
On Combination of SMOTE and Particle Swarm Optimization Based
Radial Basis Function Classifier for Imbalanced Problems

Ming Gao, Xia Hong, Sheng Chen and Chris J. Harris

Abstract—The combination of the synthetic minority over-
sampling technique (SMOTE) and the radial basis function
(RBF) classifier is proposed to deal with classification for
imbalanced two-class data. In order to enhance the significance
of the small and specific region belonging to the positive class in
the decision region, the SMOTE is applied to generate synthetic
instances for the positive class to balance the training data set.
Based on the over-sampled training data, the RBF classifier
is constructed by applying the orthogonal forward selection
procedure, in which the classifier structure and the parameters
of RBF kernels are determined using a particle swarm opti-
mization algorithm based on the criterion of minimizing the
leave-one-out misclassification rate. The experimental results
on both simulated and real imbalanced data sets are presented
to demonstrate the effectiveness of our proposed algorithm.

I. INTRODUCTION

Generally speaking, an imbalanced problem occurs when
the instances in one or several classes (the majority classes)
outnumber the instances of the other classes (the minority
classes), which usually are the more important classes. Such
an imbalance in the data represents the so-called between-
class imbalance [1], in contrast to the related issue of within-
class imbalance [2][3]. Imbalanced problems widely exist
in the field of medical diagnosis, such as surveillance of
nosocomial infection [4], cardiac care [5] and elucidating
protein-protein interactions [6]) as well as in many other
fields, such as fraud detection [7][8], network intrusion
detection [9], telecommunication management [10], and so
on. In the study of two-class imbalanced problem, the
instances in the majority class are referred to as negative,
while in its counterpart, the minority class, the instances are
referred to as positive. Since in practice the minority class
is more important, one should be more concerned with the
positive instances. Imbalanced data learning has been widely
researched [11]-[16]. Typically, the approaches to solving the
imbalanced problem can be divided into two categories: re-
sampling methods and imbalanced learning algorithms.
The re-sampling approach is actually a re-balancing pro-

cess to balance the given imbalanced data set. The studies
[17][18] on class distribution have shown that balanced data
sets provide better learning performance than imbalanced
ones, though some other studies [1][19] argue that imbal-
anced data sets are not necessarily responsible for the poor
performance of some classifiers. Re-sampling techniques are
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attractive under most imbalanced circumstances. This is be-
cause re-sampling adjusts only the original training data set,
instead of modifying the learning algorithm. Thus, this ap-
proach is external and transportable [18][20], and it provides
a convenient and effective way to deal with imbalanced learn-
ing problems using standard classifiers. Specifically, the re-
sampling methods include the random over-sampling, which
randomly appends replicated instances to the positive class,
and the random under-sampling, which randomly removes
instances from the majority class. Alternatively, there exist
the guided over-sampling and under-sampling, respectively,
of which the choices to replace or to eliminate are informed
rather than random. In addition, the synthetic minority over-
sampling technique (SMOTE) [21] is a well acknowledged
over-sampling method. In the SMOTE, instead of mere data
oriented duplicating, the positive class is over-sampled by
creating synthetic instances in the feature space formed by
the instance and its K-nearest neighbors.
The second category, the imbalanced learning algorithms,

can be regarded as a process to modify or improve the
existing learning algorithms so that they can deal with
imbalanced problems effectively. The imbalanced learning
algorithms include the cost-sensitive method [22]-[25], the
discrimination-based and recognition-based approaches [3].
Noticeably, kernel-based learning, such as support vector ma-
chine (SVM) and radial basis function (RBF), is the state-of-
the-arts approach for solving imbalanced learning problems.
The study [1] shows that kernel-based methods provide a
relatively robust classification to imbalanced problems. Nev-
ertheless, the detrimental effects of an imbalanced data set
can be sufficiently serious to prevent kernel-based classifiers
from achieving the optimal classifier’s performance.
In order to achieve better classification performance, an

effective approach is to integrate kernel-based classifiers with
re-sampling methods. The previous studies [26]-[28] mainly
focused on SVMs. Specifically, the method [26] combined
the SMOTE with different costs to bias SVMs by assigning
different classes with different costs so as to shift the
decision boundary away from the positive instances and to
define a better boundary. The work [27] proposed ensemble
systems by re-sampling data sets to form the input to the
standard SVM classifier, while the method [28] introduced
asymmetric misclassification costs in SVMs so as to improve
classification performance. Another integration of SVM with
under-sampling method used the combination of the granular
support vector machine (GSVM) [29] and repetitive under-
sampling (RU) to form the GSVM-RU algorithm [30]. An
alternative approach is to adapt kernel-based classifiers to
imbalanced data sets by modifying the kernel construction
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and model selection procedure. A representative work of this
approach [31] proposed a regularized orthogonal weighted
least square (ROWLS) kernel estimator using the orthogonal
forward selection (OFS) based on the model selection crite-
rion of maximizing the leave-one-out area under the curve
(LOO-AUC) of receiver operating characteristics (ROC).
For balanced data sets, the prevalent approach for con-

