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Abstract: A modified quadratic partial least squares (MQPLS) algorithm based on non-linear 
constrained programming is proposed, in which a sequential unconstrained minimisation 
technique is employed to calculate the outer input weights and the parameters of inner 
relationship. Other existing quadratic partial least squares (QPLS) algorithms are also reviewed 
and compared with the proposed MQPLS in the applications to two datasets, one being an 
artificial dataset and the other being the real data from an industrial fluidised catalytic cracking 
unit (FCCU) main fractionator. It is shown that the MQPLS not only can explain better the 
underlying variability of the data but also achieves improved modelling and predictive 
performance over the existing QPLS algorithms. An inferential control system is implemented on 
the distributed control system for an industrial FCCU main fractionator, in which the soft-sensor 
is built based on the MQPLS algorithm to estimate the diesel oil solidifying point online and the 
controller is established via a constrained dynamic matrix control algorithm. Experimental results 
obtained demonstrate that the inferential control system with the aid of the MQPLS soft sensor 
works much better than the original tray temperature control system and it realises well the 
bounder control of diesel oil solidifying point. 
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1 Introduction 

Many variables, which characterise the ‘quality’ of the final 
product in chemical processes, are often difficult to measure 
in real-time, and hence, cannot be used directly in a 
feedback configuration for process control. Most  
online quality analysers, such as gas chromatographs and 
near-infrared analysers, suffer from large measurement 
delays as well as high investment and maintenance costs. 
Under these circumstances, a common alternative is to set 
up soft sensors to infer the product properties (primary 
variables) by employing some auxiliary measurements 
(secondary variables), thus building an inferential control 
scheme. 

Statistic regression techniques have been extensively 
used in establishing soft sensing models from historical  
data. Among many regression techniques, the partial least 
squares/projection to latent structure (PLS) method has been 
proved to be a powerful tool for the problems where data 
are noisy and highly correlated as well as where the 
numbers of observations are limited (Berglund and Wold, 
1997; MacGregor et al., 1991). The power of PLS lies in the 
fact that it projects the input-output data onto a latent space 
to extract a number of principle components with an 
orthogonal structure, while capturing most of the variance in 
the original data. Therefore, the PLS can overcome the 
limitations of the traditional least squares (LS) regression. 
When dealing with highly correlated multivariate data, the 
traditional LS method often results in high variance in 
parameter estimation or even singular solution. 

However, many industrial processes exhibit significant  
non-linear behaviours. As a linear regression method, the 
PLS is inappropriate for modelling non-linear systems. 
Hence, various non-linear PLS (NPLS) methods have been 
proposed in the literature which extend the PLS model 
structure to capture non-linearities of the systems. A 
successful step towards NPLS modelling is the quadratic 
PLS (QPLS) proposed by Wold et al. (1989). In the QPLS, 
second order polynomial (quadratic) regression is used to fit 
the function between each pair of input and output score 
vectors, namely, the inner relation of PLS. Other ‘generic’ 
NPLS methods, such as the spline PLS (SPLS) (Wold, 
1992), the neural networks PLS (NNPLS) (Qin and 
McAvoy, 1992; Andersson et al., 1996; Wilson et al., 1997; 
Liu et al., 2000; Wang and Yu, 2004) and the fuzzy PLS 
(FPLS) (Bang et al., 2002) have been developed to model 
generic non-linearities. As their respective names suggested, 
the SPLS uses spline function (quadratic or cubic) as the 
inner model and the NNPLS uses neural networks as the 
inner model, while the FPLS uses Takagi-Sugeno-Kang 

fuzzy model as the inner model. All the above-mentioned 
NPLS algorithms have been developed from the non-linear 
iterative PLS (NIPALS) algorithm (Geladi and Kowalski, 
1986), which is referred to as the ‘engine’ of the PLS 
methodology. 

The problem of the input weight updating in the NPLS 
structure is firstly considered by Wold et al. (1989) and the 
benefits achievable by applying an updating procedure to 
the parameters of the NPLS model is also proved. This has 
motivated further research for the input weight updating 
procedure in the NPLS model. By modifying the input 
weight updating procedure of Wold et al. (1989), Baffi et al. 
(1999a, 1999b, 2000) have derived an error-based input 
weight updating approach. The first contribution of this 
paper is to formulate the weight and parameter updating 
procedure as a constrained non-linear optimisation problem. 
Sequential unconstrained minimisation technique (SUMT) 
is then utilised to calculate the outer input weights and the 
parameters of quadratic inner relation. The proposed 
updating method overcomes the drawbacks of the need for 
pseudo-inverse and high computational burden that exist in 
the original error-based input weight updating approach 
(Baffi et al., 1999a, 1999b, 2000). The new updating 
method is combined with the original QPLS in this paper, 
leading to a modified QPLS (MQPLS) algorithm. It is worth 
mentioning that this new weight updating approach is 
applicable to any NPLS algorithm. 

