBF expansion as a
special case is introduced:

M

y(t) = L p;(t) 0i + e(t)
i=1

(14)

where O;(t) are known as the regressors, which are some fixed non-linear functions of
lagged outputs, inputs and prediction errors. That is

Pi(t)= p;(x(t)) (15)

with x(t) defined in (13). A constant term is included in (14) by setting the correspond­
ing Pi(t)= 1. y(t) is also called the dependent variable. e(t) is assumed to be uncorre­
lated with the regressors p;(t). The set that contains a variety of p;(t) is referred to as
the extended model set (Billings and Chen 1989 b). The model (14), although linear­
in-the-parameters, provides a very rich description of non-linear systems. Effective
modelling can be achieved by selecting a parsimonious subset model from the ex­
tended model set.

It is obvious that a given centre c, with a fixed nonlinearity <!>( .) corresponds to
a regressor p;(t) in (14). The RBF expansion is therefore a particular choice of the
extended model set representation. The problem of how to select a subset of centres
from a large number of candidate centres can thus be regarded as an example of how
to select a subset of significant regressors from a given extended model set. An efficient
technique for selecting a subset model from (14) has previously been developed (Chen
et al. 1989) and is briefly described below.

4.1. Orthogonal forward regression
Equation (14) for t = 1, ... , N can be collected together in the matrix form

y= P0+E (16)

where

vfl] P = [PI PM]

y(N)
(17)

e{J Efll]
e(N)

P; = [Pi(l) ... Pi(NW, l.;;i.;;M (18)

P, known as the regression matrix, can be decomposed into

P=WA (19)
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where

A=

S. Chen et at

(20)

is an M x M unit upper triangular matrix and

is an N x M matrix with orthogonal columns that satisfy

WTW=H

Here H is a positive diagonal matrix

with

N

hi=wTwi= L wi(t)wJt), l';;;i,;;;M
1= 1

Equation (16) can be rearranged as

y = (PA -1 )(A0) + E = Wg + E

where

A0=g

Because G(t) is uncorrelated with the Pitt), it is easy to show that

9 = H-IWTy

or

(21 )

(22)

(23)

(24)

(25)

(26)

(27)

(28)

Techniques for solving for the parameter estimate <:> from the triangular system
(26) are commonly known as orthogonal least-squares methods. The classical Gram­
Schmidt and modified Gram-Schmidt methods (Bjorck 1967) can be used to derive
the triangular system (26). A similar orthogonal decomposition of P can be obtained
using the Householder transformation method (Golub 1965).

The number M of all the candidate regressors can be very large, as for, example,
in the case of the RBF expansion. Adequate modelling may only require M,( «M)
significant regressors. These significant regressors can be identified using the OFR
algorithm (Chen et al. 1989) derived by modifying and augmenting the orthogonal
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least-squares methods. From (25), the sum of squares of y(t) is

M

yTy = L gfwTwj + ETE
i= 1

1335

(29)

(30)

It is seen that each Wj explains a proportion of the dependent variable variance.
Therefore the error reduction ratio due to Wi is defined as

2 T

[ ]
_giWjWj

err i - T '
Y Y

The error reduction ratio offers a simple and effective means of selecting a subset of
significant regressors from a large number of candidates in a forward-regression
manner. At the jth step, a regressor is selected if it produces the largest value of [err]j
from among the rest of the candidates. The selection procedure is terminated when

M.

I-L[err]j<p
j=l

(31)

where 0 < P < I is a chosen tolerance. The parameter estimate e, for the resulting
subset model is then computed from

A,e, = g, (32)

(33)

where A, is the M, x M, unit upper triangular matrix. The detailed selection pro­
cedure is described by Chen et al. (1989) and Billings and Chen (1989 b).

The desired tolerance P can actually be learnt during the forward-regression
procedure so that the regressor selection becomes an automatic procedure. This
aspect is discussed by Billings and Chen (1989 b). Alternatively, the forward­
regression procedure can be terminated using Akaike's information criterion and the
detailed implementation of this is also given by Chen et al. (1989) and Billings and
Chen (1989 b).