structing the RBF and other sparse kernel classifiers is to
assign a fixed common variance for every kernel and to
select input data as the candidate centers for RBF kernels by
minimizing the leave-one-out (LOO) misclassification rate in
the efficient OFS procedure [32]. This approach has its root
in regression application [33]-[36]. There are two limitations
with this “fixed” RBF kernel approach. Firstly, kernels cannot
be flexibly tuned, as the position of each kernel is restricted
to the input data and the shape of each kernel is fixed rather
than determined by the model learning procedure. Secondly,
the common kernel variance has to be determined via cross
validation, which inevitably increases the computational cost.
The previous studies [37]-[39] constructed the tunable RBF
classifier based on the OFS procedure using a global search
optimization algorithm [40] to optimize the RBF kernels one
by one. This tunable RBF kernel approach was observed to
produce sparser classifiers with better performance but higher
computational complexity in classifier construction, in com-
parison with the standard fixed kernel approach. Recently,
the particle swarm optimization (PSO) algorithm [41] was
adopted to minimize the LOO misclassification rate in the
OFS construction of tunable RBF classifier [42][43]. PSO
[41] is an efficient population-based stochastic optimization
technique inspired by social behaviour of bird flocks or fish
schools, and it has been successfully applied to wide-ranging
optimization applications [44]-[48]. Owing to the efficiency
of PSO, the tunable RBF modeling approach advocated
in [42][43] offers significant advantages in terms of better
generalization performance and smaller classifier size as well
as lower complexity in learning process, compared with the
standard fixed kernel approach. This PSO aided tunable RBF
classifier, therefore, offers the state-of-the-art for balanced
data sets. When dealing with highly imbalanced problems,
however, its performance may degrade.
Against this background, our novel contribution is to

combine the SMOTE algorithm and the PSO aided RBF
classifier to deal with two-class imbalanced classification
problems effectively. The SMOTE is first applied to generate
synthetic instances in the positive class to balance the training
data set. Using the resulting balanced data set, the tunable
RBF classifier is then constructed by applying the PSO to
minimize the LOO misclassification rate in the computation-
ally efficient OFS procedure. Experimental results obtained
demonstrate that the proposed method is competitive to other
existing state-of-the-arts methods for two-class imbalanced
problems. The rest of the paper is organized as follows.
Section II introduces the tunable RBF model for two-class
classification and the OFS procedure based on the LOO
misclassification rate, while Section III presents the PSO

algorithm for tuning the RBF kernels by minimizing the LOO
misclassification rate. Section IV introduces the SMOTE
method and presents the proposed combined SMOTE and
PSO based RBF algorithm. The effectiveness of our approach
is demonstrated by numerical examples in Section V, and our
conclusions are given in Section VI.

II. TUNABLE RBF MODELING FOR CLASSIFICATION
Consider the two-class data set DN = {xk, yk}

N
k=1, where

yk = {±1} denotes the class label for the feature vector
xk ∈ �m, while there are N+ positive instances and N−

negative instances, with N = N++N−. We use the data set
DN to construct the RBF classifier of the form:

ŷ
(M)
k =

M∑
i=1

wigi
(
xk

)
= gT

M (k)wM

ỹ
(M)
k = sgn

(
ŷ
(M)
k

) (1)

where M is the number of RBF kernels, ŷ(M)
k is the output

of the M -term classifier with the M kernels, gi(•) for 1 ≤

i ≤M , and ỹ(M)
k denotes the corresponding estimated class

label for xk, while wM =
[
w1 w2 · · ·wM

]T is the weight
vector and gT

M (k) =
[
g1(xk) g2(xk) · · · gM (xk)

]
. In this

study, we use the Gaussian kernel function

gi(x) = exp
(
−(x− ci)

TΣ−1
i (x− ci)

)
(2)

where ci ∈ �m is the center vector of the ith RBF kernel and
Σi = diag{σ2

i,1, σ
2
i,2, · · · , σ

2
i,m} is the diagonal covariance

matrix of the ith kernel. Hence, the position of each kernel,
ci, and coverage of each kernel, Σi, are both considered as
the parameters to be determined in kernel modeling.
From (1), the RBF classifier over DN can be written in

the matrix form as

y = GMwM + e(M) (3)

where e(M) =
[
e
(M)
1 e

(M)
2 · · · e

(M)
N

]T is the error vector
with the M -term modeling error e(M)

k = yk − ŷ
(M)
k ,

y =
[
y1 y2 · · · yN

]T is the desired class label vector,
and the kernel matrix GM =

[
g1 g2 · · ·gM

]
with gl =[

gl(x1) gl(x2) · · · gl(xN )
]T for 1 ≤ l ≤ M . Note that gl is

the lth column of GM while gT
M (k) is the kth row of GM .

Consider the orthogonal decomposition GM = PMAM ,
where

AM =

⎡
⎢⎢⎢⎢⎣

1 a1,2 · · · a1,M

0 1
. . .