Control of industrial fluidised catalytic cracking unit 
(FCCU) main fractionators has been a classical and difficult 
control problem. Traditionally, the product quality control is 
achieved by tray temperature control, which has found 
wide-ranging applications in chemical plants when online 
analysers or product quality soft sensors are unavailable. 
The second contribution of this paper is to design an 
inferential controller aided by the MQPLS-based soft 
sensor. We apply the MQPLS-based soft sensor to predict 
the diesel oil solidifying point, which in turn enables us to 
design an inferential controller for close-loop quality control 
of the fractionator. Many works (Kano et al., 2000, 2003) 
have proposed the cascade inferential control system in 
which the set point of tray temperature controller is given by 
the output of quality inferential controller. However, in such 
a control scheme, the inner temperature controller has a 
greater influence on the performance of the whole system 
and its complex structure brings some major difficulties to 
operators. We provide a new inferential control scheme 
which is capable of switching between the tray temperature 
controller and the quality inferential controller without 
causing disturbance. The proposed inferential controller is 
established via a simplified dynamic matrix control (DMC) 
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algorithm (Zhan and Grassi, 1999; Wang and Li, 2003; 
Zhao et al., 2003; Biswas et al., 2007). 

The paper is organised as follows. In Section 2, the 
NPLS is reviewed and the error-based input weight updating 
procedure due to Baffi et al. (1999a, 1999b, 2000) is 
introduced. Section 3 proposes a new weight and parameter 
updating method. In particular, combining this new 
updating procedure with the QPLS algorithm leads to the 
MQPLS algorithm. A comparative case study for various 
QPLS algorithms is also given in this section. Section 4 
introduces an inferential controller for an industrial FCCU 
main fractionator, in which the soft-sensor is build based on 
the MQPLS algorithm to estimate the diesel oil solidifying 
point and the controller is established using a simplified 
DMC algorithm. Section 5 offers our conclusions. 

2 Non-linear partial least squares 

Consider the generic case where N  samples have  
been collected on M  regression variables (the  
independent variables) ( ) ( ) ( )1 2 ,⎡ ⎤= ⎣ ⎦x T

m m m mx x x N  
1≤ ≤m M  and K  response variables (the dependent 
variables) ( ) ( ) ( )1 2 , 1 .⎡ ⎤= ≤ ≤⎣ ⎦

T
k k k ky y y N k Ky  The 

data can be arranged into the ×N M  matrix 
[ ]1 2= MX x x x  and the ×N K  matrix [ ]1 2 .= KY y y y  

Typically, the matrix X  relates to the process variables 
(inputs), whilst the matrix Y  corresponds to the quality or 
reference variables (outputs). Before any regression 
algorithm is implemented, both input and output variables, 
mx  and ,ky  are preprocessed to having zero mean and unit 

variance. Proper preprocessing prevents the score vectors 
from being biased towards variables with large magnitudes. 

The PLS algorithm decomposes the input and output 
data matrices X  and Y  by projecting them onto the 
directions of the input weight lw  and output weight lc  to 
extract L  pairs of the input score vectors lt  and output 
score vectors ,lu  where 1≤ ≤l L  and { }min ,<L M K  is 
the number of score vectors extracted. The decomposition, 
referred to as the PLS outer relation, is given by (Berglund 
and Wold, 1997; Baffi et al., 1999a) 

1=

= +∑
L

T
l l

l

X t p E  (1) 

1

ˆ
=

= +∑
L

T
l l

l

Y u q F  (2) 

where lp  and lq  are known as the input and output loading 
vectors, respectively, E  and F  are the resulting residual 
matrices, respectively, while ˆ lu  denotes an estimate of ,lu  
which is determined by the PLS inner relation. 

An appropriate number of components, ,L  required to 
describe the data structure, is generally determined by 
means of cross validation. A typical cross-validation method 

for determining the data structure is to select L  by 
minimising the predictive error sum of squares (PRESS) 
(Stone, 1974; Myers, 1990). Usually, most of the variances 
of the input and output variables can be accounted for by the 
first few score vectors, whilst the residuals are typically 
associated with the random noise in the datasets. 