4.2. Model validity tests

If the modelling is adequate, the residual e(t) should be unpredictable from (un cor­
related with) all linear and nonlinear combinations of past inputs and outputs, and
this can be tested by means of the following correlation functions (Billings and Voon
1986, Billings and Chen 1989 a):

'¥,,(k) = <5(t) an impulse function

'II .,(k) = 0, If k

'¥,(,.)(k) = 0 k ~ 0

'II .,·,(k) = 0, If k

'II .,·,,(k) = 0, If k

where 'IIx:(k) indicates the cross-correlation function between x(t) and z(t), eu(t)=
e(t + 1) u(t + I),

u2'(t)= u2 (t) - u2 (t)

and u2 (t) represents the time average or mean value of u2 (t).
The tests (33) were developed based on the fact that '¥,,(k) and '¥.,(k) alone are
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1336 S. Chen et al.

not sufficient to validate non-linear models and may even give misleading information
regarding the adequacy of the fitted model. The higher-order correlation tests are
thus included. In general, if the correlation functions in (33) are within the 95%
confidence intervals, ±1'96/jN, the model is regarded as adequate.

Alternatively, a chi-squared statistical test (Leontaritis and Billings 1987) can be
employed to validate the identified model. Define U(t) as an s-dimensional vector­
valued function of the past inputs, outputs and prediction errors, and let

Then the chi-squared statistic is calculated from the formula

(34)

(35)

0.9

3 (a)

-0.9 I----__---_---~---_+_---_

500

0.77

3 (b)

-2.43 I-- --_........-L.__-+- -<

500

0.77

3 (e)

-2.43 1----- ---........--_ _+_---_
500
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500

1.04

500

1337

(f)

0.77

-2.43.1-- --->----___o---_-----0
500

Figure 3. Data set and RBF model response (Example I); (a) u(t), (b) y(t), (e) jilt), (d) e(t),
(e) edIt), (f) .iW)·

where

1 N

Jl = - L nIt) e(t)/u,
N r e t

(36)

and u; is the variance of the residual eft). Under the null hypothesis that the data
are generated by the model, the statistic' is asymptotically chi-squared distributed
with s degrees of freedom. A convenient choice for n(t) is

nIt) = [wIt) wIt - 1) ... wIt - s + l)]T (37)

where ro(t) is some chosen function of the past inputs, outputs and prediction errors.
If the values of' for several different choices of ro(t) are within the 95% acceptance
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1338 S. Chen et al.

Weight estimate Error reduction ratio

1 -3'5975ge-Ol 7-2175ge-01
2 3'15711e-02 2'43152e-01
3 -7'56932e-03 1·22606e-02
4 8'71656e-02 2·60421 e - 03
5 -6'28845e-01 H0850e - 03
6 -2'6117Ie-02 1·90152e-03
7 I'09946e- 0I 1'92118e-03
8 -2'93926e-01 1'36604e-03
9 -1'44274e-01 3·50552e-04

10 -1'11876e-01 5·20098e-04
11 - 5·62868e - 0I 3·I8867e- 04
12 -2-3 I590e+00 I·39608e- 04
13 1·94153e+00 1'75716e-04
14 -1'3179Ie+00 1·91326e - 04
15 2·24206e-OL 1·1520Ie-04
16 HI577e-01 9'5373Ie-05
17 6·15907e-01 l-35794e-04
0 1·63431e +00 1·8778ge - 04

18 -1'11642e-01 2-48672e -04
19 2'01416e-01 7·1911ge-04
20 4·74203e-01 2·61420e-04
21 -5'93372e-02 1'9189ge-04
22 7-041l8e-01 1·1202ge -04
23 1·27583e-01 1'15415e-04
24 -8'54994e-02 1·37082e-04
25 -1'2637Ie+00 8·72300e- 05
26 1·07860e + 00 1·51230e-04
27 2'77538e-01 2'34625e-04
28 1·62097e - 01 4'73ll7e-05
29 2'3962Ie-01 6'19713e-05
30 9'95672e-Oi 5·88282e -05
31 -1'4706Ie-01 5'05323e-05
32 - 7-2353ge - 02 8·14058e - 05
33 !·19353e-01 7·36802e-05

a 2 2'56156e-03.
Table L Subset RBF model of Example I.

region, that is

, q}(a) (38)

the model is regarded as adequate, where x; (a) is the critical value of the chi-squared
distribution with s degrees of freedom for the given significance level a (0'05). The
choices of wit) should generally include some non-linear functions.