...
...

. . . . . . aM−1,M

0 · · · 0 1

⎤
⎥⎥⎥⎥⎦ (4)

PM =
[
p1 p2 · · ·pM

]
(5)

and the columns in (5) satisfy pT
i pj = 0 for i �= j. The RBF

classifier (3) can alternatively be represented as:

y = PMθM + e(M) (6)

where θM =
[
θ1 θ2 · · · θM

]T satisfies θM = AMwM . The
space spanned by the original model bases gi, 1 ≤ i ≤ M ,
is identical to that spanned by pi, 1 ≤ i ≤M .
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The OFS procedure constructs the RBF kernels one by
one by minimizing the LOO misclassification rate [42][43].
Specifically, at the nth stage, the nth RBF kernel (pn and θn)
is determined. Define the LOO-model output of the n-term
RBF model constructed from the LOO data set DN \(xk, yk),
calculated at xk, as ŷ

(n,−k)
k . Further define the associated

LOO decision variable as

s
(n,−k)
k = sgn(yk)ŷ

(n,−k)
k = ykŷ

(n,−k)
k (7)

Then the LOO misclassification rate is defined by [32]

J
(n)
LOO =

1

N

N∑
k=1

Id
(
s
(n,−k)
k

)
(8)

in which the indicator function Id(s) is defined as

Id(s) =

{
1, s ≤ 0
0, s > 0

(9)

By making use of Sherman-Morrison-Woodbury theorem
[49] as well as the orthogonal property, the LOO de-
cision variable can be efficiently calculated according to
[32][42][43]

s
(n,−k)
k =

ψ
(n)
k

η
(n)
k

(10)

in which ψ(n)
k and η(n)k can be computed recursively by:

ψ
(n)
k = ψ

(n−1)
k + ykθnpn(k)−

p2n(k)

pT
npn + λ

(11)

η
(n)
k = η

(n−1)
k −

p2n(k)

pT
npn + λ

(12)

where pn(k) is the kth element of pn and λ ≥ 0 is a small
regularization parameter.
At the nth stage of the OFS procedure, the nth RBF

kernel, namely, its center vector cn and diagonal covariance
matrix Σn, are determined by minimizing J

(n)
LOO. The con-

struction terminates at the size of M when J (M+1)
LOO ≥ J

(M)
LOO

[32][42][43].

III. PSO FOR OPTIMIZING RBF PARAMETERS
Let μ = [μ(1) μ(2) · · ·μ(2m)]T be the 2m-dimensional

vector that contains cn and Σn. Then, as defined in the
previous section, the problem of determining the nth RBF
kernel’s parameters at the nth OFS stage is to solve the
following optimization problem

μ̂ = arg min
μ∈Γ

J
(n)
LOO (13)

where Γ defines the 2m-dimensional search space for the
parameter vector μ, which is specified by the two val-
ues Γmin =

[
Γ1,min Γ2,min · · ·Γ2m,min

]T and Γmax =[
Γ1,max Γ2,max · · ·Γ2m,max

]T as follows. The search space
for cn =

[
cn,1 cn,2 · · · cn,m

]T is specified by the distribution
of the training data

{
xk =

[
xk,1 xk,2 · · ·xk,m

]T}N
k=1
,

namely,

cn,i ∈
[
xmin,i, xmax,i

]
�

[
Γi,min, Γi,max

]
, 1 ≤ i ≤ m (14)

with xmin,i = min
1≤k≤N

xk,i and xmax,i = max
1≤k≤N

xk,i, while
each element of Σn is limited in the range

σ2
n,i ∈

[
σ2
min, σ

2
max

]
�

[
Γ(i+m),min, Γ(i+m),max

]
, 1 ≤ i ≤ m (15)

When applying a PSO [41] to solve the optimisation (13),
a swarm of the candidate particles

{
μ

[l]
i

}S
i=1

are “flying”
in the search space Γ in order to find a solution μ̂, where
S is the size of the swarm and l ∈ {0, 1, · · · , L} denotes
the lth movement of the swarm. Each particle μ has a
2m-dimensional velocity ν = [ν(1) ν(2) · · · ν(2m)]T to
direct its search, and the velocity ν ∈ V with the velocity
space defined by V =

[
− Vmax, Vmax

]
, where Vmax =[

V1,max V2,max · · ·V2m,max

]T
= 1

2

(
Γmax − Γmin

)
.

To start the PSO, the candidate particles
{
μ

[0]
i

}S
i=1

are
initialized randomly within Γ, and the velocity for each can-
didate particle is initialized to zero, namely,

{
ν
[0]
i = 0

}S
i=1
.