The traditional linear PLS defines a linear inner relation, 
namely, performs an ordinary LS regression between the 
pair of score vectors 

= +l l l lbu t e  (3) 

with 

=
T
l l

l T
l l

b
t u
t t

 (4) 

The estimator ˆ lu  is simply defined by ˆ .=l l lbu t  

2.1 The basic principle of NPLS 

To model the data with non-linear structure, the linear inner 
relation (3) is inadequate. Consider the NPLS with the 
generic non-linear inner relation 

( );= +l l l lu f t b e  (5) 

where lb  denotes the parameter vector that defines the  
non-linear vector mapping .f  Different NPLS algorithms 
adopts different non-linear functions .f  For example, the 
QPLS algorithm (Wold et al., 1989; Baffi et al., 1999a) 
employs the second order polynomial (quadratic) regression 
for the inner mapping 

2
0, 1, 2,1= + + +l l l l l l lb b bu t t e  (6) 

In this case, the parameter vector that specifies this 
quadratic mapping is 0, 1, 2, .= ⎡ ⎤⎣ ⎦

T
l l l lb b bb  The basic NPLS 

algorithm is now summarised. 
Denote ( )0 =X X  and ( )0 ,=Y Y  the original data 

matrices. In the thl  step, the PLS decomposition extracts 
the pair of the input and output score vectors lt  and lu  by 

projecting ( )1−lX  and ( )1−lY  onto the directions of lw  and 
.lc  The decomposition satisfies the following two 

conditions: 

1 lt  and lu  capture the variances of ( )1−lX  and ( )1 ,−lY  
respectively, as much as possible 

2 the covariance between lt  and lu  is maximised. 

The PLS outer relation is simply 
( )1− = +l T

l l lX t p E  (7) 

( )1 ˆ− = +l T
l l lY u q F  (8) 

After identifying the parameters of the inner relation (5), 
i.e., ,lb  the estimator of lu  is calculated as 
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( )ˆ ;=l l lu f t b  (9) 

and the residual matrices are given by 
( ) ( )1−= = −l l T

l l lX E X t p  (10) 

( ) ( )1 ˆ−= = −l l T
l l lY F Y u q  (11) 

The procedure is repeated until .=l L  
When the non-linear inner relation is chosen as the 

quadratic mapping (6), this NPLS algorithm becomes the 
QPLS algorithm. For a more comprehensive review, the 
reader is referred to the paper by Geladi and Kowalski 
(1986). 

2.2 The error-based NPLS 

Wold et al. (1989) described in their paper that ‘the present 
algorithm (QPLS) is fairly complicated and converge slowly 
when the data lack structure. Hopefully, this situation may 
be improved by better algorithms’. Wold et al. (1989), in 
fact, have identified the main drawbacks of merging  
non-linear regression techniques with the linear PLS 
framework. The main issue is concerned with the updating 
of input weights, as the value of ( );l lf t b  depends on the 
value of .lw  They then went on to consider the input weight 
updating in the NPLS structure. Although the weight 
updating procedure proposed by Wold et al. (1989) might be 
considered to be somewhat cumbersome in its approach, it 
does raise quite a few issues that are useful in solving the 
problem. After reviewing and discussing the input weight 
updating procedure proposed by Wold et al. (1989), Baffi et 
al. (1999a) developed three variants of input weight 
updating procedures and finally concluded that the  
error-based approach is the best method of the three 
procedures. This error-based input weight updating 
procedure is summarised in the following. 

The mismatch or error, ,le  between the value of lu  
given by =l lu Yq  and the value of ˆ lu  given by the  
non-linear mapping, ( )ˆ ; ,=l l lu f t b  can be denoted by 

ˆ= −l l le u u  (12) 

Through application of the first-order series expansion, le  
can be written as 

0 0ˆ ∂
= − = − =

∂l l l l l
l

fe u u u f w
w

Δ  (13) 

where 0f  indicates that the calculation is based on the 
previous input weight value .lw  By defining the partial 
derivative matrix 

0
∂⎡ ⎤= ⎢ ⎥∂⎣ ⎦

l
l

fZ
w

 (14) 

the mismatch can be written as l l le = Z wΔ  and the 
correction lwΔ  can be regressed directly as follows 

( )−= T T
l l l l lw Z Z Z eΔ  (15) 

where ( )−T
l lZ Z  denotes the pseudo-inverse of the matrix 

.T
l lZ Z  Then the input weight is updated according to 

= +l l lw w wΔ  (16) 

A new input score vector lt  is calculated according to 
.=l lt Xw  If lt  converges, the updating procedure is over; 

otherwise the procedure is repeated. 