4.3. Jterative procedure

By combining the OFR routine and the model validity tests, an iterative procedure
can be formed to identify NARMAX models using the RBF expansion. The non­
linearity c/>( • ) in the RBF expansion will be chosen as the thin-plate-spline function
(7). Apart from its good global interpolating property, the thin-plate-spline function
does not require the extra parameter fJ and, therefore, is slightly more convenient to
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Identification of N ARMAX models 1339

eli e2i eZi C4i CSi

C6i C7i CSi C9i

0 constant

I {
7-6171ge-01 7'03125e-01 5-46875e-01 5-85940e-02} 4-29688e -015-17578e -01 3-31253e-02 I-00582e- 0I -1'34814e-03

2 {-8-20313e-01 O-OOOOOe + 00 O-OOOOOe + 00 -4'68750e-01} O-OOOOOe + 00O'OOOOOe + 00 -7-86912e-01 O'OOOOOe + 00 O'OOOOOe + 00
3 {-5'66406e-01 -3'12500e-0i -9'76560e-02 -7-51953e-01} -7-6171ge-01-4-98047e -01 1-82023e - 02 -7-58298e-02 -2-1431ge-02

4 {
7-03125e-01 5-46875e-01 4-8828Ie-Ol 4-29688e- 0Jl 5-17578e-014'19922e-01 1-00582e - 01 -1'34814e-03 7-9231ge-03f

5 {
4'68750e - 0 I 4-10156e-01 3·3203Ie-01 4-0039Ie-01} 5-76172e-016-54297e-01 -2'48124e-04 -4'25553e-02 1-5745ge - 02

6 { -7-42188e-01 -6-4453Ie-01 -5-27344e-01 -4-68750e-01} -4'19922e-01-2-05078e-01 7-27092e-02 -2-12200e-02 -2-2652Ie-03

7 {
3-3203Ie-01 2-73438e -01 2'34375e-01 2'05078e-01} 3-12500e-011·66016e-01 -3-67755e-03 -5-46013e-03 -8-74925e-03

8 {-3'90625e-01 -2'53906e-01 -1-56250e-01 -9'76560e-021 -3-3203Ie-01
-3-22266e-01 - 5-90254e - 02 -1-16631e-02 -3'37688e-03J

9 { 2-9296ge-01 1·95313e -01 J'95313e-01 6'4453Ie-01} 2-73438e -01-l-85547e-01 6·11390e-03 4·42455e-02 2-98252e - 02
10 {-7'42188e-01 -7'42188e-0I -7-42188e-Ol -2-73438e-01} -8'789IOe-02-1-07422e -01 1-71060e-02 3-38346e - 02 1·63228e-02.
II { 4-8828Ie-01 5-46875e -01 6-83594e - 0 I -1-95313e-01} - 2-9296ge - 0I-2'05078e-01 1-05537e-02 1-24075e-02 2-62395e - 03

12 {
2'73438e-01 1'95313e-01 1-17188e-01 2-4414Ie-Ol} 2'73438e-012-83203e-01 2-59003e - 02 8-6616ge-03 1'09415e-02

13 {
2'73438e-01 1-95313e-01 1-95313e-01 3-3203Ie-0'} 3-12500e-011·66016e-01 1-08582e-02 -2'2917ge-02 -1·96630e - 02

14 {
3·32031e-01 2'53906e-01 2-73438e-01 3'22266e-01} 2-2460ge- 0 I1-75781e -01 3-05088e - 02 -4-73855e-02 2-I3513e- 02

15 {
5-46875e-Ol 5-46875e-01 4-88281e -01 1'3671ge-01} 4-4921ge-016'73828e-01 -6-09297e-03 -2'70075e-02 -1-59142e-03

16 { 3'71094e-01 3-3203Ie-01 4·10156e-01 3-90630e -02} 2-92970e - 02-1-3671ge-01 2·84963e- 02 -4-50973e - 02 5'01287e-02

17 {
3-3203Ie-01 2-53906e-01 1-3671ge-01 2·63672e-Ol} 4-8828Ie-014'78516e-01 -6-77300e-03 -2'77793e-03 1·00440e- 0 I

18 { -1'46484e+00 -1'97266e + 00 -2'42188e+00 8'789IOe-02} -4'29688e-01
-7-03125e-01 5·18907e-02 9·36738e- 02 -1-48592e-01

19 {-1'01562e+OO -1-09375e + 00 - I-09375e+ 00 9'76560e-02} -3-90630 -02
-1-46484e-01 -8·2359ge-03 2-1679Ie-02 1-00404e - 02 e

20 { 3-90625e-01 4-8828Ie-01 4'8828Ie-OI -3'3203Ie-01} -2-4414Ie-Ol
-1'07422e-01 - B0838e - 02 3-95381e-02 -3'29906e-02