The cognitive information pb
[l]
i and the social information

gb[l] record the best position visited by the particle i and the
best position visited by the entire swarm, respectively, during
the l movements. For notational convenience, we denote
the LOO cost calculated on pb

[l]
i as J (n)

LOO

(
pb

[l]
i

)
and the

LOO cost calculated on gb[l] as J (n)
LOO

(
gb[l]

)
. The cognitive

information pb
[l]
i and the social information gb[l] are used

to update the velocities and positions according to

ν
[l+1]
i = a · ν

[l]
i + rand() · b ·

(
pb

[l]
i − μ

[l]
i

)
+rand() · c ·

(
gb[l] − μ

[l]
i

)
(16)

μ
[l+1]
i = μ

[l]
i + ν

[l+1]
i (17)

where a denotes the inertia weight, rand() is the random
number uniformly distributed in [0, 1], b and c are the two
acceleration coefficients. Experimental results given in [43]
show that a better performance can be achieved by using
a = rand() instead of a constant inertia weight. Adopting
the time varying acceleration coefficients (TVAC) [44], in
which b = 2.5− (2.5− 0.5) · l/L and c = 0.5+ (2.5− 0.5) ·
l/L, can often enhance the performance of PSO. The search
space Γ and the velocity space V are used to confine μ[l+1]

i

and ν [l+1]
i derived from (16) and (17), respectively. If ν[l+1]

i

becomes too close to 0, a random re-initialization is needed,
which may take the form ν

[l+1]
i = ±0.1 ·rand()·Vmax . The

detailed PSO aided OFS algorithm can be found in [43].

IV. COMBINED SMOTE AND PSO OPTIMIZED RBF FOR
IMBALANCED CLASSIFICATION

The SMOTE [21] over-samples the positive class by creat-
ing synthetic instances by a specified over-sampling ratio of
the original minority data size, β%. Based on each minority
data sample, denoted by xo, β% synthetic data points are
generated by randomly selecting data points on the lines
linking xo with some of its K nearest neighbors, where K is
predetermined. Depending on the required SMOTE amount
β%, one out of the K nearest positive class data samples are
randomly selected several times. For example, if β% = 600%
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Fig. 1. (a) Original training data space, and (b) training data space after
SMOTE over-sampling the positive class by 500% of its original size, where
x denotes positive class instance while ◦ denotes negative class instance

and K = 5, then one out of five nearest neighbors of xo
is randomly chosen repeatedly for six times. Each time a
random kth neighbor is selected to create a line linking xo to
this neighbor, and then a single synthetic instance is created
by randomly selecting a point on the line. Thus any synthetic
instance xs is given by

xs = xo + δ ·
(
x{t}
o − xo

)
(18)

where xs denotes one synthetic instance, x
{t}
o is the tth

nearest neighbors of xo in the positive class, and δ ∈ [0, 1]
is a random number. The procedure is repeated for all the
positive data points.
A major problem caused by imbalanced data sets is that

most classifiers tend to attribute the positive class instances
within the decision region to the negative class, due to
insufficient positive-class training instances in the decision
region. As a result, the trained decision boundary tends to
be far away from the negative class and too close to the
positive class. The contribution of SMOTE is to enhance the
significance of the small and specific region belonging to the
positive class in the decision region, which leads to the better
generalization for classifiers. Fig. 1(a) shows a simulated
imbalanced data set, the details of which are specified in
Section V. After the SMOTE over-sampling the positive class
by 500% of its original size, the instances from the positive

class become more significant in the decision region (the area
specified by dash-dot line), as shown in Fig. 1(b), compared
with the original data set. Consequently, the trained decision
boundary tends to be further away from the positive class.
We combine this SMOTE with the PSO optimized RBF

classifier described in Section III to create a powerful al-
gorithm for combating two-class imbalanced problems. This
combined SMOTE and PSO aided RBF is detailed below.
1) Algorithm initialization
(a) Specify the balanced degree β% and the value ofK .
Create the new training data set D̃N by appending the
generated positive training data points to the original
training data set via the SMOTE.
(b) Specify the search space Γ and the velocity space
V. Specify the values of L and S.
(c) Set J (0)

LOO = 1, ψ(0)
k = 0, and η(0)k = 1.

2) Construct the nth RBF kernel
(a) PSO initialization: Randomly initialize {μ

[0]
i }Si=1

in Γ, and set {ν[0]
i = 0}Si=1.

(b) For 0 ≤ l < L:
(b.i) Construct the candidates g{i}

n from μ
[l]
i , for 1 ≤

i ≤ S. Then, for 1 ≤ i ≤ S and 1 ≤ j < n, compute:

a
{i}
j,n =

{
1, n = 1

pT
j g{i}

n

pT
j
pj

, n > 1

p
{i}
n =

⎧⎪⎨
⎪⎩

g
{i}
n , n = 1

g
{i}
n −

n−1∑
j=1

a
{i}
j,npj , n > 1

θ
{i}
n =

(
p{i}

n

)T
y(

p
{i}
n

)T
p

{i}
n +λ

(b.ii) For 1 ≤ i ≤ S and 1 ≤ k ≤ N , compute:

ψ
(n)
k {i} = ψ

(n−1)
k +y(k)θ

{i}
n p

{i}
n (k)−

(
p{i}n (k)