Table 1 The error-based NPLS algorithm 

Step Summary 
0 Preprocess X and Y 
1 Set the output score vector ul  to a column of Y  

2 
Calculate the input weight vector :wl  =

u Xw
u u

T
l

l T
l l

 

3 
Normalise wl  to unit length: =

ww
w
l

l
l

 

4 Calculate the input score vector :lt  =t Xwl l  

5 Fit the non-linear inner relation: 
( );⎡ = + ⎤⎣ ⎦b u f t b el l l l lfit←  

6 Calculate the non-linear prediction of :ul  ( )ˆ ;=u f t bl l l  

7 
Calculate the output loading vector :ql  

ˆ
ˆ ˆ

=
u Yq
u u

T
l

l T
l l

 

8 
Normalise ql  to unit length: =

qq
q
l

l
l

 

9 Calculate the new output score vector :ul  =u Yql l  

10 Update the input weight vector :wl  = +w w wl l lΔ  
according to the error-based input weight updating 
procedure of Subsection 2.2 

11 
Normalise wl  to unit length: =

ww
w
l

l
l

 

12 Calculate the new input score vector :tl  =t Xwl l  

13 Check the convergence of :tl  If yes, go to Step 14; else 
go to Step 5 

14 Fit the non-linear inner relation: 
( );⎡ = + ⎤⎣ ⎦b u f t b el l l l lfit←  

15 Calculate the non-linear prediction of :ul  ( )ˆ ;=u f t bl l l  

16 
Calculate the input loading vector :pl  =

t Xp
t t

T
l

l T
l l

 

17 Calculate the input residual matrix :El  = −E X t pTl l l  

18 Calculate the output residual matrix :Fl  ˆ= −F Y u qTl l l  

19 If ,<l L  set ,=X El  =Y Fl  and repeat Steps 1 to 18 
with 1;= +l l  else stop 

Source: Baffi et al. (1999a, 1999b, 2000) 



 Inferential control with the aid of modified QPLS-based soft sensor for an industrial FCCU fractionator 63 

By combining this error-based input weight updating 
procedure with the NPLS structure, Baffi et al. (1999a, 
1999b) derived the error-based NPLS algorithm, which we 
summarise in Table 1. When the non-linear inner relation is 
chosen as the quadratic mapping (6), we refer to this  
error-based NPLS algorithm as the error-based QPLS 
algorithm. Without an input weight updating procedure, the 
first pair of input and output score vectors as well as the 
weight vector of the NPLS model remains the same as those 
of the linear PLS. By applying this input weight updating 
procedure, these quantities are different from those of the 
linear PLS and the final model has improved fitting and 
predictive capability (Baffi et al., 1999a, 1999b). 

3 Modified NPLS 

Although the above error-based NPLS algorithm offers 
more accurate modelling capability than the original NPLS 
algorithm without an input weight updating procedure, there 
are three aspects of this error-based input weight updating 
procedure which are worth investigating. Firstly, lZ  is rank 
deficient, if the input dimension M  is larger than the 
number of samples N  and/or the partial derivatives of the 
inner relation are linearly correlated or alternatively they are 
correlated with the inner relation ( ); .• •f  Under these two 
conditions, the correction lwΔ  cannot be obtained directly 
from equation (15) using the normal matrix inverse and 
numerical techniques are required to evaluate the  

pseudo-inverse ( ) ,
−T

l lZ Z  which is computationally 
expensive. Secondly, lw  is updated iteratively until the 
input score vector is converged (refer to Table 1, Steps 4 to 
13), which imposes a significantly increased computation 
burden. Thirdly, by applying the error-based input weight 
updating procedure, the NPLS model can capture larger 
output cumulative variance, but smaller input variance. This 
problem is also pointed out by Bang et al. (2002). 

In this paper, we propose a new updating procedure for 
the outer input weight lw  and inner parameter lb  by 
modifying and extending the error-based method for 
updating ,lw  proposed by Baffi et al. (1999a, 1999b, 2000). 

3.1 A new updating procedure with quadratic inner 
mapping 

The objective of the error-based input weight updating 
procedure due to Baffi et al. (1999a, 1999b, 2000) is to find 
appropriate input weights of the PLS outer relation and this 
task is embedded in the iterative loop for finding parameters 
of the non-linear inner relation, see Table 1, Steps 5 to 13. 
The joint task of finding the optimal outer input weights and 
parameters of the non-linear inner mapping can in fact be 
formulated as a joint optimisation that minimises the 
regression sum of squared errors of the non-linear inner 
relation, which is a constrained non-linear programming 
problem. We will restrict to the case of the quadratic inner 
mapping (6). In this QPLS case, the optimal input weights 

and polynomial coefficients of the quadratic inner mapping 
are obtained by solving the following non-linear constrained 
optimisation problem 