21 {-6-64063e-01 -8-98438e-01 -7-6171ge-01 4-98047e-01} 9-76560e-02-4-58984e-Ol 6-66557e - 03 -1-09135e-OI 2-92522e - 02

22{ 4-10156e-01 4-10156e-01 3-51563e-01 1-95313e-01} 3-12500e-Ol4·39453e-Ol -2-26586e-03 3-59494e- 02 2'59324e-02
23 {-3'51563e-01 -3'12500e-01 -4'4921ge-01 -2'4414Ie-01} 2-53906e-016·54297e-01 3-76687e - 02 4·47573e- 02 -2-61394e-02
24 {-7-81250e-02 -3-90625e-OI -6-83594e-01 8'39844e-01} 8-98438e - 0 I5'76172e-Ol 4-2949Ie-02 6-19762e-03 1'0273ge- 0 I

25 t~:~~~:g~=g~
-1'953IOe-02 O'OOOOOe +00 4·88280e- 02} - 5·85940e- 023'04733e-02 4·49002e-03 -5-2602Ie-03

26 {-9-76560e-02 -9'76560e-02 -7'81250e-02 -4-88280e-02} -8'78910e-02-2'63672e-01 1-75251 e- 02 2-96281 e- 02 3·4604Ie-02
(continued)
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1340 S. Chen et al.

27 {
5·85940e - 02 5-85940e - 02 5·85940e - 02 l'56250e-01} 1'26953e-01)'07422e - 0I 1'09151e-02 6'J5147e-03 1'29895e-02

28 {-8'20313e-01 -6'64063e-01 -4'4921ge-01 -3·3203Ie -Ol} -4'78516e-01-5'17578e-Ol -3·1403ge -02 -1'43116e-02 7'4849Ie-02
29 {-1'3084ge+00 -1'52344e+00 -1·660J6e +00 1'7578Ie-01} 9·76560e-025·85940e - 02 7·29334e-02 4'52477e-02 2-34002e - 02

30 { l'95313e-01 1'3671ge-01 1'17188e-01 2·05078e - 01} 1'95313e-012'73438e-01 3'72316e-02 - 8·0509ge - 03 -1'27434e-02
31 {-9'5703Ie-Ol -1'25000e + 00 - 1·46484e + 00 7'6171ge-01} 5'07813e-018·78910e-02 5·80296e - 02 - 2-95292e - 02 5·18907e - 02
32 {-1'87500e+00 -J'79688e+OO -1'7578Ie+00 -1'95313e-01} -1'17188e-014·88280e - 02 -3'7989Ie-03 -6'15757e-02 - 9-60702e - 02
33 {-3-90625e-Ol -6'83594e-01 -9'37500e-01 8·98438e -Ol} 5·76172e-01]'07422e-01 6'19762e-03 1'0273ge-01 -1'28458e-02

Table 2. Subset RBF centres of Example 1.

use in the regressor selection than the other choices (8)-(10). The identification pro­
cedure can be summarized as follows.

(i) Choose ny, nu and ne • Initially the set of candidate centres are all the

xd(t) = [y(t - I) y(t - ny) u(t - I) u(t - nu)]T (39)

A subset RBF modelj']?' is selected using the OFR algorithm and this initial
model is used to generate the initial prediction error sequence {eIO)(t)}.

(ii) An iterative loop is then entered to update the model. At the kth iteration
the set of candidate centres are all the

Xlk)(t) = [y(t - I) ... y(t - ny ) u(t - I)

u(t-nu ) elk-I) (t-I) elk-I) (t-neW (40)

The subset RBF model f~k) is selected by the OFR algorithm and this gives
rise to the prediction error sequence {e(k)(t)). Typically two to four iterations
are sufficient.

(iii) The model validity tests are performed to assess the model. If the model is
considered adequate the procedure is terminated. Otherwise go to step (i).

Some refinements to the above procedure are also possible. Whenever there are
sufficient data points, the data should be partitioned into a fitting set and a testing
set. The former is used in the subset model selection and the latter is used to validate
the selected model. If modelling complex data is regarded as performing a curve
fitting in a high-dimensional space, the two basic concepts in neural networks, namely
learning and generalization, becomes relevant to systems identifiaction. From this
viewpoint, learning corresponds to producing a surface in multidimensional space
that fits the set of data in some best sense, and generalization is equivalent to inter­
polating the test data set on this fitting surface (Broomhead and Lowe 1988). The
performance of generalization is a more 'genuine' indicator for the 'goodness' of the
model. As discussed by Chen et al. (1990), the regressor selection can be terminated
using the following alternative criterion. The subset model is chosen on the fitting
set and the variance of the residuals over the testing set is computed based on the
selected model. The selection is terminated when this generalization error is
minimized.
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Identification of N ARMAX models 1341
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10
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Figure4. Correlation tests (Example 1); (a) 'P,,(k), (b) 'P*.)(k), (e) 'P",(k), (d) 'P,",(k),
(e) 'P.,·,,(k). Dashed line 95% confidence interval.