)2(
p

{i}
n

)T
p

{i}
n +λ

η
(n)
k {i} = η

(n−1)
k −

(
p{i}n (k)

)2(
p

{i}
n

)T
p

{i}
n +λ

Then, for 1 ≤ i ≤ S, calculate the LOO costs:

J
(n)
LOO{i} = 1

N

N∑
k=1

Id

(
ψ

(n)
k

{i}

η
(n)
k

{i}

)
(b.iii) For 1 ≤ i ≤ S:
If J

(n)
LOO{i} < J

(n)
LOO

(
pb

[l]
i

)
: pb

[l]
i = μ

[l]
i and

J
(n)
LOO

(
pb

[l]
i

)
= J

(n)
LOO{i}

Then find i∗ = arg min
1≤i≤S

J
(n)
LOO

(
pb

[l]
i

)
If J (n)

LOO

(
pb

[l]
i∗

)
< J

(n)
LOO

(
gb[l]

)
: gb[l] = pb

[l]
i∗
and

J
(n)
LOO

(
gb[l]

)
= J

(n)
LOO

(
pb

[l]
i∗

)
(b.iv) For 1 ≤ i ≤ S:
ν
[l+1]
i = a · ν

[l]
i + rand() · b ·

(
pb

[l]
i − μ

[l]
i

)
+rand() · c ·

(
gb[l] − μ

[l]
i

)
If ν[l+1]

i (j) = 0: ν[l+1]
i (j) = ±0.1 · rand() · Vj,max

If ν[l+1]
i (j) > Vj,max: ν

[l+1]
i (j) = Vj,max

If ν[l+1]
i (j) < −Vj,max: ν

[l+1]
i (j) = −Vj,max

Then for 1 ≤ i ≤ S:
μ

[l+1]
i = μ

[l]
i + ν

[l+1]
i

If μ[l+1]
i (j) > Γj,max: μ

[l+1]
i (j) = Γj,max

If μ[l+1]
i (j) < Γj,min: μ

[l+1]
i (j) = Γj,min
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(c) Termination of PSO: gb[L] provides cn and Σn

with the associated LOO cost J (n)
LOO = J

(n)
LOO

(
gb[L]

)
.

The algorithm also generates aj,n for 1 ≤ j < n, pn
and θn as well as ψ

(n)
k and η(n)k for 1 ≤ k ≤ N .

3) OFS termination condition checking:
If J (n)

LOO < J
(n−1)
LOO : n = n+ 1, go to step 2);

Otherwise, M = n− 1, terminate the OFS procedure.

V. EXPERIMENTAL RESULTS

The effectiveness of the proposed SMOTE+PSO-OFS al-
gorithm was investigated using a simulated imbalanced date
set and three real imbalanced data sets. The first two real
data sets were taken from [50], while the third real data set
was from [51]. These three real data sets were chosen in
the order of increasing imbalance. For each data set, the
positive class was over-sampled at different rates β% of
its original size using the SMOTE. For the synthetic data
set, a separate test data set was used, while for the three
real data sets, P -fold cross validation was used, to indicate
the classifier generalization capability based on multiple
specifications, including the true positive rate (TP%) and the
false positive rate (FP%) [52], as well as the precision (Pr),
the F-measure (F-meas) and the G-mean [53]. These criteria
are commonly adopted as the performance metrics for eval-
uating imbalanced learning classifiers. The regularized least
square parameter estimator (KRLS), the K̄-nearest neighbor
classifiers with K̄ = 1 and 3 (1−NN and 3−NN ), as well
as the LOO-AUC+OFS with different weight ρ were cited
from [31] as the benchmarks for comparison in the synthetic
and first two real data sets. For the third real data set, the
weighted SVM with (C+ = 1000, C− = −1000), the cost
sensitive SVM (CS-SVM) with (C+ = 1, C− = −0.1), the
cost sensitive SUPANOVA with (C+ = 1, C− = −0.1) and
the LOO-AUC+OFS with different weight ρ were quoted
from [31][51] as comparison.
Simulated imbalanced data set: The simulated data set

was generated with the m = 2 features. The mean vector
of the negative class was [0 0]T, while the mean vector of
the positive class was [2 2]T. The covariance matrices of both
the negative-class and positive-class instances were the same
2-dimensional identity matrix. The training data set contained
100 instances from the negative class and 10 instances from
the positive class, as depicted in Fig. 1(a). The test data set
contained 1000 instances from the negative class, and 100
instances from the positive class. The 5-nearest neighbor
method was applied to generate synthetic training data in
the SMOTE, with the over-sampling rate β% set to 0%,
100%, 500%, 1000%, 1500% and 2000%, respectively. For
the SMOTE+PSO-OFS, the swarm size and the number of
movements were set to S = 10 and L = 20. The test results
obtained by the various classifiers are shown in Table I.
It can be seen from the results for the SMOTE+PSO-OFS

listed in Table I that, as the over-sampling rate β% increases,
typically TP% increases but FP% inevitably increases as
well. A better tradeoff between TP% and FP% was achieved,
however, at the over-sampling rate where the better G-mean