( ) ( )
,

2
0, 1, 2,

ˆ ˆmin

s.t. 1

ˆ 1

− −

=

=

= + +

l l

T
l l l l

l

l l

l l l l l lb b b

w b
u u u u

w
t Xw

u t t  (17) 

where 0, 1, 2, .= ⎡ ⎤⎣ ⎦
T

l l l lb b bb  We adopt a SUMT to transform 

the constrained optimisation problem (17) into a series of 
unconstrained non-linear programming problems. Then the 
Hooke-Jeeves’ method (Hooke and Jeeves, 1961; Rao, 
1996) is employed to solve these unconstrained non-linear 
programming problems. The initial values of lw  and lb  are 
supplied by the QPLS algorithm. 

Table 2 The proposed MQPLS algorithm 

Step Summary 
0 Preprocess X  and Y  
1 Set the output score vector ul  to a column of Y  

2 Calculate the input weight vector :wl  =
u Xw
u u

T
l

l T
l l

 

3 Normalise wl  to unit length: =
ww
w
l

l
l

 

4 Calculate the input score vector :tl  =t Xwl l  
5 Fit the quadratic inner relation: 

2
0, 1, 2,1⎡ ⎤= + + +⎣ ⎦b u t t el l l l l l l lfit b b b←  

6 Calculate the non-linear prediction of :ul  
2

0, 1, 2,ˆ 1= + +u t tl l l l l lb b b  

7 Solve the optimisation problem (17) to obtain the 
optimal input weight vector wl  and the parameter 
vector bl  of the quadratic inner mapping according to 
the procedure of Subsection 3.1 

8 Calculate the new input score vector :tl  =t Xwl l  

9 Calculate the input loading vector :pl  =
t Xp
t t

T
l

l T
l l

 

10 Normalise pl  to unit length: =
pp
p
l

l
l

 

11 Calculate the new non-linear prediction of :ul  
2

0, 1, 2,ˆ 1= + +u t tl l l l l lb b b  

12 Calculate the output loading vector :ql  
ˆ
ˆ ˆ

=
u Yq
u u

T
l

l T
l l

 

13 Normalise ql  to unit length: =
qq
q
l

l
l

 

14 Calculate the new output score vector :ul  =u Yql l  
15 Calculate the input residual matrix :El  = −E X t pTl l l

16 Calculate the output residual matrix :Fl  ˆ= −F Y u qTl l l
17 If ,<l L  set ,=X El  =Y Fl  and repeat Steps 1 to 16 

with 1;= +l l  else stop 
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3.2 The MQPLS 

Combining this new updating procedure for the outer input 
weights and parameters of the quadratic inner mapping with 
the QPLS algorithm leads to a new NPLS algorithm, which 
we refer to as the MQPLS algorithm. The detailed steps of 
this MQPLS algorithm is summarised in Table 2. Compared 
with the error-based QPLS algorithm of Table 1, 
computational requirements of the proposed MQPLS 
algorithm are significantly reduced, because lw  and lb  do 
not need to be calculated iteratively. 

3.3 A comparative case study – simulated non-linear 
function 

The simulated non-linear function has the four uncorrelated 
random input variables ,ix  1 4,≤ ≤i  which are uniformly 
distributed in [−0.25, 0.25] and the output is given by 

( )( ) ( )1 4 2 3exp 2 sin sin= +y x x x xπ  (18) 

This non-linear function was employed by Baffi et al. 
(1999a) to compare the performance of their error-based 
QPLS algorithm with that of the original QPLS algorithm. 
In this paper, we use this simulated non-linear function in a 
case study to compare the performance of the four PLS 
algorithms, namely, the linear PLS, the original QPLS, the 
error-based QPLS and the proposed MQPLS. 

Table 3 Cumulative variances captured (%) by the linear PLS, 
QPLS, error-based QPLS and MQPLS for the 
simulated non-linear function 

Linear PLS  Original QPLS Number of latent 
variables L  X  Y   X  Y  

1 25.25 2.97  25.41 49.91 
2 49.56 2.97  50.73 51.06 
3 75.43 2.97  75.00 53.10 
4 100.0 2.97  100.0 71.57 

Error-based QPLS  MQPLS Number of latent 
variables L  X  Y   X  Y  

1 25.24 79.07  25.51 79.08 
2 50.02 94.17  50.33 94.21 
3 75.45 95.31  75.45 95.40 
4 94.42 95.63  100.0 95.73 

The total number of samples is 500. Four hundreds of these 
data samples are used for model training and the remaining 
100 are used as a test dataset. No noise is added to the 
variables in this study. The linear PLS, original QPLS, 
error-based QPLS and MQPLS algorithms were applied to 
the training dataset. The cumulative variances of the X  and 
Y  blocks captured by each model are given in Table 3. Due 
to the fact that the four inputs are uncorrelated and 
uniformly distributed between –0.25 and 0.25, the amount 
of the variance of X  explained by each input score vector is 
approximately the same. This is confirmed by the results 

shown in Table 3. Figures 1 to 4 show the different abilities 
of the four models to fit the non-linear inner relation, where 
the curve in each graph, consisting of symbols +, denotes 
the inner regression mapping obtained by each algorithm. 