5. Comparison with fitting polynomial NARMAX models
The iterative procedure for fitting subset RBF models is very similar to that for

fitting subset polynomial models (Chen et al. 1989). Here we do not attempt to assess
which model is superior to the other in representing non-linear systems. Rather, a
brief comparison of the two models is discussed from the practical identification
viewpoint.

For a polynomial expansion, the number of all the candidate regressors or mon­
omials is determined by the formula

I

m= L mi
i=O

(41)
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1342 S. Chen et al.

Weight estimate Error reduction ratio

0 4·86518e + 00 9'7467Ie-01
1 2'89274e-03 2-43432e -02
2 -1'67923e - 02 )'7114ge-04
3 -8'31933e-02 3-85502e - 04
4 5·60050e-01 7-91428e-05
5 -8'85746e-03 )'1731ge-04
6 6·00541 e- 02 6·33583e -05
7 -)·64703e+00 2·06132e - 05
8 1·39768e+00 2·3518ge-05
9 -1'70597e-02 9·05632e - 06

10 -5'41178e-02 7·50023e -06
II - 2-62244e - 03 1'57312e-05
12 -7'92890e-01 1-84051 e- 05
13 1·61505e-01 6·4J244e - 06
14 H4306e-01 7'31515e-06
15 6'42142e-02 8·62033e-06
16 -1'51422e-OJ 4'33155e-06
17 2'63342e-01 3'7864ge-06
18 -6'784I)e-01 B5450e-06
19 2·19646e-01 2·45880e - 06
20 2-2748ge-01 2·18753e - 06
21 -1·61403e+00 2·0785ge - 06
22 1·42335e + 00 1·84200e - 06
23 -6'57795e-01 1·0742ge -06
24 -5'47704e-02 2·21430e-06
25 -9'54563e-Ol 9'12473e-01
26 2'03376e-01 6·4031ge-07
27 4'37858e-02 1·01682e - 06
28 7·30585e-01 7·67175e - 07
29 -8'72148e-02 6'81383e-07
30 -2'25814e-01 9·00494e - 07
31 9'2355Ie-01 )'06634e - 06
32 5'5491Ie-02 1·08590e -06

(J2 3·50978e-04,

Table 3. Subset RBF model of Example 2.

where I is the polynomial degree and

ma = I, mj = mj_ I (n,. + nu + ne + i-I)/i, 1';;; i ,;;; I (42)

It is obvious that the number of monomials increases exponentially as I increases. In
practice, therefore, I must be restricted, say, to 3. As an example, assume that
ny= nu = n, = 7 and 1=3; then m = 2024. Although the OFR algorithm is very
efficient in subset selection, choosing a subset model from such a large set is still
computationally intensive. The dimension of the candidate set for RBF modelling,
on the other hand, is determined by the data length N, which is typically a few
hundred. Increasing ny, nu or ne does not affect the number of candidate regressors.
This gives the RBF approach advantages in fitting non-linear systems with large lags
in the input, output or noise.

NARMAX modelling requires the replacement of the unobserved noise e(t) by
the prediction error B(t). The issue of invertibility (Chen and Billings 1989 b), or
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Identification of N ARMAX models 1343

eli e2i C3i C4i CSi

C6i C7i CSi C91

0 constant
1 p'11380e+00 O-OOOOOe + 00 O-OOOOOe + 00 3-72450e+ OO} 0-00000 + 00

O-OOOOOe + 00 - 7-37578e - 04 O-OOOOOe + 00 O-OOOOOe + 00 e
2 p'06030e + 00 2-87700e + 00 2-77010e+00 3-76330e+00} 3-76330e+00

4-53940e + 00 -2-50678e-02 -2-35328e-02 2-08644e - 03
3 P-02980e+00 3-22840e + 00 3-20540e + 00 3-74390e+00} 3-74390e+00

3-74390e+00 7-53651e-03 1-08585e - 02 -2-16087e-02
4 p'32000e+00 3-1 5200e+ 00 3-24360e + 00 3-74390e+oO} 4-52000 00