TABLE I
TEST CLASSIFICATION PERFORMANCE COMPARISON FOR THE

SYNTHETIC DATA SET

Method TP% FP% Pr G-mean F-meas
KRLS with all 0.840 0.037 0.694 0.899 0.760
data as centers

1-NN 0.830 0.047 0.638 0.899 0.722

3-NN 0.780 0.022 0.780 0.873 0.780

LOO-AUC+OFS 0.860 0.049 0.637 0.904 0.732
(ρ = 1)

LOO-AUC+OFS 0.840 0.028 0.750 0.903 0.792
(ρ = 5)

LOO-AUC+OFS 0.90 0.063 0.588 0.918 0.712
(ρ = 10)

LOO-AUC+OFS 0.870 0.046 0.654 0.911 0.747
(ρ = 15)

LOO-AUC+OFS 0.870 0.049 0.640 0.909 0.737
(ρ = 20)

SMOTE+PSO-OFS 0.860 0.044 0.662 0.907 0.748
(β% = 0%)

SMOTE+PSO-OFS 0.880 0.055 0.615 0.912 0.724
(β% = 100%)

SMOTE+PSO-OFS 0.810 0.023 0.780 0.890 0.794
(β% = 500%)

SMOTE+PSO-OFS 0.890 0.053 0.627 0.918 0.736
(β% = 1000%)
SMOTE+PSO-OFS 0.930 0.102 0.476 0.914 0.631
(β% = 1500%)
SMOTE+PSO-OFS 0.940 0.110 0.461 0.915 0.618
(β% = 2000%)

and F-measure were obtained. Since the imbalance degree
of the negative class to the positive class was 10 : 1, the
over-sampled positive instances made D̃N fully balanced at
β% = 1000%. From Table I, it can be seen that the best
test performance occurred at the over sampling rate around
500% to 1000%. The effect of the SMOTE on the decision
boundary is shown in Fig. 2, where it can be seen that the
decision boundary trained by the more balanced data set was
pushed further away from the positive class. Compared with
the other benchmark methods, the proposed SMOTE+PSO-
OFS showed a competitive performance.
Pima Indians diabetes data set [50]: The data set con-

tained 768 instances from the two classes with 500 negative
instances and 268 positive instances. The feature space
dimension was m = 8. All the eight input features were
normalized to the range [0, 1] using the operation

x̄k,i =
xk,i − xmin,i

xmax,i − xmin,i
, 1 ≤ k ≤ N, 1 ≤ i ≤ m (19)

The 5-nearest neighbor scheme was applied to generate
synthetic training data in the SMOTE. The over-sampling rate
β% was set to 0%, 50%, 75%, 100%, 150%, 200%, 250%
and 500%, respectively. The swarm size and the number of
movements were set to S = 10 and L = 20 for the PSO.
The 8-fold cross validation was used to investigate the test
performance of a classifier. The 8-fold cross validation results
for the various classifiers are shown in Table II.
For the SMOTE+PSO-OFS, it can be seen that the best

TP%, that is, the best detection capability for diabetes,
occurred at β% = 500%, while the best FP% occurred at
β% = 0%. But the best TP% was obtained at the expense of
the worst FP%, and the best FP% was obtained at the expense
of the worst TP%, as indicated by the poor values of the G-
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Fig. 2. Decision boundaries obtained by the SMOTE+PSO-OFS with
different over-sampling rates: (a) β% = 0%, (b) β% = 100%, (c) β% =

1000%, and (d) β% = 2000%, where x denotes positive-class test instance
while ◦ denotes negative-class test instance.

TABLE II
8-FOLD CROSS VALIDATION CLASSIFICATION PERFORMANCE FOR PIMA

INDIANS DIABETES DATA SET

Method TP% FP% Pr G-mean F-meas
KRLS with all 0.56 0.14 0.68 0.69 0.61
data as centers ±0.05 ±0.04 ±0.07 ±0.03 ±0.04