Figure 1 Scatter plot of the scores and the inner model obtained 
by the linear PLS for the simulated non-linear function 
(see online version for colours) 

 

Figure 2 Scatter plot of the scores and the inner model obtained 
by the original QPLS for the simulated non-linear 
function (see online version for colours) 

 

It is easily concluded that the linear PLS is incapable of 
fitting a non-linear inner model, as illustrated clearly in 
Figure 1. Furthermore, the cumulative variance of Y  
captured by the linear PLS model is only 2.97%. It is also 
evident that improvement can be achieved over the original 
QPLS by implementing an updating procedure in the QPLS 
algorithm, as clearly shown in the cases of the error-based 
QPLS and the proposed MQPLS. The greater the spread in 

,lu  the poorer the fit of the inner relation and vice versa. 
Note that the output score vectors of the error-based QPLS 
and MQPLS are less spread than those of the QPLS. In 
addition, from the point of view of the cumulative variance 
captured, the error-based QPLS is effective in explaining 
the cumulative variance of Y  block (95.63%) but less so in 
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explaining the cumulative variance of X  block (94.42%). In 
comparison, the output cumulative variance explained by 
the MQPLS is marginally better (95.73%) than that of the 
error-based QPLS and, moreover, the input cumulative 
variance explained by the MQPLS is better (100%). 

Figure 3 Scatter plot of the scores and the inner model obtained 
by the error-based QPLS for the simulated non-linear 
function (see online version for colours) 

 

Figure 4 Scatter plot of the scores and the inner model obtained 
by the MQPLS for the simulated non-linear function 
(see online version for colours) 

 

Figures 5 to 8 depict the actual and predicted values for the 
test dataset based on the four models obtained by the linear 
PLS, original QPLS, error-based QPLS and MQPLS 
algorithms, respectively. Table 4 compares the test root 
mean squared predictive error (RMSPE) performance of the 
four models and the run times required by the four 
algorithms under the same computational platform to obtain 
these four models. It can be seen that the model obtained by 
the MQPLS algorithm, whose RMSPE is only 0.0282, is the 
most accurate one among the four models. The time 
consumed by an algorithm represents the computational 
complexity of the algorithm. It can be concluded that the 

MQPLS only requires about one third computational 
complexity of the error-based QPLS. 

Table 4 Test RMSPE and run time consumed by the linear 
PLS, original QPLS, error-based QPLS and MQPLS 
for the simulated non-linear function 

 Linear PLS QPLS Error-based 
QPLS MQPLS 

RMSPE 0.1254 0.0673 0.0389 0.0282 
Time(s) 0.4840 0.8130 14.969 4.6720 

Figure 5 Test results by the linear PLS for the simulated  
non-linear function (see online version for colours) 

 
Note: Solid: actual output and dashed: model predicted 

output. 

Figure 6 Test results by the original QPLS for the simulated 
non-linear function (see online version for colours) 

 
Note: Solid: actual output and dashed: model predicted 

output. 
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Figure 7 Test results by the error-based QPLS for the simulated 
non-linear function (see online version for colours) 

 
Note: Solid: actual output and dashed: model predicted 

output. 

Figure 8 Test results by the MQPLS for the simulated non-linear 
function (see online version for colours) 

 
Note: Solid: actual output and dashed: model predicted 

output. 

4 Inferential control of a FCCU fractionator 

An FCCU converts heavy distillates like gas oils or 
residuals into gasoline, diesel oil and middle distillates 
using cracking catalyst and is one of the key processes in 
modern petroleum refining. 