4-52000e+00 -2-17232e-02 -4-45968e-02 3-73825e-02 e+
5 p'22840e+00 3-129IOe+00 3-35820e+00 5-80060e+oO} 5-80060e+00

3-74390e+ 00 3-62243e-02 -1-69932e-02 -1-63574e-02
6 P-15200e+00 3-24360e + 00 H 3460e+ 00 4'52000e+00} 4-52000e+00

3-74390e + 00 - 4-45968e - 02 3'73825e-02 -1-83684e - 02
7 P-16730e+00 3-35820e+00 3-35050e + 00 5-80060e+00} 3-74390e+00

3-74390e + 00 3-12243e - 02 -1-84543e - 03 -9-11092e-02
8 p'15960e+00 3-36580e + 00 3-35820e+00 5'82000e+00} 3.74390e+00

3·74390e+00 9-75430e-03 1·06606e - 03 -1-6318ge-02
9 f94580e+00 3·1 I380e+00 O·OOOOOe + 00 4'53940e+00} 3-72450 +00

O-OOOOOe + 00 \-74804e-03 -7-37578e-04 O-OOOOOe + 00 e
10 {4'36630e+00 4·I6770e+ 00 3-931 OOe + 00 5·04390e+ OO} 5-82000 00

5-82000e + 00 4·0272ge- 02 1-31542e-02 -5'12454e-02 e+
II {4'29760e+00 4-351 OOe + 00 4·36630e+ 00 5-04390e+00} 5-04390e+00

5·04390e+ 00 -2-79905e-02 1-00483e-02 4-0272ge-02
12 {3-39640e+00 3-20540e + 00 3·24360e+00 3-74390e+00} 4-52000 00

4-52000e+00 7'08318e-03 9-5763ge-03 1-66295e-02 e+
13 {4-61070e+00 4-63360e + 00 4·63360e+ 00 5·04390e+ OO} 5.02390e+ 00

5·82000e+ 00 -2-9978ge-02 1-8569Ie-03 - 3·15593e-02
14 P-08320e+00 3-09850e + 00 3-01450e+ 00 4-52000e+00} 4.52000 +00

3·74390e+00 -1-14265e-02 -2-51918e-02 2·13655e-02 e
15 P-45750e+00 3·70190e+00 3-93100e+00 3'74390e+00} 3-74390 +00
. 3-74390e+00 1-58350e-02 -4'6766Ie-02 7-5358Ie-03 e

16 {4'71000e+00 4-73290e+00 4·63360e+ 00 5-04390e+00} 5-04390 +00
5·82000e+ 00 3-5820ge -02 7·76617e-03 2-0554ge-02 e

17 p'38870e+00 3·18250e+ 00 3-22070e + 00 3'74390e+00} 4-53940e+00
4·53940e+00 -8-71494e-03 - 2-42880e - 03 -5-96622e-03

18 p'11380e+00 3-1 0620e+ 00 3-01450e+ 00 4-53940e+00} 4-53940e+00
3-72450e+ 00 I·9722ge- 02 -1-64108e-02 -4-7048ge-04

19 p'19780e+00 HII60e + 00 HI930e + 00 5-82000e+00} 3.74390 00
3-74390e+ 00 -1'0487Ie-03 1-57596e - 02 -1'2221ge-02 e+

20 {4-48080e+ 00 4-39680e+ 00 4·45030e+ 00 5'02450e+00} 5-80060 00
5-02450e + 00 2-00877e - 03 9'52153e-03 -1'29715e-02 e+

21 {4-63360e+ 00 4-63360e + 00 4·64890e+ 00 5'04390e+00} 5-82000 +00
5·04390e+ 00 J-8569Ie-03 -3-15593e-02 -5-14224e-03 e

22 {4-64120e+00 4·64120e+ 00 4-65650e + 00 5'04390e+00} 5-82000 +00
5-9438ge + 00 -1'66652e-02 -1-OIOOOe-03 -5'10076e-03 e

23 {4-46560e+ 00 4·50380e+ 00 4-46560e + 00 5'80060e+00} 5-005IOe+00
5·0051Oe + 00 2-46727e - 02 I-79497e- 02 1-02457e -03

14 {4'34340e+00 4·25170e+00 4-28230e+ 00 5·82000e + OO}
- 5-9438ge + 00 3-6537ge-02 -1'396I1e-02 -2-36748e-02 5-82000e+00