1-NN 0.54 0.21 0.58 0.65 0.56
±0.04 ±0.04 ±0.06 ±0.02 ±0.04

3-NN 0.58 0.17 0.65 0.69 0.61
±0.06 ±0.06 ±0.07 ±0.04 ±0.04

LOO-AUC+OFS 0.58 0.13 0.70 0.71 0.63
(ρ = 1.0) ±0.03 ±0.05 ±0.09 ±0.03 ±0.05

LOO-AUC+OFS 0.68 0.20 0.65 0.73 0.66
(ρ = 1.5) ±0.06 ±0.07 ±0.08 ±0.04 ±0.05

LOO-AUC+OFS 0.73 0.24 0.62 0.74 0.67
(ρ = 2.0) ±0.05 ±0.07 ±0.07 ±0.04 ±0.05

LOO-AUC+OFS 0.77 0.31 0.57 0.73 0.66
(ρ = 2.5) ±0.05 ±0.06 ±0.05 ±0.03 ±0.07

SMOTE+PSO-OFS 0.57 0.11 0.73 0.71 0.64
(β% = 0%) ±0.04 ±0.04 ±0.10 ±0.03 ±0.06

SMOTE+PSO-OFS 0.70 0.19 0.67 0.75 0.68
(β% = 50%) ±0.07 ±0.09 ±0.07 ±0.03 ±0.04

SMOTE+PSO-OFS 0.73 0.23 0.68 0.73 0.69
(β% = 75%) ±0.12 ±0.19 ±0.14 ±0.06 ±0.04

SMOTE+PSO-OFS 0.79 0.25 0.64 0.76 0.70
(β% = 100%) ±0.07 ±0.10 ±0.06 ±0.05 ±0.04

SMOTE+PSO-OFS 0.81 0.29 0.60 0.76 0.69
(β% = 150%) ±0.07 ±0.09 ±0.06 ±0.04 ±0.05

SMOTE+PSO-OFS 0.83 0.33 0.58 0.75 0.68
(β% = 200%) ±0.04 ±0.07 ±0.06 ±0.04 ±0.05

SMOTE+PSO-OFS 0.85 0.35 0.57 0.74 0.68
(β% = 250%) ±0.07 ±0.07 ±0.07 ±0.06 ±0.06

SMOTE+PSO-OFS 0.91 0.44 0.52 0.71 0.67
(β% = 500%) ±0.05 ±0.06 ±0.05 ±0.04 ±0.05

mean and F-measure. The best tradeoff between TP% and
FP% occurred around β% = 100% to = 150%, which en-
abled to detect as many positive diabetes patients as possible
while ensuring the minimum incorrect diagnose of healthy
people. Again, this best over-sampling rate made the enlarged
data set fully balanced. The results of Table II also show
that the test performance of the proposed SMOTE+PSO-OFS
compare favourably with the other classifiers.
Haberman survival data set [50]: The data set contained

306 instances from the two classes with 225 negative in-
stances and 81 positive instances. The feature space dimen-
sion wasm = 3. All the three input features were normalized
to the range [0, 1] using the operation (19). The 5-nearest
neighbor method was adopted to generate synthetic training
data in the SMOTE. The over-sampling rate β% was set to
0%, 100%, 200%, 300% and 400%, respectively. The swarm
size and the number of movements were chosen to be S = 10
and L = 20. The 3-fold cross validation was used to calculate
test performance, and the results obtained for the various
classifiers are shown in Table III. Compared with the other
benchmark classifiers, the SMOTE+PSO-OFS demonstrated
its competitive performance. For the SMOTE+PSO-OFS,
the best tradeoff between TP% and FP% occurred around
β% = 150%, which was again close to the imbalanced
degree of the original data set.
ADI data set: The austempered ductile iron (ADI) material

data set was obtained from a study on fatigue cracks from the
graphite nodules within the microstructure in an automotive
camshaft application [51]. This two-class data set contained
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TABLE III
3-FOLD CROSS VALIDATION CLASSIFICATION PERFORMANCE FOR

HABERMAN SURVIVAL DATA SET
Method TP% FP% Pr G-mean F-meas

KRLS with all 0.33 0.11 0.63 0.54 0.41
data as centers ±0.05 ±0.01 ±0.07 ±0.04 ±0.05