4.1 Soft sensor for diesel oil solidifying point 

The four algorithms, the linear PLS, original QPLS,  
error-based QPLS and MQPLS, are applied to establish the 
soft sensors on an industrial FCCU main fractionator to 
predict the diesel oil solidifying point (primary variable). 
Through analysing the underlying chemical process, 15 
process variables are chosen as the secondary variables and 
measured online at one minute intervals, while the actual 

product quality is only available from the lab with a 
frequency of two hours. The chosen secondary variables 
include the top pressure, the top temperature, the flow rate, 
the temperature of the second reflux, etc. A dataset 
including 720 samples are gathered from the plant, which 
have been chosen to be representative of the range of known 
operating conditions. The outliers have been removed 
beforehand. The data is split into a training dataset and a test 
dataset. Every fifth observation is placed in the test dataset, 
totalling 144 samples and the remaining 576 observations 
form the training dataset. The optimal number of 
components, ,L  is calculated by cross-validation using the 
PRESS statistics, as mentioned in Section 2. 

Slight non-linearity is found in the first pair of the 
components of the data gathered, which indicates that a 
quadratic inner model is appropriate. The training 
performance of the four algorithms are summarised in  
Table 5, where the cumulative variances of the X  and Y  
matrices captured by each model are given. Figures 9 to 12 
compares the actual output, the diesel oil solidifying point 
(°C), of the test dataset with the model predictions obtained 
by the four algorithms, respectively. Table 6 lists the test 
mean squared predictive error (MSPE) performance of the 
four models obtained by the four algorithms. It is clear from 
Table 6 that the three QPLS-type algorithms better capture 
the non-linear characteristics in the FCCU data than the 
linear PLS algorithm. In particular, the performance of the 
MQPLS algorithm is the most accurate among the four 
algorithms. The prediction of the MQPLS model is 
therefore used as a reference for the plant operator. 

Table 5 Cumulative variances captured (%) by the linear PLS, 
QPLS, error-based QPLS and MQPLS for the real 
dataset of an industrial FCCU fractionator 

Linear PLS  Original QPLS Number of latent 
variables L  X  Y   X  Y  

1 69.75 56.37  74.40 72.47 
5 70.85 62.14  93.61 75.51 
10 92.45 65.06  99.40 78.24 
15 100.0 68.85  100.0 78.62 

Error-based QPLS  MQPLS Number of latent 
variables L  X  Y   X  Y  

1 29.42 78.61  34.56 82.70 
5 37.17 80.24  53.56 84.96 
10 52.08 91.73  87.26 92.57 
15 62.58 92.55  88.83 93.79 

Table 6 Test MSPE by the linear PLS, original QPLS,  
error-based QPLS and MQPLS for the real dataset of 
an industrial FCCU fractionator 

 Linear 
PLS QPLS Error-based 

QPLS MQPLS 

MSPE 1.4687 1.31197 1.1651 1.0847 
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Figure 9 Test results by the linear PLS for the real dataset of an 
industrial FCCU fractionator (see online version for 
colours) 

 
Note: Solid: actual output and dashed: model predicted 

output. 

Figure 10 Test results by the original QPLS for the real dataset of 
an industrial FCCU fractionator (see online version for 
colours) 

 
Note: Solid: actual output and dashed: model predicted 

output 

Figure 11 Test results by the error-based QPLS for the real 
dataset of an industrial FCCU fractionator (see online 
version for colours) 

 
Note: Solid: actual output and dashed: model predicted 

output. 
 
 
 

Figure 12 Test results by the MQPLS for the real dataset of an 
industrial FCCU fractionator (see online version for 
colours) 

 
Note: Solid: actual output and dashed: model predicted 

output. 

4.2 Predictive inferential control scheme 

The product quality control of fractionators is a classical 
and difficult problem. Tray temperature control is a 
traditional control scheme that is widely used in chemical 
plants for product quality control. It is very simple and does 
not rely on any online product quality analysers or soft 
sensors. Because the soft sensor based on the MQPLS 
algorithm to predict the diesel oil solidifying point is 
available, more intelligent inferential controller for quality 
close-loop control can be implemented. Typically, a cascade 
inferential control system is built in which the set point of 
the tray temperature controller is given by the output of the 
quality inferential controller (Kano et al., 2000, 2003). 
However, such a control scheme has complex structure 
which may cause some serious difficulties to the plant 
operator. Furthermore, in such a cascade control system, the 
inner temperature controller has a greater influence on the 
performance of the whole system and the benefits of the 
quality inferential control is not fully realised. In this paper, 
we propose a new alternative inferential control scheme that 
switches between the conventional tray temperature 
controller and the quality inferential controller without 
causing disturbance to the operation of the plant. The 
configuration of the proposed inferential control system is 
shown in Figure 13. The temperature controller (TC in 
Figure 13) still uses the original tray temperature controller. 
The inferential controller (AC in Figure 13) adopts the 
constrained single-value DMC algorithm (Wang and Li, 
2003; Zhao et al., 2003; Biswas et al., 2007), which is 
widely applied in chemical and related industries and has a 
particular advantage in dealing with long time delays of 
chemical processes. 
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Figure 13 Schematic diagram of the FCCU main fractionator with 
predictive inferential control system (see online version 
for colours) 