25 {4-63360e+ 00 4·64890e+ 00 4-64890e+ 00 5·82000e+ OO} 5.04390 00
5·82000e+ 00 -3-15593e-02 -5-14224e-03 -3-59283e-02 e+

26 p-41160e+00 H1930e+00 3·15200e+ 00 3-74390e+00} 3-74390e+00
4-53940e + 00 1-57596e-02 -1'2221ge-02 - 9-48673e - 04

(continued)
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27 {2-86940e +00
3-74390e+00

28 {4'48850e+ 00
5·04390e + 00

29 {l22840e+00
3·74390e+00

30 {3'24360e+00
4·50060e+00

31 {4'60300e+00
5·80060e+ 00

32 {2'770lOe + 00
3·74390e+00

2·74720e+00
6'53485e-04
4·53430e+00
1·68135e - 02
3-2971Oe + 00

-4'34802e-03
3·24360e + 00
8'15524e-03
4·61830e+00

-2'70984e-02
2-82360e + 00
3'57718e-02

S. Chen et al.

2-86940e + 00
-1'25916e-02

4·48850e+ 00
2-47397e-02
3041930e+00

-4'9186ge-02
3-32000e+00
2·77028e-04
4·62590e + 00

-6·20406e-03
2-98400e + 00

-1'1693ge-02

3'74390e+00} 4.52000e+00
-1'28845e-02

5·82000e + OO} 5.04390 + 00
-1,460600 - 02 e

3'74390e+00} 4.52000e+00
5·99918e - 02

l74390e+00} 3.74390 +00
4.73018e-03 e

5-8006Oe + OO} 5.02450e + 00
-3'75853e-02

4·50060e+ OO} 3-74390e + 00
-5'22487e-02

Table 4. Subset RBF centres of Example 2.

Term

constant
y(t-I)
u(t-I)
u(t -2)
e(t-I)
e(t - 2)
e(t - 3)
e(t-4)
e(t-5)
y2(t-l)

y(t-I) u(t-I)
y(t-I) u(t-2)
y(t-I) e(t-2)
y(t-I) e(t-3)
y(t-l)e(t-4)

u 2(t -I)
u(t-l)e(t-2)
u(t-l)e(t-3)
u(t-I) e(t-4)
u(t-l)e(t-5)

u 2(t -2)
u(t-2)e(t-3)
u(t-2) e(t-4)

(12,

Weight estimate

-1'8647e + 00
2'512Ie-01
4'9787e-01
8·3088e-01
2'6157e-01

- 3-9234e - 0I
7-9580e-01
5'8926e-01
9'7346e-01
5'5328e-02
5'4122e-02

-5'0123e-02
5'0442e-01
6'1282e-01
6'0015e-01

-5'8763e-02
-2'954ge-01
-3'3093e-01
-2'1994e-01
-1'5602e-01
-4·8272e-02
-2'5665e-01
-3-322ge-01

6'3226Ie-04

Table5. Polynomial subset model of Example 2.

whether it is possible to compute err) using the model and given system inputs and
outputs, becomes crucial. The authors' experience suggests that the RBF expansion
is less likely to produce explosive err) sequences than the polynomial expansion.

The polynomial approach has its advantages. Polynomial modelling often re­
quires fewer terms or is more parsimonious than RBF modelling. A subset polynomial
model with less than 20 terms is usually sufficient to capture the dynamics of highly
non-linear processes, while a subset RBF model typically requires 30-40 terms. Given
the same number of terms or parameters, the computation of the RBF mappingj, is
obviously more expensive than that of the polynomial mapping.
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Identification of N ARMAX models 1345

6. Identification of two real processes

6.1. Example 1

The process considered is a liquid level system. The system consists of a DC water
pump feeding a conical flask which in turn feeds a square tank. The system input is
the voltage to the pump motor and the system output is the water level in the conical
flask. 500 points of data generated in an experiment are shown in Fig. 3.