1-NN 0.32 0.21 0.36 0.50 0.38
±0.03 ±0.02 ±0.01 ±0.02 ±0.02

3-NN 0.17 0.15 0.30 0.38 0.22
±0.06 ±0.06 ±0.07 ±0.04 ±0.04

LOO-AUC+OFS 0.21 0.05 0.61 0.45 0.31
(ρ = 1) ±0.02 ±0.01 ±0.05 ±0.02 ±0.03

LOO-AUC+OFS 0.38 0.13 0.51 0.57 0.44
(ρ = 2) ±0.08 ±0.02 ±0.02 ±0.05 ±0.06

LOO-AUC+OFS 0.62 0.27 0.45 0.67 0.52
(ρ = 3) ±0.08 ±0.03 ±0.05 ±0.05 ±0.06

LOO-AUC+OFS 0.67 0.42 0.36 0.62 0.47
(ρ = 4) ±0.02 ±0.08 ±0.03 ±0.03 ±0.02

SMOTE+PSO-OFS 0.23 0.07 0.57 0.44 0.31
(β% = 0%) ±0.04 ±0.06 ±0.01 ±0.05 ±0.05

SMOTE+PSO-OFS 0.44 0.15 0.52 0.61 0.48
(β% = 100%) ±0.09 ±0.06 ±0.09 ±0.07 ±0.09

SMOTE+PSO-OFS 0.63 0.23 0.50 0.69 0.55
(β% = 200%) ±0.06 ±0.06 ±0.07 ±0.08 ±0.09

SMOTE+PSO-OFS 0.80 0.58 0.34 0.57 0.47
(β% = 300%) ±0.09 ±0.07 ±0.05 ±0.09 ±0.05

SMOTE+PSO-OFS 0.84 0.69 0.31 0.51 0.45
(β% = 400%) ±0.08 ±0.08 ±0.04 ±0.08 ±0.05

2923 instances in the feature space of dimension m = 9,
with 2807 negative instances and 116 positive instances. As
in [31][51], 700 negative-class instances and 90 positive-class
instances were randomly selected from the original data set
to form the 8-fold cross validation set. Initially, all the nine
input features were normalized to within the range [0, 1]
using the operation (19). The SMOTE adopted the 5-nearest
neighbor scheme to generate synthetic training data. The
over-sampling rate β% was set to 0%, 100%, 300%, 500%,
800%, 1000%, 1500% and 2000%, respectively. The swarm
size and the number of movements were set to S = 10 and
L = 20 for the PSO. The 8-fold cross validation results
obtained by the various classifiers are shown in Table IV.
For the SMOTE+PSO-OFS, the best overall test performance
was achieved at the over sampling rate of β% = 1500%,
which is competitive to the performance of the CS-SVM,
the SUPANOVA and the best LOO-AUC+OFS (ρ = 15).

VI. CONCLUSIONS
The RBF classifier performs well on balanced or slightly

imbalanced data sets, and our previous work has provided an
efficient and tunable RBF classifier optimized by the PSO.
For highly imbalanced data sets, however, the performance
of the tunable RBF classifier may no longer be satisfactory.
In order to combat challenging imbalanced classification
problems, many approaches have been proposed, which aim
to reduce the influence from the underlying imbalanced dis-
tribution. In particular, the SMOTE is effective to increase the
significance of the positive class in the decision region. In this
contribution, we have proposed a powerful and efficient al-
gorithm for solving two-class imbalanced problems, referred
to as the SMOTE+PSO-RBF, by combining the SMOTE
and the PSO optimized RBF classifier. The experimental
results presented in this study have demonstrated that the

TABLE IV
8-FOLD CROSS VALIDATION CLASSIFICATION PERFORMANCE FOR ADI

DATA SET

Method TP% FP% Pr G-mean F-meas
SVM 0.34 0.10 0.30 0.55 0.32

(C+=1000,C-=1000) ±0.03

CS-SVM 0.72 0.23 0.29 0.74 0.42
(C+=1,C-=0.1) ±0.02

SUPANOVA 0.80 0.53 0.18 0.64 0.29
(C+=1,C-=0.1) ±0.03

LOO-AUC+OFS 0.21 0.01 0.67 0.46 0.32
(ρ = 1) ±0.03 ±0.01 ±0.08 ±0.03 ±0.04

LOO-AUC+OFS 0.55 0.14 0.33 0.68 0.41
(ρ = 5) ±0.09 ±0.02 ±0.02 ±0.05 ±0.04

LOO-AUC+OFS 0.71 0.22 0.30 0.74 0.42
(ρ = 10) ±0.05 ±0.03 ±0.01 ±0.02 ±0.01

LOO-AUC+OFS 0.83 0.29 0.27 0.76 0.40
(ρ = 15) ±0.02 ±0.02 ±0.01 ±0.01 ±0.02

LOO-AUC+OFS 0.88 0.36 0.24 0.75 0.37
(ρ = 20) ±0.03 ±0.04 ±0.02 ±0.02 ±0.02

SMOTE+PSO-OFS 0.20 0.01 0.70 0.44 0.30
(β% = 0%) ±0.04 ±0.01 ±0.09 ±0.04 ±0.03

SMOTE+PSO-OFS 0.30 0.04 0.53 0.55 0.39
(β% = 100%) ±0.07 ±0.02 ±0.09 ±0.05 ±0.03

SMOTE+PSO-OFS 0.51 0.11 0.38 0.67 0.43
(β% = 300%) ±0.07 ±0.03 ±0.04 ±0.03 ±0.02

SMOTE+PSO-OFS 0.72 0.23 0.29 0.74 0.41
(β% = 500%) ±0.09 ±0.06 ±0.03 ±0.02 ±0.03

SMOTE+PSO-OFS 0.77 0.28 0.27 0.74 0.40
(β% = 800%) ±0.07 ±0.08 ±0.03 ±0.02 ±0.03

SMOTE+PSO-OFS 0.82 0.29 0.27 0.76 0.41
(β%b = 1000%) ±0.04 ±0.04 ±0.02 ±0.01 ±0.01

SMOTE+PSO-OFS 0.89 0.35 0.25 0.76 0.39
(β% = 1500%) ±0.04 ±0.04 ±0.02 ±0.02 ±0.02

SMOTE+PSO-OFS 0.88 0.35 0.24 0.75 0.38
(β% = 2000%) ±0.02 ±0.03 ±0.02 ±0.02 ±0.02

proposed SMOTE+PSO-RBF offers a very competitive solu-
tion to other existing state-of-the-arts methods for combating
imbalanced classification problems.
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