 

The adopted DMC algorithm is an internal model control 
strategy based on the discrete-time step response model. For 
any assumed set of the present and future control moves 

( ) ( ) ( ), 1 , , ,+ +u k u k u k PΔ Δ Δ  the future outputs 
corrected by the error between the predicted output value 
( )ŷ k  and the actual plant output value ( )y k  are labelled as 
( ) ( ) ( )1 , 2 , , .+ + +c c cy k y k y k P  If only the thP  step 

error correction is considered, the present control move 
( )u kΔ  is computed by solving the following constrained 

optimisation 

( )
( ) ( )( ){ }
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where ( )+ry k P  is the set objective value. 
This kind of DMC design scheme can make use of the 

original system module and is easy to be realised on the 
distributed control system (DCS) as well as simple to 
operate by the plant operator. However, there are still some 
issues that require particular attention in practice. When the 
step response of the process is made for the DMC, it must 
be ensured that the step response starts from some steady 
state. Also, the inferential control system should take into 
account the abnormalities from the DCS and the process to 
guarantee safety of the process operation. Because the 
operating conditions of chemical plants are often changing, 
predictive model updating is another key issue. 

4.3 Control experimental results 

The designed MQPLS-based soft sensor and the predictive 
inferential controller have been realised using the control 
language programming and are made operational on the 
DCS of the plant to control the solidifying point of diesel 
oil. The results of an experiment using the MQPLS-based 
soft sensor to predict the diesel oil solidifying point (°C) are 
depicted in Figure 14, where the solid-curve data are the 
actual solidifying point gathered from the laboratory and  
the dashed-curve data are the predicted value by the  

MQPLS-based soft sensor. The MSPE of the MQPLS-based 
soft sensor in this experiment is 0.9522 and the predicted 
result is regarded as satisfactory to be used as the set point 
of the inferential controller. 

Figure 14 Experimental results of predicting the diesel oil 
solidifying point (°C) using the MQPLS-based soft 
sensor (see online version for colours) 

 
Note: Solid: actual solidifying point and dashed: 

predicted by the soft sensor. 

Figure 15 shows the results of control performance before 
and after switched to the predictive inferential control 
system. From Figure 15 it can be seen clearly that the 
control variance decreases significantly after switching from 
the tray temperature control system to the inferential control 
system. Closed-loop response of the predictive inferential 
control system is illustrated in Figure 16, where the set point 
of solidifying point is changed from –7.5°C to –6°C. It can 
be seen that the predictive inferential control system can 
response quickly to step change in the set point. Good 
closed-loop response is of benefit to the bounder quality 
control. The experimental results obtained have indicated 
that the inferential control system achieves a better 
performance than the traditional tray temperature control 
system. 
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Figure 15 Control performance before and after switched to the 
predictive inferential control system (see online version 
for colours) 

 

Figure 16 Closed-loop response of the predictive inferential 
control system (see online version for colours) 

 

5 Conclusions 

The contribution of this paper has been two-fold. Firstly, the 
error-based outer input weight updating procedure within 
the QPLS framework due to Baffi et al. (1999a, 1999b) has 
been studied and a new updating procedure based on  
non-linear programming has been formulated for obtaining 
the optimal outer input weights and parameters of the 
quadratic inner mapping, which leads to the proposed 
MQPLS algorithm. In comparison with the error-based 
QPLS algorithm, the new MQPLS algorithm has been 
shown to have advantages of capturing higher percentages 
of both the input and output cumulative variances, avoiding 
the expensive pseudo-inverse of matrix and reducing the 
computational complexity. Secondly, to realise online 
measurement, a soft sensor has been built based on the 
MQPLS algorithm to estimate the diesel oil solidifying 
point of an industrial FCCU main fractionator. This has 
enabled us to develop a predictive inferential controller 
based on the constrained single-value DMC algorithm for 
the quality control of the FCCU fractionator. Our proposed 
new control scheme can switch between the conventional 
tray temperature controller and the predictive inferential 
controller aided by the MQPLS-based soft sensor. 
Experimental results obtained on an industrial FCCU main 
fractionator have demonstrated that the proposed predictive 

inferential control system performs better than the 
traditional tray temperature control system. 

When the operating conditions of a plant changes 
significantly, such as in the event of large disturbances 
entering the process, prompt model updating is essential for 
a predictive inferential controller to continue functioning 
well. Further research will investigate effective adaptation 
of both the inferential MQPLS model and the step response 
model. 
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