The iterative procedure described in § 4.3 was used to identify a subset RBF
model. The lags ny, nu and ne were all chosen to be 3 and the number of all the
candidate regressors was M = 501 (500 data vectors plus constant term). Three iter­
ations were involved in the identification procedure, and an appropriate tolerance
p = 0·0068 was learnt during the identification. The selected subset model included a
constant term and 33 centres. The final model thus takes the form

JJ

ji(t) =j;(x(t» = ~o + L ~j<p(lIx(t) - c, II)
i= 1

6

5 (0)

3.5 1-----_---__---_---_--__
410

5

5 (b)

2.5

410

5

410

5 (c)

2.5 1-----_--__--__--__--_
1
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410
·0.081-----_---_---_---_--_

1

0.08

(d)

(e)

0.08

-0.08 1-----_---_---_---_--_
410

(f)

5

2.5 1------_---- ---_
410

Figure 5. Data set and RBF model response (Example 2); (a) u(t), (b) y(t), (e) ji(t), (d) e(t),
(e) ed(t), (f) MI).

where cP( •) is defined in (7) and

for I ,;;; i ,;;; 33. The coefficients Xj and the centres c, are listed in Tables I and 2,
respectively,

The model responses are shown in Fig. 3, where the one-step-ahead prediction
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(al (b)

-I 1--__---+--_--1 -I L-- ---+--_---<
o

k
20 o

k
20

(e) (d)
1---:_-_._--_.-

10
k

.1 1--_-_-_----1
-1010

k

-II--_-_---~

-10

(e) :--.'--.• -

-I 1------------1
10·10

k

Figure 6. Correlation tests (Example 2): (a) 'I',,(k); (b) 'I'*'I(k); (c) 'I',,(k); (d) 'I',",(k);
(e) 'I',,·,,(k). Dashed line 95% confidence interval.

y(t) is defined as

Ht) =!r(x(t)) =!r(y(t - 1), ... , y(t - ny), u(t - 1), ... ,

u(t - 11,,), €(I- 1), ... , €(I- nell (43)

The prediction error or residual is given by

e(t) = y(t) - Ht) (44)

The model deterministic output Yd(t) is defined as
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33 r----------, 33 r----------.,

(a)

O~------------l

(b)

O~""-_--_-_----l

o
delay

20 o delay 20

(e)

33 r----------,

Ol"""'--_--_-_-----l

(d)

33 r--------+--.,

OI-L-_--_-__---l

o delay 20 o delay 20

(e)

33 r----------..,.

(f)

33

O~L-_-__-_-----l Ol"""'--_--_-_-----l
o delay 20 o delay 20

Figure 7. Chi-squared tests (Example 2); (a) wIt) = eft - 1), (b) wIt) = u(t - I), (e) w(t) =
y(t -I), (d) w(t) = e2(t - 1),(e)w(t) = u2(t - 1),(f) wIt) = y2(t - I). Dashed line 95%
confidence limit.

and the deterministic error is accordingly given by

ed(t) = y(t) - Yd(t) (46)

The correlation tests are depicted in Fig. 4. It is observed that only at an isolated
point is 'P",(k) slightly outside the confidence bands, and this was judged a good
result, considering that the data was from a real system.

6.2. Example 2
The data was collected from a turbocharged automotive diesel engine in a low

engine speed test. The input was the fuel rack position and the output was the engine
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speed. A detailed description of the experiment design was given by Billings et al.
(1989 a). The data set contains 410 points and has been shown to be inherently non­
linear. Previous results also indicated that it was very difficult to fit an adequate
model to the data.

The dimension of the RBF centres was set to II = n, + n. + lie = 3 + 3 + 3 and the
dimension of the regressor set was M = 411. Only two iterations were involved in the
identification procedure and the appropriate cutoff learnt during the identification
was p = 0·000023. The final model containing a constant term and 32 centres takes
the form

32

ji(t) =};(x(t)) =10 + I 1itP(llx(t) - c.lD
i == 1

where

Ilx(t)-c.l1 =[JI (y(t-k)-CkY+ J4 (u(t-k+3)-CkY

9 J"2+ J7 (e(t-k+6)-cko)2

for I ,,;; i ,,;; 32. The coefficients 1i and the centres c, are listed in Tables 3 and 4,
respectively. As a comparison, the subset polynomial model identified by Billings
et al. (1989 a) is also given in Table 5. The data set and the model response are shown
in Fig. 5, and the correlation tests and some chi-squared tests are illustrated in Figs 6
and 7, respectively. The model validity tests confirm that the model is adequate.

7. Conclusions
If the response of the system is dominated by non-linear characteristics, it is often

necessary to use a non-linear model. The NARMAX representation gives a concise
description for a large class of discrete-time non-linear systems. A practical identifi­
cation algorithm for the NARMAX system has been developed based on the RBF
expansion. It has been shown that the iterative identification algorithm, derived by
coupling the OFR routine and the model validity tests, provides a powerful procedure
for fitting parsimonious RBF models to real-world systems in the presence of corre­
lated noise.
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